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Abstract.
The four-body continuum-discretized coupled-channels approach using a continuum-bins

scheme of discretization for three-body projectiles, thathas been recently developed, is presented.
The formalism is discussed and applied to reactions inducedby the Borromean nucleus6He on
different targets (27Al, 64Zn, 120Sn, and208Pb), with special emphasis on the role of the Coulomb
couplings.

Keywords: Few-body systems. Direct reactions. Reactions induced by unstable nuclei. Coupled-
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INTRODUCTION

Exotic nuclei have been object of study in recent years due totheir special properties,
very different from the nuclei of the stability valley. Among the exotic nuclei, an
interesting case are the so-called halo nuclei. These are weakly-bound nuclei comprising
a core and one or two valence neutrons orbiting at distances larger than the typical
nuclear radii. In recent years, large accelerators have been built around the world to study
this kind of exotic nuclei. Simultaneously, appropriate reaction theories have been also
developed to extract reliable information from the experimental data on exotic nuclei.

The continuum-discretized coupled-channels (CDCC) framework has been wide and
successfully used for years to analyze experimental data ontwo-body weakly-bound
nuclei using a three-body formalism (that is, two-body projectile plus target). Recently,
the method has been extended to four-body problems (three-body projectile plus target),
what allows to study reactions with three-body weakly-bound nuclei, in particular,
Borromean nuclei. These nuclei has the special characteristic that none of the three
binary subsystems is bound. This is the case of6He(4He+n+n) or11Li(9Li+n+n).

The CDCC method, for a three-body scattering problem, was developed in the 80s.
The basic idea of the method, explained in detail in Refs. [1,2], consists in expanding
the states of the whole system (projectile+target) into thestates of the projectile. For
weakly-bound projectiles, the coupling to unbound states (that form a continuum) is rel-
evant within the reaction dynamics. Then, we need to treat properly the continuum of the
projectile. For this purpose, in the standard three-body CDCC formulation, the contin-
uum spectrum of the projectile is truncated at a maximum excitation energyεmax and the
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model space, from the breakup threshold toεmax, is then divided into intervals, where
the number and positions of the intervals can depend on the properties (e.g. resonant or
non-resonant) of the continuum of the system. For each such interval, or energy bin, a
representative square-integrable state is constructed asa linear superposition of the two-
body scattering states in the interval. The method has been enormously successful in
the description of elastic and breakup observables in reactions involving weakly-bound
two-body projectiles [3, 4, 5] and has been recently extended to include core excitation
[6].

An alternative to treat the continuum of the projectile is touse a Pseudo-State (PS)
basis. This procedure consists in diagonalizing the Hamiltonian of the system in a
truncated discrete basis and taking the positive energy eigenstates as representative of the
continuum. There are many PS methods in the literature. Within the CDCC framework,
different bases have been used like complex-range Gaussian[7], Transformed Harmonic
Oscillator (THO) [8], and Lagrange [9].

In the past decade the CDCC framework has been extended to four-body problems.
Due to the difficulties in calculating the true continuum of athree-body projectile and
making bins, the CDCC was first extended using PS bases like complex-range Gaussian
[10, 11] and THO [12, 13]. Most recently, the binning procedure has been developed
[14], providing more stable results for heavy targets.

In this work we present some recent calculations for elasticand breakup observables,
for different reactions induced by the Borromean nucleus6He, obtained using the four-
body CDCC formalism with the binning procedure. In Section II we explain the formal
aspects of the method. In Section III we show the observablesobtained for the different
reactions considered. Section IV is the summary and conclusions.

