Ponencia
On some partitioning problems for two-colored point sets
Autor/es | Grima Ruiz, Clara Isabel
Hernando Martín, Carmen Huemer, Clemens Hurtado Díaz, Ferran |
Departamento | Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII) |
Fecha de publicación | 2009 |
Fecha de depósito | 2021-05-21 |
Publicado en |
|
ISBN/ISSN | 978-84-92774-11-1 |
Resumen | Let S be a two-colored set of n points in general position in the plane. We show that S admits
at least 2 n
17 pairwise disjoint monochromatic triangles with vertices in S and empty of points
of S. We further show ... Let S be a two-colored set of n points in general position in the plane. We show that S admits at least 2 n 17 pairwise disjoint monochromatic triangles with vertices in S and empty of points of S. We further show that S can be partitioned into 3 n 11 subsets with pairwise disjoint convex hull such that within each subset all but at most one point have the same color. A lower bound on the number of subsets needed in any such partition is also given. |
Agencias financiadoras | Ministerio de Educación y Ciencia (MEC). España Generalitat de Catalunya |
Identificador del proyecto | MTM2006-01267
DURSI 2005SGR00692 |
Cita | Grima Ruiz, C.I., Hernando Martín, C., Huemer, C. y Hurtado Díaz, F. (2009). On some partitioning problems for two-colored point sets. En XIII Encuentros de Geometría Computacional (221-228), Zaragoza, España: Prensas de la Universidad de Zaragoza. |
Ficheros | Tamaño | Formato | Ver | Descripción |
---|---|---|---|---|
On some partitioning problems ... | 144.4Kb | [PDF] | Ver/ | |