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Highlights

• A multi-objective test case prioritization real-world
case study is presented

• Seven objective functions based on functional and
non-functional data are proposed

• Comparison of the effectiveness of 63 combinations
of up to three objectives

• NSGA-II evolutionary algorithm to solve the multi-
objective prioritization problem

• Multi-objective prioritization is more effective than
mono-objective approaches
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Abstract

Test case prioritization schedules test cases for execution in an order that attempts to accelerate the detection of
faults. The order of test cases is determined by prioritization objectives such as covering code or critical components as
rapidly as possible. The importance of this technique has been recognized in the context of Highly-Configurable Systems
(HCSs), where the potentially huge number of configurations makes testing extremely challenging. However, current
approaches for test case prioritization in HCSs suffer from two main limitations. First, the prioritization is usually driven
by a single objective which neglects the potential benefits of combining multiple criteria to guide the detection of faults.
Second, instead of using industry-strength case studies, evaluations are conducted using synthetic data, which provides
no information about the effectiveness of different prioritization objectives. In this paper, we address both limitations
by studying 63 combinations of up to three prioritization objectives in accelerating the detection of faults in the Drupal
framework. Results show that non–functional properties such as the number of changes in the features are more effective
than functional metrics extracted from the configuration model. Results also suggest that multi-objective prioritization
typically results in faster fault detection than mono-objective prioritization.

1. Introduction

Highly-Configurable Systems (HCSs) provide a com-
mon core functionality and a set of optional features to
tailor variants of the system according to a given set of re-
quirements [9, 69]. For instance, operating systems such as
Linux or eCos are examples of HCSs where functionality
is added or removed by installing and uninstalling pack-
ages, e.g. Debian Wheezy offers more than 37,000 available
packages [13]. Content management systems are also ex-
amples of HCSs were configuration is managed in terms
of modules, e.g. the e-commerce platform Prestashop has
more than 3,500 modules and visual templates [63]. Re-
cently, cloud applications are also being presented as con-
figurable systems, e.g. the Amazon Elastic Compute Cloud
(EC2) service offers 1,758 different possible configurations
[27].

HCSs are usually represented in terms of features. A
feature depicts a choice to include a certain functionality
in a system configuration [69]. It is common that not all
combinations of features are allowed or meaningful. In this
case, additional constraints are defined between them, nor-
mally using a variability model, such as a feature model.
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Segura), aruiz@us.es (Antonio Ruiz-Cortés),
roberto.lopez@jku.at (Roberto E. Lopez-Herrejon),
alexander.egyed@jku.at (Alexander Egyed)

A feature model represents all the possible configurations
of the HCS in terms of features and constraints among
them [40]. A configuration is a valid composition of fea-
tures satisfying all the constraints. Figure 1 depicts a
feature model representing a simplified family of mobile
phones. The model illustrates how features and relation-
ships among them are used to specify the commonalities
and variabilities of the mobile phones. The following set
of features represents a valid configuration of the model:
{Mobile Phone, Calls, Screen, HD, GPS, Media, Camera}.

HCS testing is about deriving a set of configurations
and testing each configuration [54]. In this context, a test
case is defined as a configuration of the HCS under test
(i.e. a set of features) and a test suite is a set of test cases
[54]. Henceforth, the terms test case and configuration
are used indistinctly. Testing HCSs is extremely challeng-
ing due to the potentially huge number of configurations
under test. As an example, Eclipse [13] has more than
1,650 plugins that can be combined (with restrictions) to
form millions of different configurations of the development
environment. This makes exhaustive testing of HCSs in-
feasible, that is, testing every single configuration is too
expensive in general. Also, even when a manageable set
of configurations is available, testing is irremediably lim-
ited by time and budget constraints which requires making
tough decisions with the goal of finding as many faults as
possible.

Typical approaches for HCS testing use a model-based
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approach, that is, they take an input feature model rep-
resenting the HCS and return a valid set of feature con-
figurations to be tested, i.e. a test suite. In particular,
two main strategies have been adopted: test case selection
and test case prioritization. Test case selection reduces
the test space by selecting an effective and manageable
subset of configurations to be tested [16, 34, 50]. Test case
prioritization schedules test cases for execution in an or-
der that attempts to increase their effectiveness at meeting
some performance goal, typically detecting faults as soon
as possible [2, 45, 75]. Both strategies are complementary
and are often combined.

Test case prioritization in HCSs can be driven by differ-
ent functional and non–functional objectives. Functional
prioritization objectives are those based on the functional
features of the system and their interactions. Some exam-
ples are those based on combinatorial interaction testing
[75], configuration dissimilarity [2, 33, 60] or feature model
complexity metrics [59, 60]. Non–functional prioritization
objectives consider extra–functional information such as
user preferences [21, 39], cost [75], memory consumption
[45] or execution probability [15] to find the best ordering
for test cases. In a previous work [59], we performed a pre-
liminary evaluation comparing the effectiveness of several
functional and non–functional prioritization objectives in
accelerating the detection of faults in an HCS. Results sug-
gested that non–functional properties such as the number
of changes or the number of defects in a previous version
of the system were among the most effective prioritization
criteria.

Challenges. Current approaches for test case prioritiza-
tion in HCSs follow a single objective approach [2, 39, 15,
21, 33, 45, 59], that is, they either aim to maximize or min-
imize an objective (e.g. feature coverage) or another (e.g.
suite size) but not both at the same time. Other works
[70, 75] combine several objectives into a single function
by assigning them weights proportional to their relative
importance. While this may be acceptable in certain sce-
narios, it may be unrealistic in others where users may
wish to study the trade-offs among several objectives [44].
Thus, the potential benefits of optimizing multiple pri-
oritization objectives simultaneously, both functional and
non–functional, is a topic that remains unexplored.

A further challenge is related to the lack of HCSs with
available code, variability models and fault reports that
can be used to assess the effectiveness of testing approaches.
As a result, authors typically evaluate their contributions
in terms of performance (e.g. execution time) using syn-
thetic feature models and data [2, 34, 56, 76]. This in-
troduces significant threats to validity, limit the scope of
their conclusions and, more importantly, it raises questions
regarding the fault–detection effectiveness of the different
algorithms and prioritization objectives.

Contributions. In this paper, we present a case study
on multi–objective test case prioritization in HCSs. In

particular, we model test case prioritization in HCSs as
a multi–objective optimization problem, and we present a
search–based algorithm to solve it based on the classical
NSGA-II evolutionary algorithm. Additionally, we present
seven objective functions based on both functional and
non–functional properties of the HCS under test. Then,
we report a comparison of 63 different combinations of up
to three objectives in accelerating the detection of faults in
the Drupal framework. Drupal is a highly modular open
source web content management system for which we have
mined a feature model and extracted real data from its
issue tracking system and Git repository [59]. Results re-
veal that non–functional properties, such as the number of
defects in previous versions of the system, accelerate the
detection of faults more effectively than functional prop-
erties extracted from the feature model. Results also sug-
gest that multi-objective prioritization is more effective at
accelerating the detection of faults than mono-objective
prioritization.

The rest of the paper is structured as follows: Section
2 introduces the concepts of feature models and multi-
objective evolutionary algorithms. Section 3 presents the
Drupal case study used to perform this work. In Section
4 and Section 5 we respectively describe the overview and
definition of our approach and the multi-objective opti-
mization algorithm proposed. Section 6 defines seven ob-
jective functions for HCSs based on functional and non-
functional goals. The evaluation of our approach is de-
scribed in Section 7. Section 8 presents the threats to
validity of our work. The related work is discussed in Sec-
tion 9. Finally, we summarize our conclusions and outline
our future work in Section 10.

2. Background

2.1. Feature Models

A feature model defines all the possible configurations
of a system or family of related systems [6, 40]. A feature
model is visually represented as a tree–like structure in
which nodes represent features, and edges denote the re-
lationships among them. A feature can be defined as any
increment in the functionality of the system [5]. A con-
figuration of the system is composed of a set of features
satisfying all the constraints of the model. Figure 1 shows
a feature model describing a simplified family of mobile
phones. The hierarchical relationship among features can
be divided into:

• Mandatory. If a feature has a mandatory relation-
ship with its parent feature, it must be included in
all the configurations in which its parent feature ap-
pears. In Figure 1, all mobile phones must provide
support for Calls.

• Optional. If a feature has an optional relationship
with its parent feature, it can be optionally included
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Figure 1: Mobile phone feature model

in all the configurations including its parent feature.
For example, GPS is defined as an optional feature of
mobile phones.

• Alternative. A set of child features has an alterna-
tive relationship with their parent feature when only
one of them can be selected when its parent feature is
part of the configuration. In Figure 1, mobile phones
can provide support for Basic or HD (High Defini-
tion) screen, but not both of them at the same time.

• Or. A set of child features has an or-relationship
with their parent when one or more of them can be
included in the configurations in which its parent fea-
ture appears. In Figure 1, software for mobile phones
can provide support for Camera, MP3 or both in the
same configuration.

In addition to the hierarchical relationships between
features, a feature model can also contain cross-tree con-
straints. These are usually of the form:

• Requires. If a feature A requires a feature B, the
inclusion of A in a configuration implies the inclu-
sion of B in such configuration. In Figure 1, mobile
phones including the feature Camera must include
support for a HD screen.

• Excludes. If a feature A excludes a feature B, both
features cannot appear in the same configuration.

The following is a sample configuration derived from
the feature model in Figure 1: {Mobile Phone, Calls,
Screen, HD, Media, Camera}. This configuration includes
all the mandatory features (Mobile Phone, Calls, Screen)
and some extra features (HD, Media, Camera) meeting all

Feature Changes Faults Size

Basic 1 0 270
Calls 6 10 1,000
Camera 11 8 680
GPS 8 6 460
HD 3 3 510
Media 9 5 1,100
MP3 11 8 390
Screen 2 4 930

Table 1: Mobile phone feature attributes

the constraints of the model, e.g. Camera requires HD. Fea-
ture models can be automatically analysed to extract all
its possible configurations or to determine whether a given
configuration is valid (it fulfils all the constraints of the
model), among other analysis operations [6]. Some tool
supporting the analysis of feature models are FaMa [24],
SPLAR [53] and FeatureIDE [66].

Feature models can be extended with additional infor-
mation by means of feature attributes, these are called at-
tributed or extended feature models [6]. Feature attributes
are often defined as tuples < name, value > specifying
non–functional information of features such as cost or mem-
ory consumption. As an example, Table 1 depicts three
different feature attributes (number of changes, number of
faults and lines of code) and their values on the features
of the model in Figure 1.

Feature models are often used to represent the test
space of an HCS where each configuration of the model
represents a potential test case. Since typical HCSs can
have thousands or even millions of different configurations,
several sampling techniques have been proposed to reduce
the number of configurations to be tested (e.g. [46, 50,
55]). Salient among them is pairwise testing whose goal is
to select test suites that contain all possible combinations
of pairs of features [46]. As an example, Table 3 shows the
set of configurations obtained when applying pairwise test-
ing to the model in Figure 1. The test suite is reduced from
13 (total number of configurations of the feature model) to
five in the pairwise suite. Once a set of configurations are
selected for testing, their behaviour has to be tested using
standard testing mechanisms, e.g. executable unit tests.
However, in this article we focus only on the first step:
obtaining a set of high-level test cases respect to different
testing objectives. In Section 4 we present in further detail
the role of feature models in our work.

2.2. Multi–objective evolutionary algorithms

Evolutionary algorithms are a widely used strategy to
solve multi–objective optimization problems. These algo-
rithms manage a set of candidate solutions to an optimiza-
tion problem that are combined and modified iteratively to
obtain better solutions. This process simulates the natu-
ral selection of the better adapted individuals that survive
and generate offspring improving species. In evolution-
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Figure 2: Working scheme of evolutionary algorithm

ary algorithms each solution is referred to as individual
or chromosome, and objectives are referred to as fitness
functions.

The working scheme of an evolutionary algorithm is de-
picted in Figure 2. Initialization generates the set of indi-
viduals that the algorithm will use as starting point. Such
initial population is usually generated randomly. Next,
the fitness functions are used to assess the individuals. In
order to create offspring, individuals need to be encoded,
expressing its characteristics in a form that facilitates its
manipulation during the rest of the algorithm. Then, the
main loop of the evolutionary algorithm is executed until
meeting a termination criterion as follows. First, individu-
als are selected from current population in order to create
new offspring. In this process, better individuals usually
have higher probability of being selected resembling the
natural evolution where stronger individuals have more
chances of reproduction. Next, crossover is performed to
combine the characteristics of a pair of the chosen individ-
uals to produce new ones in an analogous way to biological
reproduction. Crossover mechanisms depend strongly on
the scheme used for the encoding. Mutation generates
random changes on the new individuals. Changes are per-
formed with certain probability where small modifications
are more likely than larger ones. In order to evaluate the
fitness of new and modified individuals, decoding is per-
formed and fitness functions are evaluated. Finally, the
next population is conformed in such a way that individu-
als with better fitness values are more likely to remain in
the next population.

Multi–Objective Evolutionary Algorithms (MOEAs) are
a specific type of evolutionary algorithm where more than
one objective are optimized simultaneously. However, ex-
cept in trivial systems, there rarely exist a single solution
that simultaneously optimizes all the objectives. In that
case, the objectives are said to be conflicting, and there ex-
ists a (possibly infinite) number of so-called Pareto optimal
solutions. A solution is said to be a Pareto optimal (a.k.a.
non-dominated) if none of the objectives can be improved
without degrading some of the others objectives. Analo-
gously, the solutions where all the objectives can be im-
proved are referred to as dominated solutions. The surface
obtained from connecting all the Pareto optimal solutions
is the so-called Pareto Front. Among the many MOEAs
proposed in the literature, the Non-dominated Sorting Ge-
netic Algorithm-II (NSGA-II) [12] has become very popu-
lar due to its effectiveness in many of the benchmarks in
multi–objective optimization [11, 81].

3. The Drupal case study

In this section, we present the Drupal case study fully
reported by the authors in a previous work [59]. Drupal
is a highly modular open source web content management
framework written in PHP [8, 67]. This tool can be used
to build a variety of websites including internet portals,
e-commerce applications and online newspapers [67]. Dru-
pal has more than 30,000 modules that can be composed
to form valid configurations of the system. The size of
the Drupal community (more than 630,000 users and de-
velopers) together with its extensive documentation are
strengths to choose this framework as our empirical case
study. More importantly, the Drupal Git repository and
the Drupal issue tracking systems are publicly available
sources of valuable functional and non-functional informa-
tion about the framework and its modules.

Figure 3 depicts the feature model of Drupal v7.23.
Nodes in the tree represent features where a feature cor-
responds to a Drupal module. A module is a collection of
functions that provides certain functionality to the system.
Some modules extend the functionality of other modules
and are modelled as subfeatures, e.g. Views UI extends
the functionality of Views. The feature model includes
the core modules of Drupal, modelled as mandatory fea-
tures, plus some optional modules, modelled as optional
features. In addition, the cross-tree constraints of the fea-
tures in the model are depicted in Figure 3. These are
of the form X requires Y, which means that configurations
including the feature X must also include the feature Y. A
Drupal configuration is a combination of features consis-
tent with the hierarchical and cross-tree constraints of the
model. In total, the Drupal feature model has 48 features,
21 non-redundant cross-tree constraints and it represents
2.09E9 different configurations [59].

In this paper, we model the non-functional data from
Drupal as feature attributes, depicted in Table 2. These
data were obtained from the Drupal website, the Drupal
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Figure 3: Drupal feature model

Git repository and the Drupal issue tracking system [59].
In particular, we use the following attributes:

• Feature size. Number of Lines of Code (LoC) of the
source code associated to the feature (blank lines
and test files were excluded from the counting). The
sizes range from 284 LoC (feature Ctools custom

content) to 54,270 LoC (feature Views).

• Number of changes. Number of commits made by
the contributors to the feature in the Drupal Git
repository1 during a period of two years, from 1 May
2012 to 31 April 2014. As illustrated, the number of
changes ranges from 0 (feature Blog) to 90 (feature
Backup migrate).

• Single faults. Number of faults reported in the Dru-
pal issue tracking system2. Faults were collected for
two consecutive versions of the framework v7.22 and
v7.23 in a period of two years, from 1 May 2012 to
31 April 2014. For instance, we found 19 reported
bugs related to the Drupal module Taxonomy (fea-
ture Taxonomy) in Drupal v7.23. The number of total
faults ranges from 0 in features as Options to 1,091
in the feature Views.

• Integration faults. List of features for which inte-
gration faults have been reported in the Drupal is-
sue tracking system. In total, we identified three
faults triggered by the interaction of four features,
25 caused by the interaction of three features and
132 faults triggered by the interaction between two
features. These faults have been computed on the
features that triggered them in Table 2. For in-
stance, the fault caused by the interaction of Blog

and Entity API is computed as one integration fault
in the feature Blog and one integration fault in the
feature Entity API. We refer the reader to [59] for
detailed information about the bug mining process
in Drupal.

4. Approach overview

In this section, we define the problem addressed and
our approach illustrating it with an example.

4.1. Problem

The classical problem of test case prioritization con-
sists in scheduling test cases for execution in an order that
attempts to increase their effectiveness at meeting some
performance goal [57]. A typical goal is to increase the
so-called rate of fault detection, a measure of how quickly
faults are detected during testing. In order to meet a goal,

1http://drupalcode.org/project/drupal.git
2https://drupal.org/project/issues
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Feature Size Changes
Faults (v7.22) Faults (v7.23)

Single Integration Single Integration

Backup migrate 11,639 90 80 4 80 4

Blog 551 0 1 3 0 3

Captcha 3,115 15 17 1 17 1

CKEditor 13,483 40 197 11 197 9

Comment 5,627 1 10 19 13 15

Ctools 17,572 32 181 31 181 31

Ctools acc. rul. 317 0 0 0 0 0

Ctools cus. con. 284 1 10 1 10 1

Date 2,696 9 44 3 44 3

Date API 6,312 11 41 1 41 1

Date popup 792 4 30 1 30 1

Date views 2,383 6 25 1 25 1

Entity API 13,088 14 175 18 175 18

Entity tokens 327 1 22 6 22 6

Features 8,483 72 97 9 97 9

Field 8,618 7 45 18 48 17

Field SQL sto. 1,292 2 3 2 3 2

Field UI 2,996 3 13 2 11 1

File 1,894 1 10 5 11 5

Filter 4,497 3 19 5 19 5

Forum 2,849 2 6 4 5 4

Google ana. 2,274 14 11 1 11 1

Image 5,027 3 10 8 9 6

Image captcha 998 0 3 0 3 0

IMCE 3,940 9 9 5 9 5

Jquery update 50,762 1 64 12 64 12

Libraries API 1,627 7 11 0 11 0

Link 1,934 11 82 4 82 4

Node 9,945 4 26 29 24 23

Options 898 1 0 0 0 0

Panel nodes 480 2 16 1 16 1

Panels 13,390 34 87 24 87 24

Panels IPE 1,462 20 19 2 19 2

Path 1,026 20 3 1 2 1

Pathauto 3,429 2 54 9 54 9

Rules 13,830 5 240 15 240 15

Rules sch. 1,271 4 13 0 13 0

Rules UI 3,306 1 26 0 26 0

System 20,827 16 35 5 35 4

Taxonomy 5,757 4 15 22 19 22

Text 1,097 1 6 3 5 3

Token 4,580 10 37 7 37 7

User 8,419 12 20 25 19 22

Views 54,270 27 1,091 51 1,091 51

Views content 2,683 5 23 2 23 2

Views UI 782 0 12 4 12 4

WebForm 13,196 46 292 0 292 0

Total 336,025 573 3,231 3,232

Table 2: Non–functional feature attributes in Drupal

prioritization can be driven by one or more objectives. For
instance, in order to accelerate the detection of faults, a
sample objective could be to increase the code coverage in
the system under test at a faster rate, under the assump-
tion that faster code coverage implies faster fault detec-
tion.

Inspired by the previous definition, we next define the
multi-objective test case prioritization problem in HCSs.
Given the set of configurations of an HCS represented by
a feature model fm, we present the following definitions.

Test case. A test case is a set of features of fm, i.e.,
a configuration. A test case is valid if its features satisfy
the constraints represented by the feature model. As an
example the following set of features represent a valid test
case of the model presented in Figure 1: {Mobile Phone,

Calls, Screen, Basic, Media, MP3}.

Test suite. A test suite is an ordered set of test cases.
Table 3 depicts a sample test suite of the model presented
in Figure 1.

Objective function. An objective function represents a
goal to optimize. In this work, objective functions receive
an attributed feature model (fm) and a test suite as inputs
and return a numerical value measuring the quality of the
suite with respect to the optimization goal.

ID Test Case

TC1 Mobile Phone,Calls,Screen,Basic,Media,MP3
TC2 Mobile Phone,Calls,Screen,HD,GPS,Media,Camera,MP3
TC3 Mobile Phone,Calls,Screen,HD,Media,Camera
TC4 Mobile Phone,Calls,Screen,HD
TC5 Mobile Phone,Calls,Screen,Basic,GPS

Table 3: Mobile phone test suite

Given a feature model representing the HCS under test
and an objective function, the problem of test case prior-
itization in HCSs consists in generating a test suite that
optimizes the target objective. This problem can be gen-
eralized to a multi–objective problem by considering more
than one objective. In this case, the problem may have
more than one solution (i.e., test suites) if there not ex-
ist a single solution that simultaneously optimizes all the
objectives.

4.2. Our approach

Our approach can be divided in two parts described in
the next sections.

4.2.1. Multi–objective test case prioritization

We propose to model the multi–objective test case pri-
oritization problem in HCSs as a multi–objective optimiza-
tion problem. Figure 4 illustrates our approach. Given
an input attributed feature model, the problem consists in
finding a set of solutions (i.e., test suites) that optimize the

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 4: Our multi–objective test case prioritization approach for
HCSs

target objectives. In this paper, we propose seven objec-
tive functions based on both functional and non–functional
properties of the HCS under test.

4.2.2. Comparison of prioritization objectives

We propose to compare the effectiveness of different
combinations of prioritization objectives at accelerating
the detection of faults in the Drupal framework. To that
purpose, we used historical data collected from a previous
version of Drupal as detailed in Section 3. In particular,
we propose using the Average Percentage of Faults De-
tected (APFD) [19, 57, 65] metric to check which one of
the Pareto optimal solutions obtained accelerates the de-
tection of faults more effectively. This enables the selection
of a global solution and makes it possible to identify the
objectives that lead to better test suites.

The Average Percentage of Faults Detected (APFD)
[19, 57, 65] metric measures the weighted average of the
percentage of faults detected during the execution of the
test suite. To formally define APFD, let T be a test suite
which contains n test cases, and let F be a set of m faults
revealed by T. Let TFi be the position of the first test case
in ordering T’ of T which reveals the fault i. The APFD
metric for the test suite T’ is given by the following equa-
tion:

APFD = 1− TF1+TF2+...+TFn

n×m + 1
2n

APFD value ranges from 0 to 1. The closer the value
is to 1, the better is the fault detection rate, i.e., the faster
is the suite at detecting faults.

4.3. Illustrative example

Table 4 shows the information of four test suites, us-
ing the test cases of Table 3. Note that the order of test
cases matters. Along with the test cases that compose
each suite, the table also shows the value of the objec-
tive functions Changes and Faults defined in Section 6.
Roughly speaking, these functions measures the ability of
the suite to test those features with a greater number of
code changes or reported bugs as quickly as possible.

Figure 5 depicts the Pareto front obtained when try-
ing to find a test suite that maximizes both objectives.
As denoted in the call-out of Figure 5, TS4 is dominated

ID Test cases Changes Faults

TS1 TC4, TC1, TC5, TC3 109 49
TS2 TC1, TC2, TC3, TC4, TC5 80 52
TS3 TC3, TC4, TC5, TC2, TC1 77 57
TS4 TC5, TC4, TC2, TC3, TC1 59 53

Table 4: A set of test suites for the mobile phone

Figure 5: Test suites of table 4 as a pareto front for objectives
Changes and Faults (both to be maximized)

by TS3, since TS3 detects more faults and covers more
changes faster; i.e. TS3 is better than TS4 according to
both objectives. Once the optimal test suites are gener-
ated, we calculate their APFD to evaluate how quickly
they detect faults (based on historical data from a previ-
ous version of the system). Consider the faults detected by
each test case shown in Table 5. According to the previous
APFD equation, test suite TS1 produces an APFD of 46%:

1− 2+2+4+4+1+3
4×6 + 1

2×4 = 0.46,

TS2 an APFD of 57%:

1− 1+1+2+3+4+5
5×6 + 1

2×5 = 0.57

TS3 an APFD of 80%:

1− 1+1+1+1+2+3
5×6 + 1

2×5 = 0.8

and TS4 an APFD of 53%:

1− 3+4+3+4+2+1
5×6 + 1

2×5 = 0.53

Based on the previous results, TS3 is better than TS1
and TS2 and therefore it is the best solution at accelerat-
ing the detection of faults. The process could then be re-
peated with different groups of objectives comparing their
effectiveness in terms of the APFD values achieved.

5. Multi-objective optimization algorithm

We used a MOEA to solve the multi–objective test
case prioritization problem in HCSs. In particular, we
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Tests/Faults F1 F2 F3 F4 F5 F6

TC1 X X
TC2 X X
TC3 X X X X
TC4 X
TC5 X

Table 5: Test suite and faults exposed

adapted NSGA-II due to its popularity and good perfor-
mance for many multi-objective optimization problems. In
short, the algorithm receives an attributed feature model
as input and returns a set of prioritized test suites opti-
mizing the target objectives. In the following, we describe
the specific adaptations performed to NSGA-II to solve the
multi–objective test case prioritization problem for HCSs.

5.1. Solution encoding

In order to create offspring, individuals need to be en-
coded expressing their characteristics in a form that facil-
itates their manipulation during the optimization process.
To represent test suites as individuals (chromosomes) we
used a binary vector. The vector stores the information of
the different test cases sequentially, where each test case
is represented by N bits, being N the number of features
in the feature model. Thus, the total length of a test suite
with k test cases is k ∗N bits, where the first test case is
represented by the bits between position 0 and N − 1, the
second test case is represented by the bits between posi-
tion N and 2∗N −1, and so on. The order of each feature
in each test case corresponds to the depth-first traversal
order of the tree. A value of 0 in the vector means that
the corresponding feature is not included in the test case
while a value of 1 means that such feature is included. For
efficiency reasons, mandatory features are safely removed
from input feature models using atomic sets [62]. Figure
6 illustrates a test suite with its corresponding encoding
based on the feature model showed in Figure 1 (including
mandatory features). Note that the length of the vector
that encodes the solutions may differ depending on the
number of test cases contained in the test suite.

5.2. Initial population

The generation of an appropriate set of initial solu-
tions to the problem (a.k.a. seeding) may have a strong
impact to the final performance of the algorithm. In [44],
Lopez-Herrejon et al. compared several seeding strategies
for MOEAs in the context of test case selection in soft-
ware product lines and concluded that those test suites
including all the possible pairs of features (i.e. pairwise
coverage) led to better results than random suites. Based
on their finding, our initial population is composed of dif-
ferent orderings of a pairwise test suite generated by the
CASA tool [28, 29] from the input feature model.

Figure 6: Test suite encoding as a binary vector

Figure 7: Crossover operator

5.3. Crossover operator

The algorithm uses a customized one–point crossover
operator. First, two parent chromosomes (i.e. test suites)
are selected to be combined. Then, a random point is
chosen in the vector (so-called crossover point) and a new
offspring is created by copying the contents of the vectors
from the beginning to the crossover point from one par-
ent and the rest from the other one. To avoid creating
test suites with non-valid test cases, the crossover point is
rounded to the nearest multiple of N in the range [1, SP ],
being N the number of features in the model and SP the
size of the smallest parent. Figure 7 illustrates a sample
crossover operation between two chromosomes of different
sizes.

5.4. Mutation operators

We implemented three different mutation operators de-
tailed below.
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• Test case swap. This mutation operation exchanges
the ordering of two randomly chosen test cases.

• Test case addition/removal. This mutation opera-
tion adds (or removes) a random test case at a ran-
domly chosen index multiple of N in the suite, being
N the number of features in the model.

• Test case substitution. This mutation operation sub-
stitutes a randomly chosen test case from the test
suite by another valid test case randomly generated.

Note that all three operators generate feasible solu-
tions, that is, vectors that encode test cases fulfilling all
the constraints of the input feature model. Test suites in-
cluding duplicated test cases as a result of crossover and
mutation are discarded.

6. Objective functions

In this section, we propose and formalize different ob-
jective functions for test case prioritization in HCSs. All
the functions receive an attributed feature model repre-
senting the HCS under test (fm) and a test suite (ts) as
inputs and return an integer value measuring the quality
of the suite with respect to the optimization goal. Note
that the following functions will be later combined to form
multi-objective goals (see Section 7). To illustrate each
function, we use the feature model in Figure 1 as fm and
the test suite ts = [TC1, TC2] with two of the test cases
shown in Table 3, which we reproduce next:

TC1 = {Mobile Phone,Calls,Screen,Basic,Media,MP3}

TC2 = {Mobile Phone,Calls,Screen,HD,GPS,Media,Camera,MP3}

6.1. Functional objective functions

We propose the following functional objective func-
tions based on the information extracted from the feature
model.

Coefficient of Connectivity-Density (CoC). This met-
ric calculates the complexity of a feature model in terms
of the number of edges and constraints of the model [4]. In
our previous work [60], we adapted CoC to HCS configura-
tions achieving good results in accelerating the detection
of faults. Now we propose to measure the complexity of
features in terms of the number of edges and constraints
in which they are involved. This function calculates and
accelerates the CoC of a test suite, giving priority to those
test cases covering features with higher CoC more quickly.
Formally, let the function coc(fm, ts.tci) return a value in-
dicating the complexity of the features included in the test
case tci at position i in test suite ts, considering only those
features not included in preceding test cases tc1..tci−1 of
test suite ts. This objective function is defined as follows:

Connectivity(fm, ts) =

|ts|∑

i=1

coc(fm, ts.tci)

i
(1)

As example, test case TC1 has a CoC of 13 computed as
follows: 4 edges in Mobile Phone, 1 edge in Calls, 3 edges
in Screen, 1 edge in Basic, 3 edges in Media and 1 edge
in MP3. Let us now consider TC2. Notice that the selected
features in TC2 that have not already been considered by
TC1 are HD, GPS, and Camera. Hence TC2 has a value of
5 computed as follows: 2 edges in HD, 1 edge in GPS, and
2 edges in Camera. Now considering that TC1 is placed
in the position 1 and TC2 in position 2, we calculate the
function Connectivity as follows:

Connectivity(fm, ts) = (13/1) + (5/2)

= 13 + 2.5 = 15.5

Dissimilarity. Some pieces of work have shown that two
dissimilar test cases have a higher fault detection rate than
similar ones since the former ones are more likely to cover
more components than the latter [33, 60]. This function
favors a test suite with the most different test cases in
order to cover more features and improve the rate and
acceleration of fault detection. Formally, let the function
df(fm, tci) return the number of different features found
in the test case tci that were not considered in preceding
test cases tc1..tci−1. This objective function is defined as
follows:

Dissimilarity(fm, ts) =

|ts|∑

i=1

df(fm, ts.tci)

i
(2)

Test case TC1 has a Dissimilarity value of 6 because it
considers the following features: Mobile Phone, Calls,
Screen, Basic, Media and MP3. Test case TC2 has Di-
ssimilarity value of 3 because it considers the following
features that were not part of TC1: HD, GPS and Camera.
Now considering that TC1 is placed in the position 1 and
TC2 in position 2, we calculate the function Dissimilarity
as follows:

Dissimilarity(fm, ts) = (6/1) + (3/2)

= 6 + 1.5 = 7.5

Pairwise Coverage. Many pieces of work have used pair-
wise coverage based on the evidence that a high percentage
of detected faults are mainly due to the interactions be-
tween two features (e.g. [26, 32, 60]). This objective func-
tion measures and accelerates the pairwise coverage of a
test suite, giving priority to those test cases that cover a
higher number of pairs of features more quickly. Formally,
let the function pc(fm, tci) return the number of pairs of
features covered by the test case tci that were not covered
by preceding test cases tc1..tci−1. This objective function
is defined as follows:

Pairwise(fm, ts) =

|ts|∑

i=1

pc(fm, ts.tci)

i
(3)

Test case TC1, covers 36 different pairs of features such as
the pair [Calls,¬GPS] that indicates the feature Calls is
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selected in TC1 and the feature GPS is not selected. Test
case TC2 covers 27 different pairs of features such as the
pair [HD, GPS] which indicates that both features HD and
GPS are selected. Now considering that TC1 is placed in the
position 1 and TC2 in position 2, we calculate the function
Pairwise as follows:

Pairwise(fm, ts) = (36/1) + (27/2)

= 36 + 13.5 = 49.5

Variability Coverage and Cyclomatic Complexity.
From a feature model, Cyclomatic Complexity measures
the number of cross-tree constraints [4], while Variability
Coverage measures the number of variation points [22]. A
variation point is any feature that provides different vari-
ants to create a product, i.e. optional features and non-
leaf features with one or more non-mandatory subfeatures.
These metrics have been jointly used in previous works as
a way to identify the most effective test cases in exposing
faults, i.e. the higher the sum of both metrics, the better
the test case [22, 60]. Now, we propose a function that cal-
culates these metrics and gives priority to those test cases
obtaining higher values more quickly. Formally, let func-
tion vc(fm, tci) return the number of different cross-tree
constraints and the number of variation points involved
on the features included in the test case tci that were not
included in preceding test cases tc1..tci−1. This objective
function is defined as follows:

V Coverage(fm, ts) =

|ts|∑

i=1

vc(fm, ts.tci)

i
(4)

The features in test case TC1 have 3 variation points in
Mobile Phone, Screen and Media features. The features
in test case TC2 that were not included in test case TC1 are
GPS, HD and Camera. From these three features: GPS has
one variation point (adds 1), and HD and Camera are in-
volved in a cross-tree constraint (add 2). Now considering
that TC1 is placed in the position 1 and TC2 in position 2,
we calculate the function V Coverage as follows:

V Coverage(fm, ts) = (3/1) + (3/2)

= 3 + 1.5 = 4.5

6.2. Non-functional objectives functions

We propose the following non–functional objective func-
tions based on extra–functional information of the features
of an HCS.

Number of Changes. The number of changes has been
shown to be a good indicator of error proneness and can
be helpful to predict faults in later versions of systems
(e.g. [30, 79]). Our work adapts this metric for features
in HCSs. This objective function measures the number
of changes covered by a test suite and the speed covering
those changes, giving a higher value to those test cases
that exercise the features with greater number of changes

earlier. Therefore, this objective function uses historical
data of the HCS under test. Formally, let the function
nc(fm, tci) return the number of code changes covered by
features of the test case tci at position i that were not
covered by preceding test cases tc1..tci−1. Note that we
consider a test case to cover a change if it includes the fea-
tures where the change was made. This objective function
is defined as follows:

Changes(fm, ts) =

|ts|∑

i=1

nc(fm, ts.tci)

i
(5)

Please refer to Table 1. Test case TC1 covers the follow-
ing number of changes: 6 changes in the feature Calls, 2
changes in Screen, 1 change in Basic, 9 changes in Media

and 11 in the feature MP3. In total TC1 covers 29 changes.
Test case TC2 considers three new features HD, GPS and
Camera, which respectively cover 3, 8, and 11 changes. In
total TC2 covers 22 changes. Now considering that TC1 is
placed in the position 1 and TC2 in position 2, we calculate
the function Changes as follows:

Changes(fm, ts) = (29/1) + (22/2)

= 29 + 11 = 40

Number of Faults. Earlier studies have shown that the
detection of faults in an application can be accelerated
by testing first those components that showed to be more
error-prone in previous versions of the software. This is re-
ferred to as history-based test case prioritization [36, 64].
Our work adapts this metric for features in HCSs. This
objective function calculates the number of faults detected
by a test suite and its speed revealing those faults, giving
a higher value to those test cases that detect more faults
faster. This objective uses historical data about the faults
reported in a previous version of the HCS under test. For-
mally, let function nf(fm, tci) return the number of faults
detected by the test case tci that were not detected by
preceding test cases tc1..tci−1. Note that we consider a
test case to detect a fault if it includes the feature(s) that
triggered the fault. This objective function is defined as
follows:

Faults(fm, ts) =

|ts|∑

i=1

nf(fm, ts.tci)

i
(6)

Please refer to Table 1. Test case TC1 detects: 10 faults
in the feature Calls, 4 faults in feature Screen, 0 faults
in feature Basic, 5 faults in feature Media and 8 faults in
feature MP3. The total number of faults detected by TC1

is 27. Test case TC2 considers three new features HD, GPS
and Camera which respectively detect 3, 6 and 8 faults. In
total TC2 detects 17 faults. Now considering that TC1 is
placed in the position 1 and TC2 in position 2, we calculate
the function Faults as follows:

Faults(fm, ts) = (27/1) + (17/2)

= 27 + 8.5 = 35.5
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Feature Size. The size of a feature, in terms of its num-
ber of Lines of Code (LoC), has been shown to provide a
rough idea of the complexity of the feature and its error
proneness [41, 52, 59]. This objective function measures
the size of the features involved in a test suite, giving pri-
ority to those test cases covering higher portions of code
faster. Formally, let function fs(fm, tci) return the size
of the features included in the test case tci that were not
included in preceding test cases tc1..tci−1. This objective
function is defined as follows:

Size(fm, ts) =

|ts|∑

i=1

fs(fm, ts.tci)

i
(7)

Please refer to Table 1. The size contributed by test case
TC1 is 3, 690 LoC computed by adding: 1000 for feature
Calls, 930 for feature Screen, 270 for feature Basic, 1100
for feature Media and 390 for feature MP3. The new fea-
tures that test case TC2 considers are: feature HD with size
510, feature GPS with size 460 and feature Camera with size
680. Hence, the total for test case TC2 is 1, 650 LoC. Now
considering that TC1 is placed in the position 1 and TC2 in
position 2, we calculate the function Size as follows:

Size(fm, ts) = (3690/1) + (1650/2)

= 3690 + 825 = 4515

7. Evaluation

This section explains the experiments conducted to ex-
plore the effectiveness of multi–objective test case priori-
tization in Drupal. First, we introduce the target research
questions and the general experimental setup. Second, the
results of the different experiments and the statistical re-
sults are reported.

7.1. Research questions

In previous works, we investigated the effectiveness of
functional [60] and non–functional [59] test case prioritiza-
tion criteria for HCSs from a single–objective perspective.
In this paper, we go a step further in order to answer the
following Research Questions (RQs):

RQ1: Can multi-objective prioritization with functional
objective functions accelerate the detection of faults in HCSs?

RQ2: Can multi-objective prioritization with non-functional
objective functions accelerate the detection of faults in HCSs?

RQ3: Can multi-objective prioritization with combina-
tions of functional and non-functional objective functions
accelerate the detection of faults in HCSs?

RQ4: Are non-functional prioritization objectives (either
in a single or multi-objective perspective) more, less or
equally effective than functional prioritization objectives in

accelerating the detection of faults in HCSs?

RQ5: What is the performance of the proposed MOEA
compared to related algorithms?

7.2. Experimental setup

To answer our research questions, we implemented the
algorithm and the objective functions described in Sections
5 and 6 respectively. To put it simply, our algorithm takes
the Drupal attributed feature model as input and gener-
ates a set of prioritized test suites according to the target
objective functions. In particular, the algorithms were ex-
ecuted with all the possible combinations of 1, 2 and 3 of
the objectives functions described in Section 6, yielding 63
combinations in total. In all cases, the goal was to gen-
erate prioritized test suites that maximize each objective
function, e.g. max(Changes) and max(VCoverage). For
each combination of objectives, the algorithms were exe-
cuted 40 times to perform statistical analysis of the data.
The configuration parameters of the NSGA-II algorithm
are depicted in Table 6. These were selected based on the
recommended parameters for NSGA-II [12] and the results
of some preliminary tuning experiments. Note that the
recommended default mutation probability for NSGA-II
is 1/N , where N is the number of variables of the prob-
lem, i.e. number of test cases in the suite. The average
number of test cases in the pairwise suites generated by
CASA and used as seed was 13.

Parameter Value

Population size 100
Number of generations 50
Crossover probability 0.9
Test case swap mutation probability 0.4 ∗ (1/N)
Test case addition/removal mutation probability 0.3 ∗ (1/N)
Test case substitution mutation probability 0.3 ∗ (1/N)

Table 6: Parameter settings for the evolutionary algorithm

The search-based algorithms were implemented using
jMetal [18], a Java framework to solve multi–objective op-
timization problems. The non-functional objective func-
tions were calculated using the Drupal feature attributes
reported in Table 2. In particular, the objective function
Faults was calculated on the basis of the faults detected
in Drupal v7.22. The function Pairwise was implemented
using the tool SPLCAT [38] which generates all the pos-
sible pairs of features of an input feature model. Random
valid products (used in one of our mutation operators)
were generated using the tool PLEDGE [33], which inter-
nally uses a SAT solver.

