Gago Vargas, Manuel JesúsHartillo Hermoso, IsabelUcha Enríquez, José María2015-03-272015-03-272005978-3-540-28966-1http://hdl.handle.net/11441/23606Let $f_1,\ldots, f_p$ be polynomials in ${\bf C}[x_1,\ldots, x_n]$ and let $D = D_n$ be the $n$-th Weyl algebra. The annihilating ideal of $f^s=f_1^{s_1}\cdots f_p^{s_p}$ in $D[s]=D[s_1,\ldots,s_p]$ is a necessary step for the computation of the Bernstein-Sato ideals of $f_1,\ldots, f_p$. We point out experimental differences among the efficiency of the available methods to obtain this annihilating ideal and provide some upper bounds for the complexity of its computation.application/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/Bernstein-Sato idealsNouvelle Cuisine for the Computation of the Annihilating Ideal of f(s)info:eu-repo/semantics/bookPartinfo:eu-repo/semantics/openAccess