Mostrar el registro sencillo del ítem

Artículo

dc.creatorGriñán, I.es
dc.creatorRodríguez, P.es
dc.creatorNouri, H.es
dc.creatorWang, R.es
dc.creatorHuang, G.es
dc.creatorGalindo, A.es
dc.creatorCorell González, Mireiaes
dc.creatorMartín Palomo, María Josées
dc.date.accessioned2024-09-24T14:53:24Z
dc.date.available2024-09-24T14:53:24Z
dc.date.issued2019
dc.identifier.citationGriñán, I., Rodríguez, P., Nouri, H., Wang, R., Huang, G., Galindo, A.,...,Martín Palomo, M.J. (2019). Leaf mechanisms involved in the response of Cydonia oblonga trees to water stress and recovery. Agricultural Water Management, 221, 66-72. https://doi.org/10.1016/j.agwat.2019.04.017.
dc.identifier.issn0378-3774es
dc.identifier.urihttps://hdl.handle.net/11441/162831
dc.description.abstractQuince tree (Cydonia oblonga Mill.) is known for bearing fruits that are rich in nutrients and health-promoting compounds while requiring low inputs of agrochemicals, and maintenance, but no information exists on the mechanisms developed at the level of leaf water relations to confront water stress and recovery. For this reason, the purpose of the present study was to identify the strategy (isohydric or anisohydric) by which quince plants cope with water stress and to further elucidate the resistance mechanisms developed in response to water stress and during recovery. In summer 2016, field-grown own rooted 17-years old quince trees (cv. BA-29) were subjected to two irrigation treatments. Control (T0) plants were drip irrigated (105% ETo) to ensure non-limiting soil water conditions, while T1 plants were irrigated at the same level as used in T0, except that irrigation was withheld for 42 days during the linear fruit growth phase, after which irrigation returned to the levels of T0 (recovery period). During the experimental period, T0 and T1 received a total of 374 and 143 mm water, re spectively, including rain water. The quince trees exhibited extreme anisohydric behaviour under the experi mental conditions. As water stress developed and during the recovery period, the plants exhibited high hydraulic conductivity, probably the result of resistance to cavitation. From the beginning of water stress to the time of maximum water stress, leaf turgor was maintained, possibly due to active osmotic adjustment (stress tolerance mechanism). This leaf turgor maintenance may have contributed to the high leaf conductance, and, therefore, good leaf productivity. The low quince leaf apoplastic water fraction under water stress could be considered as another drought tolerance characteristic because if the accumulation of water in the apoplasm is avoided a steeper gradient in water potential between the leaf and the soil can take place under water stress, thus favouring water absorptiones
dc.formatapplication/pdfes
dc.format.extent7 p.es
dc.language.isoenges
dc.publisherElsevieres
dc.relation.ispartofAgricultural Water Management, 221, 66-72.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAnisohydrices
dc.subjectElastic adjustmentes
dc.subjectLeaf conductancees
dc.subjectOsmotic adjustmentes
dc.subjectQuincees
dc.subjectWater relationses
dc.subjectWater stresses
dc.titleLeaf mechanisms involved in the response of Cydonia oblonga trees to water stress and recoveryes
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Agronomíaes
dc.identifier.doi10.1016/j.agwat.2019.04.017es
dc.journaltitleAgricultural Water Managementes
dc.publication.volumen221es
dc.publication.initialPage66es
dc.publication.endPage72es

FicherosTamañoFormatoVerDescripción
Leaf mechanisms inviolved in the ...1.229MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional