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Abstract.

The four-body continuum-discretized coupled-channelpr@gch using a continuum-bins
scheme of discretization for three-body projectiles, tieg been recently developed, is presented.
The formalism is discussed and applied to reactions indbgethe Borromean nucletfHe on
different targets{’Al, 64zn, 120sn, and?%8Pb), with special emphasis on the role of the Coulomb
couplings.

Keywords: Few-body systems. Direct reactions. Reactions inducediisyable nuclei. Coupled-
channel and distorted-wave models. Halo nuclei.
PACS: 21.45.-v,24.50.+g,25.60.-t,24.10.Eq,27.20.+n

INTRODUCTION

Exotic nuclei have been object of study in recent years dubdw special properties,
very different from the nuclei of the stability valley. Amgrthe exotic nuclei, an
interesting case are the so-called halo nuclei. These aklyvbound nuclei comprising
a core and one or two valence neutrons orbiting at distararger than the typical
nuclear radii. In recent years, large accelerators have lingé around the world to study
this kind of exotic nuclei. Simultaneously, appropriataaton theories have been also
developed to extract reliable information from the expemtal data on exotic nuclei.

The continuum-discretized coupled-channels (CDCC) fiaonk has been wide and
successfully used for years to analyze experimental datavorbody weakly-bound
nuclei using a three-body formalism (that is, two-body pabje plus target). Recently,
the method has been extended to four-body problems (tloeég{irojectile plus target),
what allows to study reactions with three-body weakly-twumuclei, in particular,
Borromean nuclei. These nuclei has the special charaotetimt none of the three
binary subsystems is bound. This is the castHef(*He+n+n) or'1Li(°Li+n+n).

The CDCC method, for a three-body scattering problem, wasldped in the 80s.
The basic idea of the method, explained in detail in Refs2]1¢onsists in expanding
the states of the whole system (projectile+target) intodia¢es of the projectile. For
weakly-bound projectiles, the coupling to unbound statest form a continuum) is rel-
evant within the reaction dynamics. Then, we need to tregignty the continuum of the
projectile. For this purpose, in the standard three-bodyCCDormulation, the contin-
uum spectrum of the projectile is truncated at a maximuntation energyemax and the

XXXIII Brazilian Workshop on Nuclear Physics
AIP Conf. Proc. 1351, 29-38 (2011); doi: 10.1063/1.3608932
©2011 American Institute of Physics 978-0-7354-0908-8/$30.00

29



model space, from the breakup threshol&tay, is then divided into intervals, where
the number and positions of the intervals can depend on tigepies (e.g. resonant or
non-resonant) of the continuum of the system. For each suehval, or energy bin, a
representative square-integrable state is constructedirssar superposition of the two-
body scattering states in the interval. The method has beemm®usly successful in
the description of elastic and breakup observables inigeecinvolving weakly-bound

two-body projectiles [3, 4, 5] and has been recently extdridenclude core excitation

[6].

An alternative to treat the continuum of the projectile iuse a Pseudo-State (PS)
basis. This procedure consists in diagonalizing the Ham#in of the system in a
truncated discrete basis and taking the positive energynstgtes as representative of the
continuum. There are many PS methods in the literature.ikMitie CDCC framework,
different bases have been used like complex-range Gay3$idmansformed Harmonic
Oscillator (THO) [8], and Lagrange [9].

In the past decade the CDCC framework has been extendedrtbddy problems.
Due to the difficulties in calculating the true continuum ahaee-body projectile and
making bins, the CDCC was first extended using PS bases likplex-range Gaussian
[10, 11] and THO [12, 13]. Most recently, the binning procexlbas been developed
[14], providing more stable results for heavy targets.

In this work we present some recent calculations for elasticbreakup observables,
for different reactions induced by the Borromean nucfis, obtained using the four-
body CDCC formalism with the binning procedure. In Sectibwe explain the formal
aspects of the method. In Section Il we show the observaiiltsned for the different
reactions considered. Section IV is the summary and coioclss

FOUR-BODY CDCC FORMALISM

To describe the three-body ground and excited continuutesstaf the projectile we
make use of a hyperspherical harmonics (HH) expansion pESjsThis involves use
of the one radial and five angular hyperspherical coordmatgn, X, y, obtained from
the normalized Jacobi coordinatég/ (see Fig. 1) of the three bodies [15, 13]. Note that
there are three different Jacobi sets. The quantum numbé¢t,dbat defines each three-
body channel [13] are the hypermomentimthe orbital angular momentaandly in
coordinateX andy, their totall = I}-i—@ the total spir5, of the particles associated with
coordinatex, and the intermediate summed angular momenfa- I + S,. If the spin
of the third particle], is assumed fixed then the total angular momentumndsj, + I
with projectionsu. Note that, for each continuum energywnd total angular momentum
|, there will be as many independent solutions of the thredIsoattering problem, as
the number of outgoing channgBsconsidered. These solutions can be chosen as the
incoming channelg’, but any orthogonal combination of these could be equaligyva
Based on these total angular momentum eigenstags, (Q) [13], where Q =
(a,X,y), the bin wave functions are defined as