FOUR-BODY CDCC FORMALISM

To describe the three-body ground and excited continuum states of the projectile we
make use of a hyperspherical harmonics (HH) expansion basis[15]. This involves use
of the one radial and five angular hyperspherical coordinates, ρ,α, x̂, ŷ, obtained from
the normalized Jacobi coordinates~x,~y (see Fig. 1) of the three bodies [15, 13]. Note that
there are three different Jacobi sets. The quantum number set, β , that defines each three-
body channel [13] are the hypermomentumK, the orbital angular momentalx andly in
coordinates~x and~y, their total~l =~lx +~ly, the total spinSx of the particles associated with
coordinate~x, and the intermediate summed angular momentum~jab =~l +~Sx. If the spin
of the third particle,I, is assumed fixed then the total angular momentum is~j = ~jab +~I
with projectionsµ. Note that, for each continuum energyε and total angular momentum
j, there will be as many independent solutions of the three-body scattering problem, as
the number of outgoing channelsβ considered. These solutions can be chosen as the
incoming channelsβ ′, but any orthogonal combination of these could be equally valid.

Based on these total angular momentum eigenstates,Yβ jµ(Ω) [13], where Ω ≡
(α, x̂, ŷ), the bin wave functions are defined as

φbin
n jµ(~x,~y) = ∑

β
Rbin

nβ j(ρ)Yβ jµ(Ω), (1)
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FIGURE 1. (Color online) Relevant coordinates for the scattering of athree-body projectile by a
structureless target.

where the labeln includes reference to the energy interval of the bin [κ1,κ2], as well as
to the set of quantum numbersβ ′. The functionsRbin

nβ j(ρ) in Eq. (1) are the associated
hyperradial wave functions,

Rbin
nβ j(ρ) ≡ Rbin

[κ1,κ2]β ′β j(ρ) =
2√

πNβ ′ j

∫ κ2

κ1

dκ e−iδβ ′ j(κ) fβ ′ j(κ)Rββ ′ j(κ,ρ), (2)

where κ =
√

2m|ε|/h̄ is the momentum associated to the continuum energyε,
Rββ ′ j(κρ) are the continuum hyperradial wave functions withδβ ′ j(κ) their scattering
phase shift, andfβ ′ j(κ) is a weight function withNβ ′ j its normalization constant. Note
that for eachj and three-body energy bin we must construct wave functions for all
allowed incoming channelsβ ′. Further, as is explicit in Eq. (1), for eachn we must also
constructRbin

nβ j(ρ) for all allowed outgoing channelsβ .

It follows that to include a large number ofβ ′ channels is a severe computational
challenge, and that it is desirable to establish a hierarchyof the continuum states ac-
cording to their importance to the reaction dynamics. In so doing, we may be able to
describe scattering observables using only a selected set of states, the number of them
depending on the reaction under study. To this end, we make use of the eigenstates of
the multi-channel three-body S-matrix [16], or eigenchannels (EC), as follows. (i) For
each j and continuum energyε, the S-matrix in theβ basis is diagonalized to obtain
its EC, enumerated byγ, their corresponding eigenvalues exp[2iδγ j(κ)] and eigenphases
δγ j(κ). (ii) The magnitudes of these eigenphases are used to order the EC. It has been
shown [14] that those EC with largest phase shifts are the most strongly coupled in the
reaction dynamics, and thus a hierarchy of states can be established by such an ordering.
This leads to the possibility of a truncation in the numbernec of EC included and testing
of the convergence with respect to this number.

The bin states given in Eq. (1) are a discrete representationof the states of the three-
body projectile. From them, the four-body wavefunction of the projectile-target system,
schematically depicted in Fig. 1, is formed as

ΨJM(~R,~x,~y) = ∑
n jµLML

φ bin
n jµ(~x,~y)〈LML jµ|JM〉iLYLML(R̂)

1
R

f J
Ln j(R), (3)

where~R is the coordinate from the target to the center of mass of the projectile, L is
the orbital angular momentum of the projectile-target relative motion andJ is the total
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angular momentum,~J =~L+~j. The radial functionsf J
Ln j(R) satisfy the system of coupled

equations

[
−

h̄2

2mr

(
d2

dR2 −
L(L+1)

R2

)
+ εn j −E

]
f J
Ln j(R)+ ∑

L′n′ j′
iL

′−LV J
Ln j,L′n′ j′(R) f J

L′n′ j′(R) = 0,

(4)
wheremr is the reduced mass of the projectile-target system. The coupling potentials
V J

Ln j,L′n′ j′(R) are then

V J
Ln j,L′n′ j′(R) = 〈Ln jJM|V̂pt(~r1,~r2,~r3)|L

′n′ j′JM〉, (5)

where the ket|Ln jJM〉 denotes the functionΦJM
Ln j(R̂,~x,~y) given by

ΦJM
Ln j(R̂,~x,~y) = ∑

µML

φ bin
n jµ(~x,~y)〈LML jµ|JM〉YLML(R̂). (6)

To calculate these coupling potentials, a multipole expansion of the projectile-target
interaction is developed. The procedure is analogous to that for a three-body problem
reported in Ref. [4]. We assume that the projectile-target interaction is the sum of the
interactions of each particle of the projectile with the target,Vkt(~rk) with k = 1,2,3.
For each pair potential, an appropriate Jacobi set is chosenso that the corresponding
coordinate~rk depends only on the vectors~R and~yk. Assuming that the potentials are
central, the coefficients of the multipole expansion are generated as

V
k

Q (R,yk) =
1
2

∫ +1

−1
V k(rk)PQ(zk)dzk, (7)

wherePQ(zk) is a Legendre polynomial,Q is the multipole order andzk = ~̂yk · ~̂R is the
cosine of the angle between~yk and~R. So, the coupling potential can be expressed as

V J
Ln j,L′n′ j′(R) = ∑

Q

(−1)J− jL̂L̂′

(
L Q L′

0 0 0

)
W (LL′ j j′,QJ)FQ

n j,n′ j′(R), (8)

where the radial form factorFQ
n j,n′ j′(R) is

FQ
n j,n′ j′(R) = (−1)Q+2 j− j′ ĵ ĵ′(2Q+1) ∑

ββ ′

3

∑
k=1

∑
βkβ ′

k

Nββk
Nβ ′β ′

k
(9)

× (−1)lxk+Sxk+ j′abk− jabk−Ikδlxkl′xk
δSxkS′xk

l̂yk l̂′yk l̂k l̂′k ĵabk ĵ′abk

(
lyk Q l′yk
0 0 0

)

× W (lkl′klykl′yk;Qlxk)W ( jabk j′abklkl′k;QSxk)W ( j j′ jabk j′abk;QIk)

×

∫ ∫
(sinαk)

2(cosαk)
2dαk ρ5dρ Rbin

nβ j(ρ)ϕ lxklyk
Kk

(αk)V
k

Q (R,yk)ϕ
lxkl′yk

K′
k

(αk)R
bin
n′β ′ j′(ρ),
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with βk being the set of quantum numbers in thek’th Jacobi system where the potential
does not depend onxk, andβ being the set in the Jacobi system in which the states
of the projectile are calculated. The matrix elementsNββk

transform the hyperangular,
angular and spin parts of the wave functions from one Jacobi set to another. Their explicit
expression as a function of the Raynal-Revai coefficients isdeveloped in Ref. [17]. Note
that Eqs. (8) and (9) are completely general, and do not depend on the nature of the
basis.

APPLICATION TO 6HE+TARGET REACTIONS

We apply the formalism of the preceding section to several reactions induced by the
Borromean halo nucleus6He. The reactions considered, for which elastic experimental
data exist, are6He+27Al at 11 MeV, 6He+64Zn at 13.6 MeV,6He+120Sn at 17.4 MeV,
and6He+208Pb at 22 MeV. Note that each target has a mass approximately twice that
of previous target and the energies in the laboratory frame are near the Coulomb barrier.
So, a study of this set of reactions can give us a insight on therole of the Coulomb
interaction as the mass of the target increases.

Here we use the same structure model for the three-body system 6He, as in Refs. [12,
13, 14]. The nucleus is treated as a three-body system of an inertα particle core and two
valence neutrons. A notable property of6He is that none of its binary sub-systems bind,
while the three-body system has a single bound state with binding energy of 0.973 MeV
and total angular momentumjπ = 0+. Its low-lying continuum spectrum is dominated
by a narrowjπ = 2+ resonance, 0.825 MeV above threshold. The Hamiltonian includes
two-body potentials plus an effective three-body potential. The 6He ground-state and
continuum wavefunctions are generated using the codes FACE [17] andSTURMXX

[18]. The maximum hypermomentum used wasKmax = 8. The parameters of the three-
body interaction are adjusted to reproduce the ground-state separation energy and matter
radius and the resonance energy (forj = 1− and 2+ states). The calculated ground state
energy was 0.953 MeV and the root mean squared (rms) radius was 2.46 fm (assuming
a rms radius of 1.47 fm for theα particle).

The coupled-channels equations were solved using the codeFRESCO[19], that reads
the coupling potentials externally. We included in the calculation the states with angular
momentumj = 0+, 1−, 2+ and the projectile-target interaction multipole couplings with
orderQ = 0,1,2. The fragment-target interactions were represented by optical potentials
which reproduce the elastic scattering at the appropriate energy. The potentials used
are from the global parametrization of Koning and Delaroche[20] for the n+target
subsystems. For the4He+target subsystems the choice depends on the target, being
from [21] for 27Al, [22] for 64Zn, [23] for 120Sn, and [24] for208Pb. For all these
reactions we have found convergence including only the firstfourth EC and discretizing
the continuum into 6 and 9 bins, for each EC, for j=0+,2+ and j=1−, respectively. The
maximum energy of6He included varies from 6 MeV for6He+27Al and 6He+64Zn to 7
MeV for 6He+120Sn, and 8 MeV for6He+208Pb.
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FIGURE 2. (Color online) Elastic differential cross section (ratio to Rutherford) in the center of mass
frame for6He+27Al at 11 MeV (top left),6He+64Zn at 13.6 MeV (top right),6He+120Sn at 17.4 MeV
(bottom left), and6He+208Pb at 22 MeV (bottom right). The experimental data are taken from Refs. [25],
[22], [26], and [27] for6He+27Al, 6He+64Zn, 6He+120Sn, and6He+208Pb, respectively.

Elastic scattering

In Fig. 2 we show the elastic differential cross section distributions for the reac-
tions considered. The yellow circles are the existing experimental data from Refs.
[25, 22, 26, 27]. The dotted blue lines are the calculations without including the con-
tinuum. The black solid lines are the full four-body CDCC calculations including both
nuclear and Coulomb interactions. Finally the dashed red lines are the full four-body
CDCC calculations including only nuclear couplings (keeping the central Coulomb in-
teraction between the colliding nuclei). We can see that in all the reactions the four-body
CDCC calculations, with Coulomb and nuclear interactions,reproduces fairly well the
experimental data. Only for the6He+208Pb system, the experimental data at backward
angles is somewhat underestimated by the calculation. We can also see the relevance of
including the continuum to reproduce the experimental data. Comparing with the nu-
clear calculation we see that the role of the Coulomb interaction is practically negligible
for the lightest target27Al whereas is crucial for the heaviest target208Pb.

Breakup

In Fig. 3 we present the breakup differential distributionsas a function of the center-
of-mass scattering angle. The black solid lines are the fullfour-body CDCC calculations
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FIGURE 3. (Color online) Breakup differential cross section distribution in the center of mass frame
for 6He+27Al at 11 MeV (top left),6He+64Zn at 13.6 MeV (top right),6He+120Sn at 17.4 MeV (bottom
left), and6He+208Pb at 22 MeV (bottom right).

TABLE 1. Total breakup and reaction cross sections.

6He+27Al 6He+64Zn 6He+120Sn 6He+208Pb

σnuc+coul
reac (mb) 1661.7 1442.9 1495.9 1389.8

σnuc+coul
bu (mb) 187.09 97.06 161.85 266.28

σnuc
bu (mb) 166.71 56.15 67.44 70.84

including both nuclear and Coulomb interactions and the dashed red lines are the full
four-body CDCC calculations including only nuclear couplings. Here we see that the
Coulomb breakup is not relevant for the lightest target, whereas gets dramatically im-
portant as the mass of the target increases.

