Show simple item record

Article

dc.creatorDurán Guardeño, Antonio Josées
dc.date.accessioned2021-11-25T11:07:57Z
dc.date.available2021-11-25T11:07:57Z
dc.date.issued2021-09-30
dc.identifier.citationDurán Guardeño, A.J. (2021). Exceptional Hahn and Jacobi polynomials with an arbitrary number of continuous parameters. Studies in applied mathematics, n/a (n/a), n/a-n/a.
dc.identifier.issn1467-9590es
dc.identifier.urihttps://hdl.handle.net/11441/127680
dc.descriptionAún no está publicado oficialmente. No se conoce volumen, número ni páginas, sólo el año.es
dc.description.abstractWe construct new examples of exceptional Hahn and Jacobi polynomials. Exceptional polynomials are orthogonal polynomials with respect to a measure which are also eigenfunctions of a second-order difference or differential operator. In mathematical physics, they allow the explicit computation of bound states of rational extensions of classical quantum-mechanical potentials. The most apparent difference between classical or classical discrete orthogonal polynomials and their exceptional counterparts is that the exceptional families have gaps in their degrees, in the sense that not all degrees are present in the sequence of polynomials. The new examples have the novelty that they depend on an arbitrary number of continuous parameters.es
dc.formatapplication/pdfes
dc.format.extent45 p.es
dc.language.isoenges
dc.publisherWileyes
dc.relation.ispartofStudies in applied mathematics, n/a (n/a), n/a-n/a.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectexceptional orthogonal polynomiales
dc.subjectHahn polynomialses
dc.subjectJacobi polynomialses
dc.subjectKrall discrete polynomialses
dc.subjectorthogonal polynomialses
dc.titleExceptional Hahn and Jacobi polynomials with an arbitrary number of continuous parameterses
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Análisis matemáticoes
dc.relation.publisherversionhttps://doi.org/10.1111/sapm.12451es
dc.identifier.doi10.1111/sapm.12451es
dc.contributor.groupUniversidad de Sevilla. FQM262: Teoria de la Aproximaciones
dc.journaltitleStudies in applied mathematicses
dc.publication.volumenn/aes
dc.publication.issuen/aes
dc.publication.initialPagen/aes
dc.publication.endPagen/aes

FilesSizeFormatViewDescription
Exceptional Hahn and Jacobi ...425.5KbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional