Article
Monochromatic geometric k-factors in red-blue sets with white and Steiner points
Author | Garijo Royo, Delia
![]() ![]() ![]() ![]() ![]() ![]() ![]() Garrido Vizuete, María de los Angeles ![]() ![]() ![]() ![]() ![]() ![]() Grima Ruiz, Clara Isabel ![]() ![]() ![]() ![]() ![]() ![]() ![]() Márquez Pérez, Alberto ![]() ![]() ![]() ![]() ![]() ![]() ![]() Moreno González, Auxiliadora ![]() ![]() ![]() ![]() ![]() Portillo Fernández, José Ramón ![]() ![]() ![]() ![]() ![]() ![]() ![]() Reyes Colume, Pedro ![]() ![]() ![]() ![]() ![]() ![]() Robles Arias, Rafael ![]() ![]() ![]() ![]() ![]() ![]() ![]() Valenzuela Muñoz, Jesús |
Department | Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII) |
Date | 2009 |
Published in |
|
Abstract | We study the existence of monochromatic planar geometric k-factors on sets of red and blue points. When it is not possible to find a k-factor we make use of auxiliary points: white points, whose position is given as a datum ... We study the existence of monochromatic planar geometric k-factors on sets of red and blue points. When it is not possible to find a k-factor we make use of auxiliary points: white points, whose position is given as a datum and which color is free; and Steiner points whose position and color is free. We present bounds on the number of white and/or Steiner points necessary and/or sufficient to draw a monochromatic planar geometric k-factor. |
Files | Size | Format | View | Description |
---|---|---|---|---|
Monochromatic geometric.pdf | 161.2Kb | ![]() | View/ | |