We can see this fact more clearly in Table 1 where the total reaction and breakup cross
sections together with the total nuclear breakup cross section are shown. It is noticeable
the large decrease of the nuclear breakup cross section withrespect to the nuclear plus
Coulomb breakup cross section in the case of the heaviest target, whereas both breakup
cross sections are very close for the lightest target.1

1 Note that the total reaction and breakup is larger for the lightest target since the energy of the reaction
is well above the Coulomb barrier with respect the other three reactions.
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Trivial local polarization potential

We have also extracted from the four-body CDCC calculationsthe so-called trivial
local polarization (TLP) potential [28]. This is a local andL-independent potential
which represents the overall effect of the breakup channelson the elastic scattering.
This potential is constructed in such a way that the one-channel calculation performed
with the potentialUbare(r)+UTLP(r) gives approximately the same elastic scattering as
the full CDCC calculation. The bare potential,Ubare(r) is just the sum of the fragment-
target interactions convoluted with the ground state density of the6He nucleus. Figure 4
shows these polarization potentials, due to Coulomb and nuclear interaction with solid
black lines and nuclear with dashed lines, calculated for the different systems at different
energies.

The real part of the TLP potentials is repulsive (except at very short distances where
the details of this potential are probably not meaningful).This repulsive component is
mainly due to nuclear couplings [29, 30, 31]. However, as thetarget mass increases the
real part starts to exhibit a long-range negative tail at distances larger than the strong
absorption radius. The effect of this long-range attractive tail is to reduce the the height
of the barrier of the bare potential leading to an enhancement of the absorption [32]. This
tail is known to arise from dipole Coulomb couplings and is consistent with qualitative
features found in recent optical model fits of the6He+208Pb data [29]. The imaginary
parts of the TLP potentials are mostly absorptive. Both the real and imaginary parts
extend to large distances, well beyond the strong absorption radius. These features are
consistent with the findings of Mackintosh and Keeley [33] and Rusek [34].

The TLP extracted from the calculation with only nuclear couplings does not show the
attractive tail for the real part, evidencing the Coulomb origin of this tail. Besides, the
imaginary parts for all the targets have a longer range than in the calculation including
the Coulomb couplings. This effect is larger for the heaviest target and very small for
the lightest target.

SUMMARY AND CONCLUSIONS

We have presented the four-body CDCC formalism to study the reactions induced
by three-body projectiles like the Borromean nucleus6He. To treat the three-body
continuum of the projectile we use a continuum-bins scheme that has been recently
developed. The formalism has been applied to several reactions of6He with increasing
mass targets:6He+27Al at 11 MeV, 6He+64Zn at 13.6 MeV,6He+120Sn at 17.4 MeV,
and6He+208Pb at 22 MeV.

We have compared the elastic cross section distributions calculated with the four-
body CDCC with the existing experimental data. In general, we have found a good
agreement. We have compared the calculated distributions including Coulomb plus
nuclear couplings with those performed including only nuclear couplings and we have
found that the role of the Coulomb breakup grows drasticallyfrom the lightest to the
heaviest target. The same effect is present in the breakup angular distributions.

We have also presented the TLP potentials extracted from thefour-body CDCC
calculations, with and without Coulomb breakup. Inclusionof Coulomb couplings has
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FIGURE 4. (Color online) TLP potentials extracted from the four-bodyCDCC calculations for
6He+27Al at 11 MeV (top left),6He+64Zn at 13.6 MeV (top right),6He+120Sn at 17.4 MeV (bottom
left), and6He+208Pb at 22 MeV (bottom right). The strong absorption radii are shown by arrows.

a negligible effect on the lightest target. For the heavier targets it produces a long-range
attractive component in the real part of TLP and a long-rangeabsorptive tail in the
imaginary part.
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