Mostrar el registro sencillo del ítem

Artículo

dc.creatorRomero Pérez, Luis Migueles
dc.creatorGarcía Benítez, Franciscoes
dc.date.accessioned2024-09-23T14:08:16Z
dc.date.available2024-09-23T14:08:16Z
dc.date.issued2010-04
dc.identifier.citationRomero, L.M. y Benítez, F.G. (2010). Traffic flow continuum modeling by hypersingular boundary integral equations. International Journal for Numerical Methods in Engineering, 82 (1), 47-63. https://doi.org/10.1002/nme.2754.
dc.identifier.issn0029-5981es
dc.identifier.issn1097-0207es
dc.identifier.urihttps://hdl.handle.net/11441/162748
dc.description.abstractThe quantity of data necessary in order to study traffic in dense urban areas through a traffic network, and the large volume of information that is provided as a result, causes managerial difficulties for the said model. A study of this kind is expensive and complex, with many sources of error connected to each step carried out. A simplification like the continuous medium is a reasonable approximation and, for certain dimensions of the actual problem, may be an alternative to be kept in mind. The hypotheses of the continuous model introduce errors comparable to those associated with geometric inaccuracies in the transport network, with the grouping of hundreds of streets in one same type of link and therefore having the same functional characteristics, with the centralization of all journey departure points and destinations in discrete centroids and with the uncertainty produced by a huge origin/destination matrix that is quickly phased out, etc. In the course of this work, a new model for characterizing traffic in dense network cities as a continuous medium, the diffusion–advection model, is put forward. The model is approached by means of the boundary element method, which has the fundamental characteristic of only requiring the contour of the problem to be discretized, thereby reducing the complexity and need for information into one order versus other more widespread methods, such as finite differences and the finite element method. On the other hand, the boundary elements method tends to give a more complex mathematical formulation. In order to validate the proposed technique, three examples in their fullest form are resolved with a known analytic solution. Copyright © 2009 John Wiley & Sons, Ltd.es
dc.formatapplication/pdfes
dc.format.extent17 p.es
dc.language.isoenges
dc.publisherJohn Wiley & Sonses
dc.relation.ispartofInternational Journal for Numerical Methods in Engineering, 82 (1), 47-63.
dc.subjectTraffic flowes
dc.subjectContinuum theoryes
dc.subjectTwo-dimensional modelinges
dc.titleTraffic flow continuum modeling by hypersingular boundary integral equationses
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Ingeniería y Ciencia de los Materiales y del Transportees
dc.relation.publisherversionhttps://onlinelibrary.wiley.com/doi/10.1002/nme.2754es
dc.identifier.doi10.1002/nme.2754es
dc.journaltitleInternational Journal for Numerical Methods in Engineeringes
dc.publication.volumen82es
dc.publication.issue1es
dc.publication.initialPage47es
dc.publication.endPage63es

FicherosTamañoFormatoVerDescripción
IJNME_2010_Romero_Traffic ...409.1KbIcon   [PDF] Ver/Abrir   Versión aceptada

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Este documento está protegido por los derechos de propiedad intelectual e industrial. Sin perjuicio de las exenciones legales existentes, queda prohibida su reproducción, distribución, comunicación pública o transformación sin la autorización del titular de los derechos, a menos que se indique lo contrario.