The prioritized test suites generated by the algorithm
were evaluated according to their ability to accelerate the
detection of faults in Drupal. To that purpose, we used
the information about the faults reported in Drupal v7.23
(3,392 in total, including single and integration faults) to
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measure how quickly they would be detected by the gen-
erated suites. More specifically, we created a list of faulty
feature sets simulating the faults reported in the bug track-
ing system of Drupal v7.23. Each set represents faults
caused by n features (n ∈ [1, 4]). For instance, the list
{{Node},{Views, Ctools}} represents a fault in the fea-
ture Node and another fault triggered by the interaction
between the features Views and Ctools. We considered
that a test case detects a fault if the test case includes
the feature(s) that trigger the fault. As a further example,
consider the list of faulty features {{Media},{HD},{Camera,
GPS}} and the following test case for the feature model in
Fig. 1: {Mobile Phone,Calls,Screen,HD,Media,Camera}.
The test case would detect the fault in Media and HD but
not the interaction fault between Camera and GPS since
GPS is not included in the configuration.

In order to evaluate how quickly faults are detected
during testing (i.e., rate of fault detection) we used the
Average Percentage of Faults Detected (APFD) metric de-
scribed in Section 4.2.2. Given a prioritized test suite, this
metric was used to measure how quickly it would detect
the faults in Drupal v7.23. For comparative reasons, we
measured the APFD values of both, the prioritized suites
generated by our adaptation of NSGA-II and the initial
pairwise suite generated by the CASA algorithm [28, 29]
on each execution.

In addition to the comparison between NSGA-II and
CASA, we compared NSGA-II with a random search al-
gorithm and a deterministic state of the art prioritization
algorithm. The details of this comparison are presented in
Section 7.7.

We ran our tests on an Ubuntu 14.04 machine equipped
with INTEL i7 with 8 cores running at 3.4 Ghz and 16 GB
of RAM.

7.3. Experiment 1. Functional objectives

In this experiment, we evaluated the rate of fault de-
tection achieved by each group of 1, 2 and 3 functional
objectives, 14 combinations in total. The results of the
experiment are shown in Table 7. For each set of objec-
tives, the table shows the results of 40 different executions
of NSGA-II and CASA respectively. For NSGA-II, the ta-
ble depicts the average APFD value of all the test suites
generated (i.e., Pareto optimal solutions), average of the
maximum APFD value achieved on each execution and
maximum APFD value obtained in all the executions re-
spectively. For CASA, the table shows the average and
maximum APFD values achieved in all the executions.
The top three best average and maximum APFD values
of the table are highlighted in boldface. We must remark
that all the test suites generated detected at least 99% of
the emulated faults. Thus, we omit the results related to
the number of faults detected and focus on how quickly
they were detected.

The results in Table 7 show that all the functional pri-
oritization objectives, single or combined, outperformed
CASA on both the average and maximum APFD values

Figure 8: Box plot of the maximum APFD achieved on each execu-
tion (40 in total)

obtained. In total, NSGA-II achieved an average APFD
value of 0.918 while CASA achieved 0.872. This was ex-
pected since CASA was not conceived as a test case priori-
tization algorithm. It is also noteworthy that the Pairwise
objective produced the worst results. This finding is also
observed in the box plot of Figure 8 which illustrates the
distributions of the maximum APFD values found on each
execution of NSGA-II (40 in total). The Pairwise ob-
jective function obtained the lowest minimum, maximum
and median values. This is lined with the results of CASA
and it suggests that pairwise coverage is not an effective
prioritization criterion. Interestingly, however, despite the
bad performance of Pairwise as a single objective, its
combination with other objectives provides good results in
general, since it is involved in the objective combinations
with better medians and averages. It is also observed that
multi-objective combinations provide better distributions
of APFD values than single objectives.

In order to accurately answer the research questions we
performed several hypothesis statistical tests. Specifically,
for each single functional objective (e.g. Connectivity)
and combination of two or three functional objectives (e.g.
Pairwise and Dissimilarity) we stated a null and alter-
native hypothesis. The null hypothesis (H0) states that
there is not a statistically significant difference between
the results obtained by both sets of objectives while the
alternative hypothesis (H1) states that such difference is
statistically significant. Statistical tests provide a proba-
bility (named p-value) ranging in [0, 1]. Researchers have
established by convention that p-values under 0.05 are so-
called statistically significant and are sufficient to reject
the null hypothesis. Since the results do not follow a nor-
mal distribution, we used the Mann-Whitney U Tests for
the analysis [48]. Additionally, a correction of the p-values
was performed using the Holms post-hoc procedure [35] as
recommended in [14]. The tables of specific p-values are
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Objectives
NSGA-II CASA

Avg Avg Max Max Avg Max

Connectivity 0.923 0.936 0.957 0.874 0.939
Dissimilarity 0.905 0.928 0.956 0.865 0.934
Pairwise 0.887 0.887 0.951 0.862 0.934
VCoverage 0.888 0.934 0.956 0.874 0.946

Connectivity + Pairwise 0.932 0.951 0.959 0.883 0.939
Connectivity + Dissimilarity 0.906 0.935 0.960 0.863 0.947
Connectivity + VCoverage 0.919 0.936 0.957 0.874 0.944
Dissimilarity + Pairwise 0.941 0.952 0.958 0.888 0.948
Dissimilarity + VCoverage 0.909 0.934 0.959 0.865 0.944
Pairwise + VCoverage 0.933 0.948 0.957 0.867 0.941

Connectivity + Dissimilarity + Pairwise 0.933 0.953 0.957 0.878 0.946
Connectivity + Dissimilarity + VCoverage 0.908 0.935 0.957 0.872 0.937
Connectivity + Pairwise + VCoverage 0.935 0.951 0.959 0.876 0.940
Dissimilarity + Pairwise + VCoverage 0.937 0.953 0.959 0.865 0.937

Average 0.918 0.938 0.957 0.872 0.941

Table 7: APFD values achieved by functional prioritization objectives

provided as supplementary material.
As a further analysis, we used Vargha and Delaney’s

Â12 statistic [3] to evaluate the effect size, i.e., determine
which mono or multi–objective combinations perform bet-
ter and to what extent. Table 8 shows the effect size
statistic. Each cell shows the Â12 value obtained when
comparing the single objectives in the columns against the
combination of objectives in the rows. Note that CASA
was considered as another prioritization objective in our
analysis. Vargha and Delaney [68] suggested thresholds for
interpreting the effect size: 0.5 means no difference at all;
values over 0.5 indicates a small (0.5-0.56), medium (0.57-
0.64), large (0.65-0.71) or very large (0.72-1) difference in
favour of the multiple objective in the row; values below
0.5 indicates a small (0.5-0.44), medium (0.43-0.36), large
(0.36-0.29) or very large (0.29-0.0) difference in favour of
the single objective in the column. Cells revealing very
large differences are highlighted in light grey (in favour of
the row) and dark grey (in favour of the column). Values in
boldface are those where hypothesis test revealed statisti-
cal differences (p-value <0.05). Statistical results confirm
the bad performance of CASA and the Pairwise objective
function compared to the rest of objectives. Since values in
table 8 are in general above 0.5 and most of the cells are
shaded in light gray, general results confirm that multi–
objective prioritization provides better results for the rate
of fault detection than mono–objective prioritization when
using functional objectives.

The average execution time of NSGA-II for all the func-
tional objectives was 12.1 minutes, with a maximum av-
erage execution time of 3.6 hours for the combination of
objectives Connectivity + Pairwise + VCoverage, and
a minimum execution time of 69 seconds for the objective
Dissimilarity. It is noticeable that all the executions in-
cluding the objective Pairwise took an average execution
time longer than 20 minutes, due to the overhead intro-

duced by the calculation of the pairwise coverage. The
average execution time of CASA was 5 seconds.

7.4. Experiment 2. Non–functional objectives

In this experiment, we evaluated the rate of fault detec-
tion achieved by each group of 1, 2 and 3 non–functional
prioritization objectives, 7 combinations in total. Table
9 presents the APFD values achieved by NSGA-II and
CASA with each set of objectives. As in the previous ex-
periment, the average and maximum APFD values achieved
by NSGA-II (with any objective) were higher than those
achieved by CASA. This confirms the poor performance
of pairwise coverage as a prioritization criterion. Interest-
ingly, the Faults objective function is involved in the best
average and maximum APFD values. This suggests that
the number of faults in previous versions of the system
is a key factor to accelerate the detection of faults. All
the test suites generated detected more than 99.9% of the
emulated faults.

Figure 9 depicts a box plot of the distributions of the
maximum APFD value achieved on each execution of NSGA-
II. The graph clearly shows the dominance of the Faults

objective function, both in isolation and in combination
with other objectives. This was confirmed by the statis-
tical tests, where p-values revealed significant differences
between the groups of objectives including Faults and the
rest of objectives.

Table 10 shows the values of the Â12 effect size. CASA
is excluded from the table since it was clearly outperformed
by all other objectives. Again, the results show the supe-
riority of Faults, either in isolation or combined, when
compared to any other group of objectives. As in the pre-
vious experiment, all the multi–objective combinations im-
prove the results obtained by single objectives, with Â12

values over 0.5 in all cells except one. No clear differences
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Functional Multi-Objective
Functional Mono-Objective

CASA
Connectivity Dissimilarity Pairwise VCoverage

Connectivity + Dissimilarity 0.484 0.587 0.923 0.527 0.946
Connectivity + Pairwise 0.801 0.880 0.992 0.839 0.999
Connectivity + VCoverage 0.528 0.631 0.893 0.577 0.924
Dissimilarity + Pairwise 0.840 0.911 0.994 0.873 0.994
Dissimilarity + VCoverage 0.489 0.593 0.901 0.530 0.914
Pairwise + VCoverage 0.698 0.791 0.983 0.757 0.997

Connectivity + Dissimilarity + Pairwise 0.851 0.921 0.996 0.884 0.998
Connectivity + Dissimilarity + VCoverage 0.504 0.606 0.921 0.552 0.924
Connectivity + Pairwise + VCoverage 0.789 0.870 0.988 0.831 1.000
Dissimilarity + Pairwise + VCoverage 0.855 0.924 0.994 0.892 1.000

CASA 0.064 0.054 0.276 0.073 -

Table 8: Â12 values for mono vs. multi–objective prioritization using functional objectives. Cells revealing very large statistical differences
are highlighted in light grey (in favour of the row) and dark grey (in favour of the column). Values in boldface reveal statistically significant
differences (the p-value with Holm’s correction < 0.05).

Objectives
NSGA-II CASA

Avg Avg Max Max Avg Max

Changes 0.902 0.922 0.959 0.871 0.927
Faults 0.955 0.955 0.959 0.873 0.944
Size 0.921 0.934 0.955 0.868 0.932

Changes + Faults 0.953 0.955 0.959 0.865 0.952
Changes + Size 0.915 0.936 0.956 0.868 0.938
Faults + Size 0.955 0.955 0.959 0.876 0.940

Changes + Faults + Size 0.952 0.955 0.959 0.871 0.942

Average 0.936 0.945 0.958 0.871 0.939

Table 9: APFD values achieved by non-functional prioritization objectives
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Figure 9: Box plot of the maximum APFD achieved on each execu-
tion (40 in total)

were found between the use of multi–objective prioritiza-
tion with two or three objectives.

The average execution time of NSGA-II for all the
combinations of non-functional objectives was 3.7 minutes,
with a maximum average execution time of 4.6 minutes for
Faults + Size and a minimum average execution time of
2.5 seconds for Size.

Non-Functional
Mono-Objective

Multi-Objective Changes Faults Size

Changes + Faults 0.955 0.565 0.968
Changes + Size 0.670 0.084 0.549
Faults + Size 0.960 0.597 0.978

Changes + Faults + Size 0.951 0.536 0.960

Table 10: Â12 values for mono vs. multi-objective prioritization
using non–functional objectives. Cells revealing very large statistical
differences are highlighted in light grey (in favour of the row). Values
in boldface reveal statistically significant differences (the p-value with
Holms correction < 0.05).

7.5. Experiment 3. Functional and non–functional objec-
tives

In this experiment, we evaluated the rate of fault de-
tection achieved by each mixed combination of 2 and 3
functional and non–functional prioritization objectives, 48
combinations in total. The results of the experiment are
presented in Table 11. The cells with the top three best
average, average maximum, and global maximum APFD
values of the table are highlighted in boldface. The results
show that all the multi–objective combinations greatly im-
proved CASA on the average, average maximum, and global
maximum APFD values obtained. As in the previous ex-
periment, 10 out of the 12 top best APFD values were
achieved by multi–objective combinations including the

objective Faults, which confirms the effectiveness of fault
history in accelerating the detection of faults in Drupal.
Analogously, 6 out of the 10 best APFD values include
the objective Dissimilarity which confirms the findings
of previous studies on the effectiveness of promoting the
differences among test cases to detect faults more quickly.
As in the previous experiments, all the test suites gener-
ated detected at least the 99% of the seeded faults.

Table 12 shows the values of the Â12 effect size on the
comparison between single and multi–objective combina-
tions of functional and non–functional objectives. Values
indicate a better performance of multi–objective prioriti-
zation compared to single–objective prioritization with the
exception of Faults where most cells were under 0.5. The
overall dominance, however, was observed in the combina-
tion of objectives Dissimilarity + Faults followed by
Dissimilarity + Faults + VCoverage, with values over
0.6 in all cells and over 0.93 in 6 out of 7 columns.

Table 13 depicts the effect size on the comparison be-
tween multi–objective prioritization using functional ob-
jectives and multi–objective prioritization using both func-
tional and non–functional objectives. In general, Â12 val-
ues show statistical differences in favour or the combina-
tion of functional and non-functional objectives, especially
those including Faults. Interestingly, all the cells reveal-
ing differences in favour of functional-objectives include
the objective Pairwise, which supports its potential when
combined with other prioritization objectives, as observed
in Experiment 1.

Finally, Table 14 depicts the effect size on the com-
parison between multi–objective prioritization using non–
functional objectives and multi–objective prioritization us-
ing both functional and non–functional objectives. Â12

values reveal that when Faults is present in the combi-
nation of non–functional objectives, mixed combinations
are outperformed in general, showing large effect sizes and
statistically significant differences. On the contrary, mixed
objective combinations including Faults clearly outper-
form Changes + Size, but behave slightly worse than the
other combinations of non-functional objectives. There-
fore, the objective Faults seems to have a key influence
in the performance of prioritization providing slightly bet-
ter result when combined with other non-functional ob-
jectives. It is remarkable, however, that some mixed com-
binations of objectives such as Dissimilarity + Faults

provided the best overall results of this experiment.
The average execution time of NSGA-II for the mixed

combinations of functional and non–functional prioritiza-
tion objectives was 9.2 minutes. The maximum average
execution time was 23.6 minutes reached by the objectives
Connectivity + Faults + Pairwise. The minimum ex-
ecution time, 73.8 seconds, was obtained by the combina-
tion of objectives Connectivity + Size + VCoverage.
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Objectives
NSGA-II CASA

Avg Avg Max Max Avg Max

Changes + Connectivity 0.911 0.936 0.959 0.871 0.942
Changes + Dissimilarity 0.905 0.935 0.959 0.873 0.943
Changes + Pairwise 0.938 0.952 0.959 0.878 0.950
Changes + VCoverage 0.919 0.940 0.958 0.867 0.941
Connectivity + Faults 0.954 0.955 0.959 0.884 0.935
Connectivity + Size 0.915 0.941 0.959 0.881 0.946
Dissimilarity + Faults 0.954 0.956 0.959 0.871 0.947
Dissimilarity + Size 0.904 0.930 0.957 0.858 0.921
Faults + Pairwise 0.944 0.954 0.959 0.868 0.944
Faults + VCoverage 0.954 0.955 0.959 0.869 0.940
Pairwise + Size 0.940 0.953 0.960 0.878 0.943
Size + VCoverage 0.914 0.937 0.958 0.876 0.948

Changes + Connectivity + Dissimilarity 0.908 0.938 0.958 0.873 0.935
Changes + Connectivity + Faults 0.950 0.955 0.959 0.875 0.935
Changes + Connectivity + Pairwise 0.936 0.953 0.958 0.862 0.933
Changes + Connectivity + Size 0.914 0.942 0.959 0.878 0.929
Changes + Connectivity + VCoverage 0.916 0.942 0.959 0.876 0.947
Changes + Dissimilarity + Faults 0.952 0.955 0.959 0.880 0.936
Changes + Dissimilarity + Pairwise 0.939 0.954 0.958 0.874 0.936
Changes + Dissimilarity + Size 0.911 0.941 0.957 0.867 0.943
Changes + Dissimilarity + VCoverage 0.910 0.946 0.957 0.869 0.945
Changes + Faults + Pairwise 0.944 0.954 0.958 0.874 0.941
Changes + Faults + VCoverage 0.951 0.955 0.959 0.883 0.946
Changes + Pairwise + Size 0.941 0.955 0.963 0.866 0.952
Changes + Pairwise + VCoverage 0.937 0.954 0.958 0.875 0.947
Changes + Size + VCoverage 0.909 0.940 0.957 0.874 0.940
Connectivity + Dissimilarity + Faults 0.954 0.956 0.960 0.877 0.941
Connectivity + Dissimilarity + Size 0.913 0.941 0.959 0.879 0.941
Connectivity + Faults + Pairwise 0.944 0.954 0.964 0.867 0.932
Connectivity + Faults + Size 0.954 0.955 0.959 0.876 0.947
Connectivity + Faults + VCoverage 0.953 0.955 0.959 0.858 0.925
Connectivity + Pairwise + Size 0.937 0.954 0.962 0.870 0.937
Connectivity + Size + VCoverage 0.908 0.936 0.959 0.881 0.954
Dissimilarity + Faults + Pairwise 0.944 0.955 0.959 0.871 0.947
Dissimilarity + Faults + Size 0.953 0.955 0.959 0.875 0.938
Dissimilarity + Faults + VCoverage 0.953 0.956 0.964 0.876 0.947
Dissimilarity + Pairwise + Size 0.940 0.954 0.959 0.868 0.944
Dissimilarity + Size + VCoverage 0.913 0.941 0.957 0.873 0.936
Faults + Pairwise + Size 0.942 0.955 0.959 0.863 0.937
Faults + Pairwise + VCoverage 0.944 0.954 0.958 0.866 0.938
Faults + Size + VCoverage 0.953 0.956 0.959 0.874 0.931
Pairwise + Size + VCoverage 0.941 0.954 0.959 0.877 0.938

Average 0.934 0.949 0.959 0.873 0.940

Table 11: APFD values achieved by functional and non-functional prioritization objectives
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Mixed Multi-Objective
Functional Objectives Non-Functional Objectives

Connectivity Dissimilarity Pairwise VCoverage Changes Faults Size

Changes + Connectivity 0.550 0.639 0.902 0.588 0.693 0.124 0.596
Changes + Dissimilarity 0.518 0.614 0.906 0.573 0.671 0.118 0.563
Changes + Pairwise 0.814 0.893 0.993 0.856 0.899 0.298 0.858
Changes + VCoverage 0.530 0.633 0.954 0.571 0.701 0.131 0.583
Connectivity + Faults 0.924 0.967 1.000 0.946 0.948 0.556 0.966
Connectivity + Size 0.566 0.684 0.956 0.616 0.736 0.092 0.630
Dissimilarity + Faults 0.951 0.967 0.999 0.958 0.962 0.686 0.971
Dissimilarity + Size 0.455 0.553 0.879 0.481 0.601 0.108 0.497
Faults + Pairwise 0.885 0.947 0.997 0.914 0.931 0.418 0.931
Faults + VCoverage 0.936 0.964 0.999 0.949 0.956 0.589 0.972
Pairwise + Size 0.863 0.931 0.994 0.903 0.914 0.336 0.893
Size + VCoverage 0.542 0.631 0.924 0.584 0.685 0.101 0.580

Changes + Connectivity + Dissimilarity 0.534 0.634 0.939 0.570 0.681 0.128 0.578
Changes + Connectivity + Faults 0.918 0.961 0.998 0.938 0.944 0.509 0.953
Changes + Connectivity + Pairwise 0.877 0.939 0.995 0.907 0.921 0.370 0.911
Changes + Connectivity + Size 0.593 0.693 0.958 0.646 0.744 0.143 0.644
Changes + Connectivity + VCoverage 0.573 0.673 0.960 0.623 0.743 0.176 0.633
Changes + Dissimilarity + Faults 0.932 0.965 0.999 0.948 0.952 0.570 0.963
Changes + Dissimilarity + Pairwise 0.873 0.936 0.995 0.911 0.925 0.384 0.910
Changes + Dissimilarity + Size 0.541 0.639 0.963 0.589 0.728 0.121 0.600
Changes + Dissimilarity + VCoverage 0.677 0.761 0.970 0.731 0.812 0.189 0.730
Changes + Faults + Pairwise 0.910 0.948 0.996 0.930 0.941 0.471 0.942
Changes + Faults + VCoverage 0.926 0.963 0.999 0.944 0.950 0.554 0.964
Changes + Pairwise + Size 0.909 0.953 0.996 0.930 0.939 0.494 0.938
Changes + Pairwise + VCoverage 0.888 0.947 0.997 0.917 0.932 0.429 0.925
Changes + Size + VCoverage 0.573 0.682 0.943 0.620 0.729 0.093 0.625
Connectivity + Dissimilarity + Faults 0.940 0.963 0.999 0.956 0.959 0.624 0.973
Connectivity + Dissimilarity + Size 0.558 0.659 0.951 0.606 0.728 0.133 0.622
Connectivity + Faults + Pairwise 0.899 0.946 0.998 0.922 0.938 0.457 0.931
Connectivity + Faults + VCoverage 0.929 0.970 0.999 0.949 0.949 0.616 0.961
Connectivity + Faults + Size 0.934 0.964 1.000 0.948 0.954 0.577 0.968
Connectivity + Pairwise + Size 0.903 0.949 0.997 0.926 0.939 0.450 0.942
Connectivity + Size + VCoverage 0.521 0.626 0.919 0.548 0.665 0.144 0.570
Dissimilarity + Faults + Pairwise 0.915 0.957 0.998 0.934 0.942 0.496 0.947
Dissimilarity + Faults + Size 0.936 0.968 0.999 0.953 0.955 0.620 0.971
Dissimilarity + Faults + VCoverage 0.940 0.963 0.998 0.957 0.960 0.637 0.968
Dissimilarity + Pairwise + Size 0.895 0.950 0.998 0.921 0.931 0.391 0.926
Dissimilarity + Size + VCoverage 0.572 0.680 0.953 0.622 0.742 0.123 0.628
Faults + Pairwise + Size 0.914 0.958 0.999 0.938 0.946 0.479 0.953
Faults + Pairwise + VCoverage 0.905 0.951 0.997 0.930 0.938 0.442 0.935
Faults + Size + VCoverage 0.937 0.968 0.999 0.956 0.959 0.616 0.969
Pairwise + Size + VCoverage 0.887 0.946 0.997 0.914 0.931 0.447 0.932

Table 12: Â12 values for mono vs. multi–objective combinations of functional and non-functional objectives. Cells revealing very large
statistical differences are highlighted in light grey (in favour of the row) and dark grey (in favour of the column). Values in boldface reveal
statistically significant differences (the p-value with Holm’s correction is < 0.05)
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Con+Dis Con+Pai Con+VCo Dis+Pai Dis+VCo Pai+VCo Con+Dis+Pai Con+Dis+VCo Con+Pai+VCo Dis+Pai+VCo

Changes + Con 0.556 0.267 0.529 0.221 0.559 0.386 0.203 0.547 0.284 0.208
Changes + Dis 0.518 0.242 0.489 0.198 0.531 0.363 0.187 0.513 0.268 0.199
Changes + Pai 0.800 0.523 0.792 0.463 0.827 0.703 0.418 0.810 0.551 0.438
Changes + VCo 0.536 0.245 0.488 0.211 0.541 0.338 0.200 0.517 0.248 0.201
Con + Faults 0.900 0.738 0.921 0.713 0.938 0.893 0.667 0.909 0.753 0.683
Con + Size 0.573 0.242 0.534 0.189 0.580 0.388 0.168 0.571 0.271 0.178
Dis + Faults 0.915 0.823 0.947 0.811 0.956 0.919 0.778 0.924 0.803 0.769
Dis + Size 0.463 0.208 0.424 0.176 0.467 0.294 0.156 0.442 0.216 0.162
Faults + Pai 0.864 0.641 0.878 0.600 0.910 0.830 0.560 0.879 0.676 0.580
Faults + VCo 0.906 0.780 0.932 0.754 0.956 0.907 0.721 0.916 0.767 0.719
Pai + Size 0.834 0.571 0.849 0.519 0.878 0.790 0.473 0.854 0.637 0.503
Size + VCo 0.544 0.239 0.515 0.196 0.549 0.363 0.175 0.537 0.272 0.180

Changes + Con + Dis 0.528 0.253 0.492 0.220 0.540 0.367 0.198 0.519 0.270 0.214
Changes + Con + Faults 0.888 0.730 0.917 0.694 0.940 0.877 0.654 0.900 0.736 0.668
Changes + Con + Pai 0.849 0.618 0.864 0.563 0.896 0.798 0.508 0.869 0.651 0.543
Changes + Con + Size 0.602 0.281 0.559 0.238 0.606 0.420 0.217 0.592 0.318 0.227
Changes + Con + VCo 0.585 0.293 0.540 0.256 0.586 0.394 0.244 0.573 0.299 0.237
Changes + Dis + Faults 0.898 0.758 0.927 0.736 0.947 0.898 0.688 0.908 0.761 0.701
Changes + Dis + Pai 0.849 0.621 0.864 0.570 0.896 0.802 0.524 0.865 0.648 0.543
Changes + Dis + Size 0.557 0.224 0.497 0.189 0.548 0.323 0.181 0.526 0.231 0.171
Changes + Dis + VCo 0.674 0.373 0.645 0.319 0.690 0.517 0.296 0.669 0.389 0.298
Changes + Faults + Pai 0.877 0.708 0.902 0.672 0.933 0.854 0.622 0.890 0.707 0.643
Changes + Faults + VCo 0.901 0.754 0.933 0.735 0.946 0.898 0.687 0.912 0.761 0.705
Changes + Pai + Size 0.876 0.706 0.900 0.662 0.924 0.848 0.624 0.893 0.716 0.634
Changes + Pai + VCo 0.859 0.650 0.874 0.603 0.906 0.823 0.549 0.876 0.678 0.580
Changes + Size + VCo 0.581 0.242 0.549 0.189 0.590 0.395 0.171 0.585 0.277 0.171
Con + Dis + Faults 0.911 0.798 0.944 0.783 0.957 0.914 0.742 0.922 0.780 0.745
Con + Dis + Size 0.570 0.268 0.520 0.227 0.569 0.388 0.213 0.554 0.278 0.215
Con + Faults + Pai 0.868 0.689 0.891 0.645 0.920 0.844 0.604 0.887 0.700 0.619
Con + Faults + Size 0.906 0.772 0.935 0.753 0.954 0.909 0.713 0.917 0.770 0.722
Con + Faults + VCo 0.900 0.757 0.925 0.742 0.938 0.894 0.706 0.917 0.772 0.718
Con + Pai + Size 0.875 0.698 0.888 0.646 0.927 0.846 0.604 0.888 0.700 0.620
Con + Size + VCo 0.519 0.268 0.495 0.236 0.537 0.372 0.216 0.524 0.284 0.220
Dis + Faults + Pai 0.886 0.719 0.911 0.689 0.936 0.871 0.643 0.898 0.727 0.664
Dis + Faults + Size 0.907 0.779 0.941 0.764 0.951 0.907 0.723 0.917 0.779 0.734
Dis + Faults + VCo 0.909 0.792 0.936 0.779 0.950 0.906 0.736 0.917 0.777 0.738
Dis + Pai + Size 0.866 0.655 0.883 0.602 0.914 0.838 0.543 0.878 0.688 0.576
Dis + Size + VCo 0.584 0.257 0.540 0.213 0.588 0.399 0.199 0.578 0.284 0.198
Faults + Pai + Size 0.883 0.716 0.915 0.676 0.936 0.876 0.628 0.898 0.723 0.649
Faults + Pai + VCo 0.872 0.691 0.901 0.647 0.924 0.856 0.595 0.885 0.707 0.619
Faults + Size + VCo 0.908 0.783 0.937 0.765 0.950 0.910 0.729 0.923 0.780 0.737
Pai + Size + VCo 0.871 0.663 0.891 0.632 0.911 0.835 0.586 0.876 0.691 0.606

Table 13: Â12 values for combinations of functional objectives vs. mixed combinations of functional and non–functional prioritization
objectives. Cells revealing very large statistical differences are highlighted using dark grey (in favour of the column) or light grey (in favour
of the row). Values in boldface reveal statistically significant differences (the p-value with Holm’s correction is < 0.05)
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Mixed Multi-Objective
Non-Functional Multi-Objective

Changes + Faults Changes + Size Faults + Size Changes + Faults + Size

Changes + Connectivity 0.098 0.549 0.087 0.116
Changes + Dissimilarity 0.100 0.517 0.093 0.110
Changes + Pairwise 0.239 0.807 0.222 0.273
Changes + VCoverage 0.117 0.543 0.105 0.126
Connectivity + Faults 0.470 0.924 0.438 0.514
Connectivity + Size 0.063 0.569 0.055 0.083
Dissimilarity + Faults 0.643 0.947 0.571 0.639
Dissimilarity + Size 0.078 0.451 0.072 0.095
Faults + Pairwise 0.343 0.882 0.318 0.391
Faults + VCoverage 0.555 0.932 0.473 0.548
Pairwise + Size 0.269 0.853 0.251 0.314
Size + VCoverage 0.083 0.535 0.073 0.094

Changes + Connectivity + Dissimilarity 0.113 0.528 0.100 0.118
Changes + Connectivity + Faults 0.454 0.917 0.408 0.480
Changes + Connectivity + Pairwise 0.290 0.865 0.269 0.350
Changes + Connectivity + Size 0.113 0.595 0.108 0.130
Changes + Connectivity + VCoverage 0.165 0.584 0.149 0.167
Changes + Dissimilarity + Faults 0.528 0.929 0.469 0.537
Changes + Dissimilarity + Pairwise 0.327 0.866 0.302 0.359
Changes + Dissimilarity + Size 0.122 0.547 0.101 0.113
Changes + Dissimilarity + VCoverage 0.166 0.680 0.136 0.173
Changes + Faults + Pairwise 0.443 0.904 0.392 0.446
Changes + Faults + VCoverage 0.505 0.929 0.458 0.523
Changes + Pairwise + Size 0.435 0.903 0.394 0.467
Changes + Pairwise + VCoverage 0.367 0.882 0.330 0.401
Changes + Size + VCoverage 0.077 0.578 0.067 0.088
Connectivity + Dissimilarity + Faults 0.598 0.941 0.535 0.589
Connectivity + Dissimilarity + Size 0.097 0.563 0.095 0.124
Connectivity + Faults + Pairwise 0.424 0.891 0.378 0.434
Connectivity + Faults + Size 0.548 0.933 0.476 0.546
Connectivity + Faults + VCoverage 0.565 0.929 0.520 0.578
Connectivity + Pairwise + Size 0.404 0.897 0.348 0.418
Connectivity + Size + VCoverage 0.111 0.521 0.106 0.134
Dissimilarity + Faults + Pairwise 0.444 0.913 0.403 0.469
Dissimilarity + Faults + Size 0.567 0.942 0.515 0.583
Dissimilarity + Faults + VCoverage 0.607 0.942 0.548 0.595
Dissimilarity + Pairwise + Size 0.295 0.884 0.279 0.364
Dissimilarity + Size + VCoverage 0.096 0.584 0.082 0.111
Faults + Pairwise + Size 0.419 0.914 0.373 0.452
Faults + Pairwise + VCoverage 0.388 0.901 0.348 0.419
Faults + Size + VCoverage 0.590 0.937 0.531 0.586
Pairwise + Size + VCoverage 0.388 0.893 0.359 0.434

Table 14: Â12 values for combinations of non-functional objectives vs. mixed combinations of functional and non–functional prioritization
objectives. Cells revealing very large statistical differences are highlighted using dark grey (in favour of the column) or light grey (in favour
of the row). Values in boldface reveal statistically significant differences (the p-value with Holm’s correction is < 0.05)
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7.6. Experiment 4. Functional vs non–functional objec-
tives

In this experiment, we performed a further statistical
analysis of the data obtained in previous experiments to
measure the effect size on the comparison of functional
objectives against non–functional objectives, both single
and combined. Table 15 shows the values of the Â12 effect
size. A majority of cells show Â12 values under 0.5 indi-
cating that non-functional objectives are in general more
effective than functional objectives for test case prioriti-
zation in HCSs. As observed in Experiment 2 and 3, the
objective Faults, and those combinations including it con-
sistently show the largest differences. Also, as observed in
Experiment 1, the objective Pairwise is consistently out-
performed by all non-functional objectives, but it provides
the best results in favour of functional objectives when
combined with others.

7.7. Experiment 5. Algorithm comparison

In this experiment, we compared the performance of
NSGA-II with a random search algorithm and a determin-
istic test case prioritization algorithm. The experimental
setup and results of both comparisons are described in the
following sections.

7.7.1. Comparison with Random Search

The pseudo-code of our implementation of Random
Search (RS) algorithm is described in Algorithm 1. The
algorithm takes an input attributed feature model afm
and returns a set of test suites optimizing the target ob-
jectives. The algorithm has two configuration parameters:
the number of iterations to be performed nIterations, and
the maximum size of the random test suites to be gener-
ated maxSize. We set maxSize to the ceiling for the
average size of the pairwise suites generated by CASA (13
test cases). Regarding the value of nIterations, we set its
values to 5000, in order to ensure a fair comparison with
NSGA-II, which performs 50 iterations with a population
of 100 individuals (50 ∗ 100 = 5000 evaluations).

Three functions are invoked in the pseudo-code of Al-
gorithm 1: i) randomSuite, that generates a suite of ran-
dom size (between 1 and maxSize), comprising of ran-
dom products generated using the PLEDGE tool [33]; ii)
isNotDominated that checks if the solution sol provided
as parameter is not dominated by any solution in the
Pareto front estimation pFront; and iii) notDominated
that returns the solutions from pFront that are dominated
by sol.

Table 16 shows the results of the comparison. For each
group of objectives and algorithm under comparison, the
table shows the execution time, average and maximum
APFD value of the test suites in the Pareto front. The
best values of each metric on each row are highlighted in
boldface. As illustrated, NSGA-II outperforms RS in 58
out of the 63 combinations of objectives in terms of aver-
age APDF value. Interestingly, there is not a clear winner

Algorithm 1 Random search algorithm

1: procedure RS(afm)
2: i← 1
3: pFront← {}
4: while i ≤ nIterations do
5: sol← randomSuite(afm,maxSize)
6: if isNotDomiated(sol, pFront) then
7: pFront← notDominated(pFront, sol)

⋃
sol

8: end if
9: i← i + 1

10: end while
11: return pFront
12: end procedure

in terms of execution time: RS was faster in 36 out of the
63 objective groups (57.2%) meanwhile NSGA-II achieved
lower average execution times in 42.8% of the objectives.
We found that the overhead in the RS algorithm was due
to the cost of generating random valid test cases. In terms
of fault detection, NSGA-II detected slightly more faults
than RS. However, both algorithms detected more than
99.5% of the emulated faults and thus the differences are
not significant.

Table 7.7.1 shows the average, standard deviation and
maximum values of the hypervolume achieved by each al-
gorithm and objective group under comparison. The hy-
pervolume is the n-dimensional space contained by a set
of solutions with respect to a reference point [7]. The
hypervolume metric is widely used to compare the perfor-
mance of multi-objective algorithms, where solutions with
a larger hypervolume provide a better trade-offs among ob-
jectives than solutions with a smaller hypervolume. The
best values of each metric on each row are highlighted in
boldface. NSGA-II provides better results for the major-
ity of executions both in terms of average hypervolume (38
out of 63 objective sets) and maximum hypervolume (41
out of 63 objective sets). Interestingly, RS provides bet-
ter results than NSGA-II for a fair percentage of objective
sets. This is probably because NSGA-II mainly focuses on
re-ordering the test cases in the initial population, while
RS performs a wider exploration of the search space gen-
erating solutions with different (random) test cases. It is
noteworthy, however, that a larger hypervolume does not
necessarily implies a better rate of fault detection, as ob-
served in Table 16.

In summary, NSGA-II outperforms RS in accelerating
the detection of faults in HCSs since NSGA-II provides
higher average and maximum APFD values, it usually gen-
erates Pareto fronts approximations with better hypervol-
umes, and both algorithms have similar executions times.

7.7.2. Comparison with a coverage-based prioritization al-
gorithm

For a further validation, we compared the results of
our MOEA with the deterministic coverage-based priori-
tization algorithm for software product lines proposed by
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Functional Objectives
Non-Functional Objectives

Changes Faults Size Changes + Faults Changes + Size Faults + Size Changes + Faults + Size

Connectivity 0.675 0.083 0.550 0.060 0.509 0.057 0.078
Dissimilarity 0.583 0.037 0.442 0.036 0.403 0.035 0.037
Pairwise 0.166 0.000 0.083 0.000 0.076 0.000 0.000
VCoverage 0.637 0.061 0.509 0.051 0.463 0.045 0.056

Connectivity + Dissimilarity 0.657 0.115 0.536 0.093 0.493 0.087 0.108
Connectivity + Pairwise 0.895 0.278 0.851 0.212 0.802 0.201 0.265
Connectivity + VCoverage 0.704 0.088 0.589 0.070 0.541 0.054 0.080
Dissimilarity + Pairwise 0.912 0.314 0.887 0.242 0.838 0.225 0.290
Dissimilarity + VCoverage 0.654 0.064 0.534 0.039 0.497 0.039 0.058
Pairwise + VCoverage 0.848 0.116 0.741 0.090 0.697 0.081 0.108

Connectivity + Dissimilarity + Pairwise 0.915 0.363 0.898 0.289 0.849 0.274 0.342
Connectivity + Dissimilarity + VCoverage 0.688 0.104 0.553 0.089 0.516 0.079 0.097
Connectivity + Pairwise + VCoverage 0.891 0.273 0.831 0.234 0.792 0.221 0.261
Dissimilarity + Pairwise + VCoverage 0.918 0.342 0.896 0.286 0.848 0.258 0.322

Table 15: Â12 values for functional vs. non–functional prioritization objectives. Cells revealing very large statistical differences are highlighted
in dark grey (in favour of the column). Values in boldface reveal statistically significant differences (the p-value with Holm’s correction is <
0.05)

Sánchez et al. [60]. The algorithm takes an attributed
feature model afm as input, generates a pairwise suite
from the model and re-arranges its products in descend-
ing order of pairwise coverage using bubble search. For
the deterministic generation of a pairwise suite, we used
the SPLCAT tool [38]. The pseudo-code of our imple-
mentation is described in Algorithm 2. Two functions are
invoked in the pseudo-code of this algorithm: i) ICPL
which represents the ICPL algorithm for generating pair-
wise suites as implemented by the tool SPLCAT, and cov
that is equivalent to the PairwiseCoverage objective func-
tion defined in section 6 assuming that the suite has a
single test case, specified as a parameter.

Algorithm 2 Coverage-based prioritization algorithm

1: procedure PWCMax(afm)
2: suite← ICPL(afm)
3: size← size(suite)
4: repeat
5: swapped← false
6: for i← 2, size do
7: if cov(suite[i − 1], afm) <

cov(suite[i], afm) then
8: aux← suite[i]
9: suite[i]← suite[i− 1]

10: suite[i− 1]← aux
11: swapped← true
12: end if
13: end for
14: until ¬swapped
15: return suite
16: end procedure

The APFD value achieved by the coverage-based algo-
rithm is 0.946, which is less than the average AFPD value
of the best solution in the Pareto front found by NSGA-II
for 38 out of the 63 objective sets, i.e. column “Avg Max”

in Table 16. More importantly, NSGA-II achieved better
results than the coverage-based algorithm in all the 40 ex-
ecutions for 29 out of the 63 objective sets. This means
that, for almost half of the objective sets, our algorithm
was always better than the coverage-based algorithm. It
is noteworthy, however, that the differences between the
APFD values of NSGA-II and the coverage-based algo-
rithm are small, probably due to the size of the gener-
ated suites (13 test cases on average). We conjecture that
these differences would be larger when dealing with big-
ger test suites (e.g. 3-wise), but this is something that
requires further research. In terms of execution time, the
coverage-based algorithm was executed in less than 2 sec-
onds, which makes it appropriate when fast response times
are required.

