Show simple item record

Article

dc.creatorGuerrero Millán, Joséfaes
dc.creatorGonzález García, Heliodoroes
dc.creatorGarcía García, Francisco Javieres
dc.date.accessioned2018-11-13T19:54:14Z
dc.date.available2018-11-13T19:54:14Z
dc.date.issued2016
dc.identifier.citationGuerrero Millán, J., González García, H. y García García, F.J. (2016). Spatial modes in one-dimensional models for capillary jets. Physical Review E, 93, 033102-1-033102-9.
dc.identifier.issn2470-0045es
dc.identifier.urihttps://hdl.handle.net/11441/80131
dc.description.abstractOne-dimensional (1D) models are widely employed to simplify the analysis of axisymmetric capillary jets. These models postulate that, for slender deformations of the free surface, the radial profile of the axial velocity can be approximated as uniform (viscous slice, averaged, and Cosserat models) or parabolic (parabolic model). In classical works on spatial stability analysis with 1D models, considerable misinterpretation was generated about the modes yielded by each model. The already existing physical analysis of three-dimensional (3D) axisymmetric spatial modes enables us to relate these 1D spatial modes to the exact 3D counterparts. To do so, we address the surface stimulation problem, which can be treated as linear, by considering the effect of normal and tangential stresses to perturb the jet. A Green’s function for a spatially local stimulation having a harmonic time dependence provides the general formalism to describe any time-periodic stimulation. The Green’s function of this signaling problem is known to be a superposition of the spatial modes, but in fact these modes are of fundamental nature, i.e., not restricted to the surface stimulation problem. The smallness of the wave number associated with each mode is the criterion to validate or invalidate the 1D approaches. The proposed axial-velocity profiles (planar or parabolic) also have a remarkable influence on the outcomes of each 1D model.We also compare with the classical 3D results for (i) conditions for absolute instability, and (ii) the amplitude of the unstable mode resulting from both normal and tangential surface stress stimulation. Incidentally, as a previous task, we need to re-deduce 1D models in order to include eventual stresses of various possible origins (electrohydrodynamic, thermocapillary, etc.) applied on the free surface, which were not considered in the previous general formulations.es
dc.description.sponsorshipGobierno de España FIS2011-25161es
dc.description.sponsorshipJunta de Andalucía P11-FQM-7919es
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherAmerican Physical Societyes
dc.relation.ispartofPhysical Review E, 93, 033102-1-033102-9.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleSpatial modes in one-dimensional models for capillary jetses
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Física Aplicada Ies
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Física Aplicada IIIes
dc.relation.projectIDFIS2011-25161es
dc.relation.projectIDP11-FQM-7919es
dc.relation.publisherversionhttps://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.033102es
dc.identifier.doi10.1103/PhysRevE.93.033102es
dc.contributor.groupUniversidad de Sevilla. FQM253: Electrohidrodinámica y Medios Granulares Cohesivoses
idus.format.extent9 p.es
dc.journaltitlePhysical Review Ees
dc.publication.volumen93es
dc.publication.initialPage033102-1es
dc.publication.endPage033102-9es
dc.identifier.sisius20915659es
dc.contributor.funderGobierno de España
dc.contributor.funderJunta de Andalucía

FilesSizeFormatViewDescription
65. Spatial modes in one-dimen ...1.049MbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional