Article
Comparison of theoretical complexities of two methods for computing annihilating ideals of polynomials
Author/s | Gago Vargas, Manuel Jesús
Hartillo Hermoso, Isabel Ucha Enríquez, José María |
Department | Universidad de Sevilla. Departamento de Álgebra |
Publication Date | 2005 |
Deposit Date | 2015-03-27 |
Published in |
|
Abstract | Let f1, . . . , fp be polynomials in C[x1, . . . , xn] and let D = Dn be the n-th Weyl algebra. We provide upper bounds for the complexity of computing the annihilating ideal of f s = f s1 1 · · · f sp p in D[s] = D[s1, . ... Let f1, . . . , fp be polynomials in C[x1, . . . , xn] and let D = Dn be the n-th Weyl algebra. We provide upper bounds for the complexity of computing the annihilating ideal of f s = f s1 1 · · · f sp p in D[s] = D[s1, . . . , sp]. These bounds provide an initial explanation on the differences between the running times of the two methods known to obtain the so-called BernsteinSato ideals. |
Funding agencies | Ministerio de Ciencia y Tecnología (MCYT). España |
Project ID. | MTM2004-01165
FQM-333 |
Files | Size | Format | View | Description |
---|---|---|---|---|
complex_ann_2-ams.pdf | 324.9Kb | [PDF] | View/ | |