Lefèvre, PascalLi, DanielQueffélec, HervéRodríguez Piazza, Luis2023-04-142023-04-142021Lefèvre, P., Li, D., Queffélec, H. y Rodríguez Piazza, L. (2021). Comparison of singular numbers of composition operators on different Hilbert spaces of analytic functions. Journal of Functional Analysis, 280, 1-47. https://doi.org/10.1016/j.jfa.2020.108834.0022-12361096-0783https://hdl.handle.net/11441/144366We compare the rate of decay of singular numbers of a given composition operator acting on various Hilbert spaces of analytic functions on the unit disk D. We show that for the Hardy and Bergman spaces, our results are sharp. We also give lower and upper estimates of the singular numbers of the composition operator with symbol the “cusp map” and the lens maps, acting on weighted Dirichlet spaces.application/pdf47 p.engAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Approximation numbersComposition operatorHilbert spaces of analytic functionsSchatten classesComparison of singular numbers of composition operators on different Hilbert spaces of analytic functionsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccesshttps://doi.org/10.1016/j.jfa.2020.108834