@l (R,Y) = %Rﬁz‘j (0)Zpju(Q), (1)
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projectile

FIGURE 1. (Color online) Relevant coordinates for the scattering dhiee-body projectile by a
structureless target.

where the labeh includes reference to the energy interval of the lin k-], as well as
to the set of qguantum numbegBs. The functionng'n ) in Eg. (1) are the associated

hyperradial wave functions,

| | > e s
Fj(P)ERFK'T,KzJﬁ'm(P):W ke i 1 ()Rep(k,0), (2)
'

where k = /2m|g|/h is the momentum associated to the continuum energy
Rgpj(kp) are the continuum hyperradial wave functions wi; (k) their scattering
phase shift, andg (k) is a weight function wittNg/; its normalization constant. Note
that for eachj and three-body energy bin we must construct wave functionsl
allowed incoming channe®’. Further, as is explicit in Eq. (1), for eactwe must also
constructRﬁg‘j (p) for all allowed outgoing channel3.

It follows that to include a large number @& channels is a severe computational
challenge, and that it is desirable to establish a hieraattthe continuum states ac-
cording to their importance to the reaction dynamics. In smgl, we may be able to
describe scattering observables using only a selected s#dtes, the number of them
depending on the reaction under study. To this end, we makefuhe eigenstates of
the multi-channel three-body S-matrix [16], or eigenctearfEC), as follows. (i) For
eachj and continuum energy, the S-matrix in thg3 basis is diagonalized to obtain
its EC, enumerated by, their corresponding eigenvalues &4@y;(k)] and eigenphases
doyj (k). (if) The magnitudes of these eigenphases are used to drel€&Q. It has been
shown [14] that those EC with largest phase shifts are the stamgly coupled in the
reaction dynamics, and thus a hierarchy of states can baliskd by such an ordering.
This leads to the possibility of a truncation in the numiagrof EC included and testing
of the convergence with respect to this number.

The bin states given in Eq. (1) are a discrete representafitre states of the three-
body projectile. From them, the four-body wavefunctiontad projectile-target system,
schematically depicted in Fig. 1, is formed as

1
Wom(R.Y) = > @i oY) (LML IIM)T YL (R 5 g (R, 3
nju

whereR is the coordinate from the target to the center of mass of thiegtile, L is
the orbital angular momentum of the projectile-targettreéamotion andJ is the total
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angular momentund,= L+ j. The radial functlonél_n]( R) satisfy the system of coupled
equations

R (d? L(L+1) ; . )
|:_ Zrn, (dRZ - RZ ) +8nj - E:| an](R) +L; | VLnj,L’n’j'(R> fL’n’j’(R) = 07

]/
(4)
wheremy is the reduced mass of the projectile-target system. Thplic@upotentials
Vi (R) are then

vLJnLL,n,,-,(R> = (LNjIM |V (F1,F2,F3) [N j IM), (5)

where the ketLnjJM) denotes the functiop™

I_nj(R, X,¥) given by

oM (R XY) = %qﬁ;;} %,9) (LML j | IM)Yiwm, (R). (6)

To calculate these coupling potentials, a multipole exjmmnef the projectile-target
interaction is developed. The procedure is analogous tofdha three-body problem
reported in Ref. [4]. We assume that the projectile-targtgraction is the sum of the
interactions of each particle of the projectile with thegtr Vi (Tk) with k = 1,2,3.
For each pair potential, an appropriate Jacobi set is chesehat the corresponding
coordinater depends only on the vectoFsandyy. Assuming that the potentials are
central, the coefficients of the multipole expansion areegated as

1
KRy = [ | VerP(@0d @)

wherePq(z) is a Legendre polynomiaQ is the multipole order and, = ?k- Ris the
cosine of the angle betwegpandR. So, the coupling potential can be expressed as

_ires [ L L’
VLJnLL,n,j,(R):g(_ly J|_|_’< 0 (8 0 )W(LL'” QIR r],],(R), (8)
where the radial form factd?rﬁ ] S(R)is
Q 2 :
Fe (R = (-7 jj(2Q+1) Z 2 Z NagNgg ©)
BB K=1BBy

— e (] I
X ()b SactTan Jak lkdxkl;k%kgk|yk|§k|k|Llabklébk( ék (g 38‘)
X W(Ililyil s Qlsae) W (JakJ il kl ks QSu)W (7 Jabk J ks Qli)
. xl x i
| | (sinat?(cosan)*da p°dp R, () gy (1) #5(R yi) bt (b RER 5 ()
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with B being the set of quantum numbers in R Jacobi system where the potential
does not depend oxy, and 3 being the set in the Jacobi system in which the states
of the projectile are calculated. The matrix elemedgg, transform the hyperangular,
angular and spin parts of the wave functions from one Jaebbosnother. Their explicit
expression as a function of the Raynal-Revai coefficierdeveloped in Ref. [17]. Note
that Egs. (8) and (9) are completely general, and do not departhe nature of the
basis.

APPLICATION TO ®HE+TARGET REACTIONS

We apply the formalism of the preceding section to severattrens induced by the
Borromean halo nucled®#e. The reactions considered, for which elastic experiaient
data exist, ar8He+"Al at 11 MeV, ®He+%4Zn at 13.6 MeVEHe+12°Sn at 17.4 MeV,
and®He+2%8pPp at 22 MeV. Note that each target has a mass approximatielg that

of previous target and the energies in the laboratory frarma@ear the Coulomb batrrier.
So, a study of this set of reactions can give us a insight onrdleeof the Coulomb
interaction as the mass of the target increases.

Here we use the same structure model for the three-bodynsyste, as in Refs. [12,
13, 14]. The nucleus is treated as a three-body system otatuiparticle core and two
valence neutrons. A notable propertyPéfe is that none of its binary sub-systems bind,
while the three-body system has a single bound state wittifmgrenergy of ®73 MeV
and total angular momentuf¥ = 0. Its low-lying continuum spectrum is dominated
by a narrowj™ = 2* resonance,.825 MeV above threshold. The Hamiltonian includes
two-body potentials plus an effective three-body poténtiae ®He ground-state and
continuum wavefunctions are generated using the cod€EF[17] and STURMXX
[18]. The maximum hypermomentum used Was.x = 8. The parameters of the three-
body interaction are adjusted to reproduce the grouné-s&gtaration energy and matter
radius and the resonance energy (fer 1~ and 2" states). The calculated ground state
energy was 0.953 MeV and the root mean squared (rms) radisi w8 fm (assuming
a rms radius of 1.47 fm for the particle).

The coupled-channels equations were solved using therRERCO[19], that reads
the coupling potentials externally. We included in the akdton the states with angular
momentumj = 0", 1, 2™ and the projectile-target interaction multipole coup&nygjth
orderQ=0,1,2. The fragment-target interactions were represented tigadpotentials
which reproduce the elastic scattering at the appropriagegy. The potentials used
are from the global parametrization of Koning and Delarof2@ for the n+target
subsystems. For th&He+target subsystems the choice depends on the targety bein
from [21] for 27Al, [22] for ®4zn, [23] for 129Sn, and [24] for?°8Pb. For all these
reactions we have found convergence including only theforsth EC and discretizing
the continuum into 6 and 9 bins, for each EC, forjs@" and j=1", respectively. The
maximum energy ofHe included varies from 6 MeV fdtHe+’Al and ®He+%4Zn to 7
MeV for ®He+120Sn, and 8 MeV foPHe+2%8ph.
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FIGURE 2. (Color online) Elastic differential cross section (ratioRutherford) in the center of mass
frame for®He+27Al at 11 MeV (top left),5He+%Zn at 13.6 MeV (top right)®He+2°Sn at 17.4 MeV
(bottom left), andHe+2%8Pb at 22 MeV (bottom right). The experimental data are takem Refs. [25],
[22], [26], and [27] forPHe+27Al, 8He+54Zn, ®He+129Sn, and®He+2%8Pb, respectively.

Elastic scattering

In Fig. 2 we show the elastic differential cross sectionribstions for the reac-
tions considered. The yellow circles are the existing expental data from Refs.
[25, 22, 26, 27]. The dotted blue lines are the calculatiortlout including the con-
tinuum. The black solid lines are the full four-body CDCCatdhtions including both
nuclear and Coulomb interactions. Finally the dashed mesliare the full four-body
CDCC calculations including only nuclear couplings (kegpihe central Coulomb in-
teraction between the colliding nuclei). We can see thall ih@reactions the four-body
CDCC calculations, with Coulomb and nuclear interactiosaproduces fairly well the
experimental data. Only for tf#He+298Pb system, the experimental data at backward
angles is somewhat underestimated by the calculation. Welsa see the relevance of
including the continuum to reproduce the experimental .d@tanparing with the nu-
clear calculation we see that the role of the Coulomb interads practically negligible
for the lightest target’Al whereas is crucial for the heaviest targ&itrb.

Breakup

In Fig. 3 we present the breakup differential distributiassa function of the center-
of-mass scattering angle. The black solid lines are théduh-body CDCC calculations
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FIGURE 3. (Color online) Breakup differential cross section digtitibn in the center of mass frame

for 8He+27Al at 11 MeV (top left),®He+%4Zn at 13.6 MeV (top right)®He+12%Sn at 17.4 MeV (bottom
left), and®He+298Pb at 22 MeV (bottom right).

TABLE 1. Total breakup and reaction cross sections.

SHe+?’Al  ®Het+54Zn  ®Het+'2%Sn  CHe+20%Ph

onucteou by 1661.7 1442.9 1495.9 1389.8
afucteoul (mp)  187.09 97.06 161.85 266.28
gluc(mb)  166.71 56.15 67.44 70.84

including both nuclear and Coulomb interactions and thée@sed lines are the full
four-body CDCC calculations including only nuclear congk. Here we see that the
Coulomb breakup is not relevant for the lightest target, g gets dramatically im-
portant as the mass of the target increases.

We can see this fact more clearly in Table 1 where the totaticgaand breakup cross
sections together with the total nuclear breakup crossoseate shown. It is noticeable
the large decrease of the nuclear breakup cross sectiomegijpect to the nuclear plus
Coulomb breakup cross section in the case of the heaviggttavhereas both breakup
cross sections are very close for the lightest tatget.

1 Note that the total reaction and breakup is larger for thietéigt target since the energy of the reaction
is well above the Coulomb barrier with respect the othereheactions.
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Trivial local polarization potential

We have also extracted from the four-body CDCC calculatibiesso-called trivial
local polarization (TLP) potential [28]. This is a local ahdindependent potential
which represents the overall effect of the breakup chanoelthe elastic scattering.
This potential is constructed in such a way that the one+oblacalculation performed
with the potentialpardr) +UtLp(r) gives approximately the same elastic scattering as
the full CDCC calculation. The bare potentidh,(r) is just the sum of the fragment-
target interactions convoluted with the ground state dg$ithe®He nucleus. Figure 4
shows these polarization potentials, due to Coulomb anttaumteraction with solid
black lines and nuclear with dashed lines, calculated ®difierent systems at different
energies.

The real part of the TLP potentials is repulsive (except a ghort distances where
the details of this potential are probably not meaningflis repulsive component is
mainly due to nuclear couplings [29, 30, 31]. However, agénget mass increases the
real part starts to exhibit a long-range negative tail atagiices larger than the strong
absorption radius. The effect of this long-range attractail is to reduce the the height
of the barrier of the bare potential leading to an enhancéofehe absorption [32]. This
tail is known to arise from dipole Coulomb couplings and isgistent with qualitative
features found in recent optical model fits of #tée+°8Pb data [29]. The imaginary
parts of the TLP potentials are mostly absorptive. Both #& and imaginary parts
extend to large distances, well beyond the strong absorpsidius. These features are
consistent with the findings of Mackintosh and Keeley [33] &usek [34].

The TLP extracted from the calculation with only nuclearmglings does not show the
attractive tail for the real part, evidencing the Coulomigior of this tail. Besides, the
imaginary parts for all the targets have a longer range thadhd calculation including
the Coulomb couplings. This effect is larger for the heaviasyet and very small for
the lightest target.

SUMMARY AND CONCLUSIONS

We have presented the four-body CDCC formalism to study #aetions induced
by three-body projectiles like the Borromean nucl@i#e. To treat the three-body
continuum of the projectile we use a continuum-bins schema¢ has been recently
developed. The formalism has been applied to several cemotif®He with increasing
mass target€He+2’Al at 11 MeV, °He+%4Zn at 13.6 MeV°PHe+120Sn at 17.4 MeV,
and®He+298pp at 22 MeV.

We have compared the elastic cross section distributioltsileéed with the four-
body CDCC with the existing experimental data. In genera, have found a good
agreement. We have compared the calculated distributioeisding Coulomb plus
nuclear couplings with those performed including only eaclcouplings and we have
found that the role of the Coulomb breakup grows drasticiatyn the lightest to the
heaviest target. The same effect is present in the brealgudardistributions.

We have also presented the TLP potentials extracted fronfainebody CDCC
calculations, with and without Coulomb breakup. InclusasrCoulomb couplings has
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FIGURE 4. (Color online) TLP potentials extracted from the four-bo@pCC calculations for

SHe+27Al at 11 MeV (top left),®He+54Zn at 13.6 MeV (top right)®He+12%Sn at 17.4 MeV (bottom
left), and®He+298Pb at 22 MeV (bottom right). The strong absorption radii dreven by arrows.

a negligible effect on the lightest target. For the heaaegets it produces a long-range
attractive component in the real part of TLP and a long-raalgsorptive tail in the
imaginary part.
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