7.8. Discussion

We now summarize the results and what they tell us
about the research questions.

RQ1: Mono vs. multi–objective prioritization us-
ing functional objectives. Experiment 1 revealed that
multi–objective prioritization outperforms mono-objective
prioritization when using functional objectives. The su-
periority was especially noticeable in the comparison with
Pairwise as a single-objective, which consistently achieved
the worse rate of fault detection. Interestingly, however,
Pairwise performed very well when combined with other
functional objectives. In the light of these results, RQ1 is
answered as follows:

Multi–objective prioritization using functional ob-
jectives is more effective than mono–objective pri-
oritization with functional objectives in accelerating
the detection of faults in HCSs.
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NSGA-II Random Search

Objectives Ex.Time Avg Avg Max Ex.Time Avg Avg Max

Connectivity 77251.6 0.923 0.935 119627.9 0.911 0.915
Dissimilarity 75856.1 0.912 0.931 112480.8 0.885 0.894
Pairwise 1478882.8 0.880 0.880 714078.2 0.913 0.913
VCoverage 79107.7 0.888 0.933 102457.4 0.893 0.918
Connectivity + Dissimilarity 83767.4 0.912 0.937 106497.4 0.898 0.914
Connectivity + Pairwise 1421967.3 0.938 0.951 709398.8 0.933 0.952
Connectivity + VCoverage 78199.5 0.914 0.934 120115.3 0.891 0.899
Dissimilarity + Pairwise 1400685.8 0.941 0.952 715289.6 0.931 0.953
Dissimilarity + VCoverage 77182.5 0.916 0.936 128498.2 0.900 0.919
Pairwise + VCoverage 1453296.7 0.936 0.948 714764.8 0.927 0.952
Connectivity + Dissimilarity + Pairwise 1414754.9 0.929 0.954 711827.3 0.927 0.953
Connectivity + Dissimilarity + VCoverage 80922.4 0.906 0.929 111031.5 0.917 0.933
Connectivity + Pairwise + VCoverage 1434254.1 0.932 0.949 720098.3 0.928 0.953
Dissimilarity + Pairwise + VCoverage 1405714.7 0.938 0.952 715958.6 0.926 0.952

Changes 154553.9 0.902 0.915 255249.5 0.907 0.907
Faults 266983.7 0.955 0.955 311060.0 0.953 0.953
Size 147161.1 0.917 0.931 267076.5 0.917 0.917
Changes + Faults 267046.7 0.953 0.955 315937.0 0.933 0.954
Changes + Size 150685.2 0.918 0.942 250050.4 0.909 0.942
Faults + Size 266313.0 0.955 0.956 317911.9 0.941 0.954
Changes + Faults + Size 267405.4 0.951 0.955 319803.3 0.935 0.954

Changes + Connectivity 89517.2 0.916 0.939 134150.5 0.907 0.944
Changes + Dissimilarity 89095.0 0.907 0.939 143702.3 0.905 0.940
Changes + Pairwise 1174272.6 0.937 0.952 602875.9 0.928 0.951
Changes + VCoverage 86759.7 0.917 0.936 133983.3 0.906 0.950
Connectivity + Faults 248148.2 0.953 0.955 221543.1 0.944 0.954
Connectivity + Size 95670.1 0.915 0.944 134395.5 0.910 0.948
Dissimilarity + Faults 253215.6 0.954 0.955 219950.5 0.940 0.954
Dissimilarity + Size 85769.7 0.903 0.923 129575.3 0.913 0.946
Faults + Pairwise 1328146.5 0.943 0.954 681334.3 0.938 0.954
Faults + VCoverage 258827.7 0.955 0.956 211328.7 0.944 0.954
Pairwise + Size 1190707.6 0.942 0.953 608338.8 0.932 0.953
Size + VCoverage 82624.5 0.913 0.935 148241.0 0.908 0.950
Changes + Connectivity + Dissimilarity 90333.7 0.912 0.939 141020.4 0.899 0.947
Changes + Connectivity + Faults 242090.7 0.951 0.955 213817.3 0.932 0.955
Changes + Connectivity + VCoverage 91098.6 0.915 0.943 147589.7 0.904 0.942
Changes + Dissimilarity + Faults 258500.8 0.952 0.955 237274.7 0.932 0.954
Changes + Dissimilarity + VCoverage 79023.9 0.912 0.948 149348.8 0.887 0.946
Changes + Faults + Pairwise 1314596.2 0.942 0.954 685275.2 0.929 0.955
Changes + Faults + VCoverage 253188.5 0.952 0.955 227043.4 0.927 0.954
Changes + Pairwise + Connectivity 1159383.0 0.935 0.954 609231.8 0.926 0.954
Changes + Pairwise + Dissimilarity 1156172.8 0.935 0.953 608587.6 0.923 0.953
Changes + Pairwise + VCoverage 1154166.3 0.936 0.954 601289.3 0.924 0.954
Changes + Size + Connectivity 81688.1 0.911 0.939 131841.9 0.903 0.947
Changes + Size + Dissimilarity 87032.2 0.913 0.942 131280.7 0.913 0.950
Changes + Size + Pairwise 1185686.4 0.940 0.955 609731.4 0.925 0.955
Changes + Size + VCoverage 93134.0 0.908 0.940 138131.6 0.906 0.952
Connectivity + Dissimilarity + Faults 254147.6 0.954 0.955 232744.1 0.938 0.954
Connectivity + Dissimilarity + Size 77954.7 0.910 0.944 130562.3 0.902 0.945
Connectivity + Faults + Pairwise 1324924.1 0.942 0.954 689787.5 0.935 0.955
Connectivity + Faults + Size 254000.3 0.954 0.955 221594.3 0.925 0.954
Connectivity + Faults + VCoverage 245731.1 0.951 0.955 217372.5 0.941 0.954
Connectivity + Size + Pairwise 1167713.3 0.938 0.955 604217.1 0.924 0.955
Connectivity + Size + VCoverage 83282.2 0.914 0.944 156937.0 0.904 0.951
Dissimilarity + Faults + Pairwise 1324060.1 0.945 0.955 677402.6 0.929 0.954
Dissimilarity + Faults + Size 243985.7 0.952 0.955 226250.4 0.931 0.954
Dissimilarity + Faults + VCoverage 251145.3 0.952 0.955 225094.4 0.934 0.954
Dissimilarity + Pairwise + Size 1130349.7 0.942 0.954 607200.3 0.927 0.953
Dissimilarity + Size + VCoverage 95906.8 0.912 0.945 137942.8 0.906 0.949
Faults + Pairwise + VCoverage 1299913.7 0.944 0.955 682123.5 0.935 0.954
Faults + Pairwise + Size 1315391.8 0.942 0.955 686569.3 0.939 0.954
Faults + Size + VCoverage 246233.0 0.953 0.956 218511.5 0.924 0.955
Pairwise + Size + VCoverage 1169411.1 0.939 0.955 603278.3 0.923 0.953

Average 552301.4 0.930 0.946 351709.2 0.920 0.945

Table 16: APFD values and execution times achieved by NSGA-II and Random Search (40 executions in total).
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NSGA-II Random Search

Objective Avg HV StdDev HV Max HV Avg HV StdDev HV Max HV

Connectivity 0.062 0.031 0.144 0.026 0.007 0.060
Dissimilarity 0.055 0.024 0.129 0.036 0.006 0.050
Pairwise 0.151 0.003 0.157 0.318 0.004 0.324
VCoverage 0.062 0.026 0.115 0.021 0.003 0.033
Connectivity + Dissimilarity 0.103 0.040 0.166 0.068 0.014 0.107
Connectivity + Pairwise 0.217 0.034 0.303 0.349 0.006 0.360
Connectivity + VCoverage 0.108 0.047 0.206 0.049 0.010 0.071
Dissimilarity + Pairwise 0.206 0.032 0.261 0.355 0.008 0.374
Dissimilarity + VCoverage 0.109 0.039 0.185 0.060 0.010 0.089
Pairwise + VCoverage 0.218 0.026 0.257 0.344 0.007 0.364
Dissimilarity + Pairwise + VCoverage 0.269 0.049 0.356 0.379 0.009 0.396
Connectivity + Dissimilarity + Pairwise 0.281 0.062 0.428 0.379 0.010 0.398
Connectivity + Dissimilarity + VCoverage 0.167 0.062 0.297 0.083 0.012 0.105
Connectivity + Pairwise + VCoverage 0.278 0.052 0.393 0.372 0.014 0.407

Changes 0.110 0.025 0.178 0.082 0.008 0.103
Faults 0.157 0.017 0.188 0.166 0.015 0.201
Size 0.065 0.015 0.093 0.050 0.003 0.058
Changes + Faults 0.260 0.026 0.308 0.245 0.015 0.273
Changes + Size 0.169 0.044 0.299 0.133 0.009 0.160
Faults + Size 0.207 0.025 0.251 0.213 0.017 0.248
Changes + Faults + Size 0.305 0.040 0.404 0.290 0.019 0.330

Changes + Connectivity 0.168 0.039 0.304 0.113 0.009 0.137
Changes + Dissimilarity 0.165 0.038 0.291 0.115 0.008 0.131
Changes + Pairwise 0.245 0.028 0.311 0.386 0.008 0.400
Changes + VCoverage 0.173 0.037 0.266 0.106 0.007 0.124
Connectivity + Faults 0.214 0.041 0.309 0.197 0.019 0.254
Connectivity + Size 0.129 0.043 0.256 0.083 0.006 0.097
Dissimilarity + Faults 0.199 0.031 0.295 0.201 0.016 0.244
Dissimilarity + Size 0.111 0.028 0.179 0.087 0.009 0.106
Faults + Pairwise 0.293 0.019 0.360 0.435 0.012 0.470
Faults + VCoverage 0.204 0.040 0.298 0.194 0.023 0.249
Pairwise + Size 0.213 0.022 0.256 0.360 0.004 0.373
Size + VCoverage 0.124 0.033 0.196 0.077 0.004 0.092
Changes + Connectivity + Dissimilarity 0.212 0.054 0.385 0.147 0.014 0.182
Changes + Connectivity + Faults 0.317 0.044 0.416 0.273 0.019 0.315
Changes + Connectivity + Pairwise 0.324 0.039 0.415 0.418 0.009 0.433
Changes + Connectivity + Size 0.226 0.043 0.341 0.162 0.011 0.188
Changes + Connectivity + VCoverage 0.221 0.053 0.346 0.134 0.009 0.158
Changes + Dissimilarity + Faults 0.297 0.042 0.421 0.283 0.018 0.319
Changes + Dissimilarity + Pairwise 0.307 0.048 0.425 0.419 0.009 0.445
Changes + Dissimilarity + Size 0.211 0.041 0.303 0.164 0.009 0.181
Changes + Dissimilarity + VCoverage 0.212 0.040 0.334 0.145 0.012 0.189
Changes + Faults + Pairwise 0.374 0.034 0.452 0.499 0.012 0.530
Changes + Faults + VCoverage 0.303 0.043 0.391 0.271 0.017 0.303
Changes + Pairwise + Size 0.300 0.051 0.417 0.423 0.007 0.435
Changes + Pairwise + VCoverage 0.323 0.039 0.410 0.412 0.008 0.430
Changes + Size + VCoverage 0.226 0.051 0.364 0.160 0.009 0.183
Connectivity + Dissimilarity + Faults 0.256 0.044 0.366 0.237 0.021 0.279
Connectivity + Dissimilarity + Size 0.166 0.046 0.249 0.115 0.012 0.138
Connectivity + Faults + Pairwise 0.340 0.054 0.444 0.462 0.014 0.489
Connectivity + Faults + Size 0.266 0.046 0.368 0.249 0.019 0.288
Connectivity + Faults + VCoverage 0.252 0.057 0.394 0.218 0.018 0.258
Connectivity + Pairwise + Size 0.281 0.053 0.388 0.391 0.007 0.410
Connectivity + Size + VCoverage 0.184 0.046 0.288 0.107 0.009 0.127
Dissimilarity + Faults + Pairwise 0.342 0.040 0.422 0.471 0.015 0.514
Dissimilarity + Faults + Size 0.265 0.044 0.435 0.251 0.020 0.282
Dissimilarity + Faults + VCoverage 0.248 0.058 0.403 0.231 0.020 0.290
Dissimilarity + Pairwise + Size 0.267 0.034 0.359 0.394 0.008 0.412
Dissimilarity + Size + VCoverage 0.166 0.030 0.215 0.113 0.010 0.157
Faults + Pairwise + Size 0.339 0.021 0.382 0.473 0.013 0.497
Faults + Pairwise + VCoverage 0.345 0.029 0.392 0.456 0.009 0.479
Faults + Size + VCoverage 0.263 0.045 0.375 0.246 0.017 0.273
Pairwise + Size + VCoverage 0.275 0.030 0.350 0.390 0.007 0.404

Table 17: Comparison of hypervolumes obtained by NSGA-II and Random Search.
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RQ2: Mono vs. multi–objective prioritization us-
ing non–functional objectives. The results of experi-
ment 2 showed significant differences in favour of multi–
objective prioritization over mono–objective prioritization
using non–functional objectives. It also revealed a clear
superiority of the objective function Faults, single or in
combination with other objectives, over the rest of the non-
functional objectives. We conjecture that this result could
be caused by the nature of the case study. In particular,
we used the bugs detected in Drupal v7.22 to accelerate
the detection of faults in Drupal v7.23. Being two consecu-
tive versions of the framework, we found that some of the
faults in Drupal v7.22 remained in Drupal v7.23, which
means that the prioritization could be overfitted. While
this is a realistic scenario, we think the results could not be
generalizable to non–consecutive versions of the framework
and thus the results must be taken with caution. Based
on the global results, however, RQ2 is answered as follows:

Multi–objective prioritization using non–functional
objectives is, in general, more effective than mono–
objective prioritization with non–functional objec-
tives in accelerating the detection of faults in HCSs.

RQ3: Combination of functional and non–functional
objectives. Experiment 3 revealed that the multi–objective
prioritization using functional and non–functional objec-
tives outperform prioritization driven by a single objec-
tive, either functional or non-functional. Similarly, mixed
combinations of objectives achieved better results than the
combination of functional objectives, but slightly worse
than the combination of non-functional objectives. It was
observed that the objective Faults has a key influence
in the results of prioritization, probably explained, as de-
tailed above, by the use of two consecutive versions of the
framework. It is remarkable, however, that the best overall
results were achieved by the combination of the functional
objective Dissimilarity and the non-functional objective
Faults. In the light of these results, RQ3 is answered as
follows:

Multi–objective prioritization driven by functional
and non–functional objectives perform better than
mono–objective prioritization, and better than
multi–objective prioritization using functional ob-
jectives, but slightly worse than multi–objective pri-
oritization using non–functional objectives in accel-
erating the detection of faults in HCSs.

RQ4: Functional vs non–functional objectives. The
results of experiment 4 show a clear dominance of non–
functional objectives over functional objectives, especially
noticeable when these are combined in a multi-objective
perspective. This is consistent with our previous results on
mono–objective comparison of functional and non–functional

objectives [59]. Based on these results, RQ4 is answered
as follows:

Non–functional prioritization objectives are more
effective in accelerating the detection of faults in
HCSs than functional objectives, especially when
they are combined in a multi-objective perspective.

RQ5: What is the performance of the proposed
MOEA compared to related algorithms?. The re-
sults of experiment 5 reveal that NSGA-II outperforms
Random Search and coverage-based prioritization in terms
of hypervolume and rate of detected faults. Although the
coverage-based algorithm provides solutions with a good
detection speed in a short execution time, our adapta-
tion of NSGA-II outperforms it with 60% of the objective
sets under comparison. More importantly, our algorithm
achieved better results than the coverage-based approach
in all the executions for 29 out of 63 objective groups. This
means that, for almost half of the objective sets, NSGA-
II was always better than the coverage-based algorithm.
Based on these results, RQ5 is answered as follows:

NSGA-II outperforms random search and coverage-
based prioritization in accelerating the detection of
faults in HCSs, although coverage-based prioritiza-
tion is significantly faster.

8. Threats to validity

The factors that could have influenced our case study
are summarized in the following internal and external va-
lidity threats.

Internal validity. This refers to whether there is sufficient
evidence to support the conclusions and the sources of
bias that could compromise those conclusions. Inadequate
parameter setting is a common internal validity threat.
In this paper, we used standard parameter values for the
NSGA-II algorithm [12]. Furthermore, to consider the ef-
fect of stochasticity, the algorithm was executed multiple
times with each combination of objective functions and
their results analysed using statistical tests.

For the evaluation of our approach we seeded our al-
gorithm with pairwise test suites from the Drupal feature
model in Fig. 3. Each pairwise was composed of 13 test
cases on average. The output test suites generated by the
prioritization algorithms under study had a similar size.
Due to the small number of test cases in the suites, we
found that the absolute differences among the APFD val-
ues achieved by different algorithms and objectives where
small, which may suggest that their performance is sim-
ilar. We remark, however, that the observed differences
are statistically significant showing the superiority of our
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approach. Results also suggest that the observed differ-
ences would be noticeably larger when prioritizing larger
test suites, but that is something that requires further re-
search. Finally, we may remark that the main goal of
our work is to compare the effectiveness of different prior-
itization objectives for HCSs, rather than comparing the
performance of different prioritization algorithms.

External validity. This can be mainly divided into lim-
itations of the approach and generalizability of the con-
clusions. Regarding the limitations, the Drupal feature
model and their attributes were manually mined from dif-
ferent sources and therefore they could slightly differ from
their real shape [59]. Other risk for the validity of our work
is that a number of the faults in Drupal v7.22 remained
in Drupal v7.23, which may introduce a bias in the fault–
driven prioritization. Note, however, that this is a realistic
scenario since it is common in open-source projects that
unfixed faults affect several versions of the system.

The statistical and prioritization results reported are
based on a single case study and thus cannot be gen-
eralized to other HCSs. Nevertheless, our results show
the efficacy of using combinations of functional and non-
functional goals in a multi-objective problem as good drivers
for test case prioritization in open–source HCSs as the
Drupal framework.

9. Related work

In this section we summarize the pieces of work that
most closely relate to us. We divide them into HCSs test-
ing and general software testing.

HCSs testing. Within the context of HCSs, there
has been a stark and recent interest in the area of Soft-
ware Product Lines (SPLs) testing as evidenced by several
systematic mapping studies (e.g. [10, 17, 20]). These stud-
ies focus on categorizing SPL approaches along criteria
within the realm of SPLs such as handling of variability
and variant binding times, as well as other aspects like
test organization and process. Among their findings, all
identified Combinatorial Interaction Testing (CIT), as the
leading approach of SPL testing. Recent work by Yilmaz
et al. divides CIT approaches in two big phases [77]: i)
what phase whose purpose is to select a group of products
for testing, and ii) how phase whose purpose is to perform
the test on the selected products. When CIT is applied to
SPLs the goal is to obtain a sample of products, i.e. fea-
ture combinations, as representative exemplars on which
to perform the testing tasks. Recently, we performed a
systematic mapping study to delve into more detail on
the subject [46]. This mapping study identified over forty
different approaches that rely on diverse techniques, such
as genetic and greedy algorithms, that were evaluated also
with multiple problem domains of different characteristics.
Among other findings, this study revealed that the large
majority of approaches focuses only on computing the sam-
ples of products based purely on variability models (e.g.

feature models), that is, the main focus is the what phase
of CIT.

In addition, most of the approaches found focus on
pairwise testing and only few have higher coverage strengths
(i.e. t>3). A salient example is the work of Henard et al.
who compute covering arrays of up to 6 features (i.e. t=6)
for some of the largest variability models available [33].
They employ an evolutionary algorithm with an objec-
tive function based on Jaccard’s dissimilarity metric, and
compute samples of fixed size within certain fixed con-
straints regarding computation time and number of iter-
ations. For their larger case studies and for the smaller
case studies from 3-wise upwards, they analyze the effec-
tiveness of their approach based on the estimated number
of feature interactions (i.e. t-sets) as the actual number
is intractable to compute. To the best of our knowledge,
this and other approaches that consider higher coverage
strengths for SPLs do not provide empirical evidence that
higher coverage strengths are in fact more effective for fault
detection to actually pay off for their typically more ex-
pensive computation. This is so, because for their analysis
they do not consider actual faults found in actual systems
like our work does with Drupal.

Our study also revealed very few instances of priori-
tization in SPL testing. Salient among them is our pre-
vious work that studied different approaches to prioritize
test suites obtained with a single-objective greedy algo-
rithm and their impact for fault detection [60]. Another
approach was proposed by Johansen et al. who attach ar-
bitrary weights to products to reflect for instance market
relevance and compute the covering arrays using a greedy
approach [39]. This approach was formalized by Lopez-
Herrejon et al. who also propose a parallel genetic algo-
rithm that achieved better performance in a larger num-
ber of case studies [45]. In sharp contrast with these ap-
proaches, our current work employs a multi-objective al-
gorithm to analyze different combinations of metrics and
their impact for detecting faults in a real-world case study.

Devroey et al. proposed a model-based testing ap-
proach to prioritize SPL testing [15]. Their approach relies
on a feature model, a feature transition system (a tran-
sition system enhanced with feature information to indi-
cate what products can execute a transition), and a usage
model with the probabilities of executing relevant transi-
tions. This approach computes the probabilities of exe-
cution of products which could be used to prioritize their
testing. It was empirically evaluated on logged information
of a web-system. In contrast with our work, their prior-
itization is based on statistical probabilities per product
(not on functional and non-functional data), and does not
consider multiple optimization objectives.

Recent work by Wang et al. use a preference indicator
to assign different weights to objective functions depend-
ing on their relevance for the users [74]. They modify the
NSGA-II algorithm by substituting its crowd distance in-
dicator with their preference indicator. In contrast with
our work, their focus is on finding more effective weight as-
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signments that reflect user preference rather than focusing
on different combinations of objective functions to speed
up fault localization. Also recent work by Epitropakis et
al. study multi-objective test case prioritization but focus
on standard software systems (i.e. not on HCSs), and use
a different set of objective functions [23].

Similar to test prioritization, only a few studies have
been conducted on employing multi-objective optimiza-
tion of SPL testing. The work by Wang et al. describe
an approach to minimize test suites using three objec-
tives [70], namely, test minimization percentage, pairwise
coverage, and fault detection capability that works by as-
signing weights to these objectives – a process called scalar-
ization [82]. Their work was extended to generate weights
from a uniform distribution while still satisfying the user-
defined constraints [71]. More recently, they have extended
this work to consider several multi-objective algorithms
that also includes resource awareness [73].

Work by Henard et al. presents an ad-hoc multi-objective
algorithm whose fitness functions are maximizing cover-
age, minimizing test suite size, and minimizing cost [34].
However, they also use scalarization. This is important
because there is an extensive body of work on the down-
sides of scalarization in multi-objective optimization [51].
Among the shortcomings are the fact that weights may
show a preference of one objective over the other and, most
importantly, the impossibility of reaching some parts of the
Pareto front when dealing with convex fronts.

In contrast, work by Lopez-Herrejon et al. propose an
approach for computing the exact Pareto front for pairwise
coverage of two objective functions, maximization of cov-
erage and minimization of test suite size [43]. Subsequent
work also by Lopez-Herrejon et al. studied four classi-
cal multi-objective algorithms and the impact of seeding
for computing pairwise covering arrays [44]. These ap-
proaches have in common that they do not consider prior-
itization and are not evaluated with actual real-world case
studies. Closets to our work, Wang et al. compare SPL
testing techniques that include different weight-assignment
approaches for scalarization into single objective problems,
multi-objective evolutionary algorithms, swarm particle al-
gorithms, and hybrid algorithms [72]. In contrast with
our work, they use a different set of objective functions,
and their industrial case study considers only a handful
of products for which they aim to minimize the cost of
selecting already existing test cases. Multi-objective tech-
niques have also been used at other stages of the SPL
development life cycle, for instance for product configu-
ration. For a summary please refer to a recent mapping
study on the application of Search-Based Software Engi-
neering techniques to SPLs [47].

Drupal is, to the best of our knowledge, the first doc-
umented case study that provides detailed information re-
garding faults and their relation to features and their in-
teractions based on developers’ logs. Recent work by Abal
et al. collected a database with similar information for
several versions of the Linux kernel [1]. We plan to look at

this case study to further corroborate or refute our find-
ings.

General software testing. In the general context of
software testing there is extensive literature that relates to
our work in the sense of using multi-objective algorithms
or prioritization schemes but not particularly applied to
HCSs. For example, Harman et al. provide an overview
of the area of Search-Based Software Engineering which
shows the prevalence of testing as the development activ-
ity where search-based techniques are commonly used [31].
Similarly, Yoo and Harman present a general overview of
regression testing that includes prioritization [80]. Among
their findings is the work by Li et al. that applied and
compared several metaheuristics for test case prioritiza-
tion [42]. They show that even though genetic algorithms
work well, greedy approaches are also effective.

Regarding multi-objective algorithms, Sayyad and Am-
mar performed a survey on pareto-optimal SBSE which
identified the growing interest and use of classical multi-
objective algorithms [61]. The articles that they identified
in the testing area do not, however, deal with HCSs. Yoo
and Harman propose treating test case selection as a multi-
objective problem with a Pareto efficient approach [78].
Islam et al. propose an approach that uses traceability
links among source code and system requirements, recov-
ered via the Latent Semantic Indexing (LSI) technique, as
one of the multi-objective functions to optimize [37]. More
recently, Marchetto et al. [49] extend on this work to pro-
vide a more thorough analysis and evaluation of using LSI
in combination with more metrics for test case prioritiza-
tion.

10. Conclusions

This article presented a real–world case study on multi–
objective test case prioritization in Drupal, a highly con-
figurable web framework. In particular, we adapted the
NSGA-II evolutionary algorithm to solve the multi-objective
prioritization problem in HCSs. Our algorithm uses seven
novel objective functions based on functional and non-
functional properties of the HCS under test. We performed
several experiments comparing the effectiveness of 63 dif-
ferent combinations of up to three of these objectives in
accelerating the detection of faults in Drupal. Results re-
vealed that prioritization driven by non-functional objec-
tives, such as the number of faults found in a previous ver-
sion of the system, accelerate the detection of bugs more
effectively than functional prioritization objectives. Fur-
thermore, it was observed that the prioritization objective
based on pairwise coverage, when combined with other
objectives, is usually effective in detecting bugs quickly.
Finally, results showed that multi-objective prioritization
performs better than mono-objective prioritization in gen-
eral. To the best of our knowledge, this is the first compar-
ison of test case prioritization objectives for HCSs using
industry–strength data.
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Several challenges remain for future work. First, the
development of similar case studies in other HCSs would
be a nice complement to study the generalizability of our
conclusions. Also, the result of combining more than three
objectives is a topic that remains unexplored and for which
other algorithms (so-called many–objectives algorithms)
are probably more suited. Finally, we may remark that
part of the results of this work have been integrated into
smarTest [25], a Drupal test prioritization module devel-
oped by some of the authors and recently presented at the
International Drupal Conference [58] with very positive
feedback from the community.

Material

For the sake of replicability, the source code of our al-
gorithm, the Drupal attributed feature model, experimen-
tal results and statistical analysis scripts in R are publicly
available at http://exemplar.us.es/demo/SanchezJSS2016
(100Mb).
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