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Abstract. Accurate and reliable neutron capture cross section data for actinides are necessary for
the proper design, safety regulation and precise performance assessment of transmutation devices
such as Fast Critical Reactors or Accelerator Driven Systems. In particular, the neutron capture cross
sections of237Np, 240Pu and243Am play a key role in the design and optimization of strategies
for the Transmutation of Nuclear Waste. The listed cross sections have been measured in 2004
at n_TOF [1] with a high accuracy due to a combination of features unique in the world: high
instantaneous neutron fluence and excellent energy resolution of the n_TOF facility, innovative Data
Acquisition System based on flash ADCs and the use of a high performance BaF2 Total Absorption
Calorimeter as a detection device.

Keywords: 237Np,240Pu,243Am, neutron capture cross section, nuclear waste, transmutation, total
absorption calorimeter
PACS: 25.40.Lw,27.80.+w,97.10.Cv

INTRODUCTION

Nuclear waste transmutation has been proposed as a way to reduce substantially (in
a factor of 1/100 or more) the radiotoxicity inventory of the long lived component
of the nuclear waste, mainly the trans-uranium actinides. Actinide transmutation is
proposed to take place by fission in nuclear systems like critical reactors or subcritical
Accelerator Driven Systems (ADS). The detailed engineering designs, safety evaluations
and the detailed performance assessment of dedicated transmutation ADS and critical
reactors (i.e. with fuels highly enriched in transuranic isotopes) require more precise
and complete basic nuclear data [2].

EXPERIMENT

Isotopically enriched targets of minor actinides are available only in small amounts,
typically of the order of 1 - 100 mg. Even then, the activities involved present major
difficulties related both to the experimental techniques and the radioprotection aspects.
The targets of237Np (43.3 mg, 1.29 MBq),240Pu (51.2 mg, 458 MBq) and243Am
(10 mg, 75 MBq) measured at n_TOF [1] were all assembled in the same way: the
radioactive material was sandwiched between two thin Al layers (total mass < 75 mg)
and canned inside a 0.35 mm thick Ti canning with ISO 2919 certification (requested
by the safety regulations at CERN). Their isotopic purity was determined byγ-ray
spectrometry and is >98% in all cases.

In capture measurements at n_TOF [3] with a 4 cm diameter neutron beam spot, the
instantaneous fluence amounts to 105 neutrons/cm2/pulse for neutron energies between
0.1 eV and 20 GeV. This is one of the key features for measuring the (n,γ) cross section
of low mass and highly radioactive isotopes with a good signal to noise ratio. During
the measurements, the repetition rate of the PS was on average 3 - 4 proton pulses for
a PS supercycle of 16.4 s. In addition, the n_TOF facility provides an excellent energy
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resolution of 10−3 to 10−4 at a 185 m flight path between the Pb spallation target and
the counting station.
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FIGURE 1. Left: view of the Total Absorption Calorimeter as it is implemented in the codeGEANT4[9]
used for the MC simulations. Right: experimental (black) and Monte Carlo simulated (red) energy
deposition spectra in the TAC for capture events in the197Au(n,γ) reaction at 4.9 eV.

The capture cross section measurements at n_TOF have been done relative to the
standard capture cross section197Au(n,γ). For this reason, several independent monitors
were used permanently for a proper normalization between the197Au(n,γ) and main
measurements.

The Data Acquisition System (DAQ)[4] used in the measurements consists in 54
channels of high performance flash ADCs [5]. Each channel has 8 Mbytes memory
and was operated at a sampling rate of 500 Msamples/s, thus allowing to record the
full detector history for neutron energy ranges between 0.3 eV and 20 GeV. After zero
suppression and data formatting, the raw data are sent to CERN’s massive storage facility
CASTOR [6] via several Gigabit links. In parallel, especially designed pulse shape
analysis routines run on a PC farm and extract from the digitized detector signals the
necessary information for the data analysis. The n_TOF DAQ offers unique features such
as an extremely low dead time (< 10 ns), good signal analysis and pileup discrimination
among others, resulting in an excellent mechanism for controlling all kind of systematic
uncertainties associated to the detector’s behavior.

The neutron capture detection system consists in a segmented Total Absorption
Calorimeter made of 40 BaF2 crystals with10B loaded carbon fibre capsules and placed
at 185 m flight path from the spallation source. The TAC has a nearly 100% detection ef-
ficiency for electromagnetic cascades (i.e. capture events) and a good energy resolution
(14% at 662 keV and 6% at 6.1 MeV). The radioactive targets are placed at the geo-
metric center of the TAC and surrounded by a C12H2004(6Li)2 neutron absorber placed
inside the inner hole of the TAC. The neutron absorber and the10B loaded carbon fibre
capsules reduce the sensitivity of the detector to the scattered neutrons, do not reduce
the capture detection efficiency (even though they lower the total absorption efficiency)
and also help in attenuating the low energy component (10 - 100 keV) of the sample
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RAW DATA from the 237Np(n,γ) measurement at n_TOF

2.) Background due to the Ti canning + 1.)
1.) Room + target frame background

3.) 43.3 mg of 237Np + 2.)

3000 bins/decade

FIGURE 2. Raw data from the237Np (n,γ) measurement in the resolved resonance region between 10
eV and 1 keV. Below, the background due to the Ti canning and the empty TAC (without any sample in
the beam).
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RAW DATA from the 240Pu(n,γ) measurement at n_TOF
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3000 bins/decade

FIGURE 3. Raw data from the240Pu (n,γ) measurement in the resolved resonance region between 10
eV and 1 keV. Below, the background due to the Ti canning and the empty TAC (without any sample in
the beam).
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radioactivity. For the measurement of243Am, a cylindrical Pb shielding of 1 mm thick-
ness around the target and outside the beam was necessary for suppressing the strong
γ-activity with energies about 100 - 200 keV.

Fig. 1 shows a view of the experimental setup, as it is implemented in the code
GEANT4[9] used for the detailed MC simulations of the TAC. The performance of
the TAC has been investigated both experimentally (with standard calibration sources
and the reference197Au(n,γ) cross section) and by Monte Carlo simulations [7] [8].
Furthermore, all sources of background have been measured and are being simulated for
performing the background corrections necessary for an accurate capture cross section
analysis.

RESULTS

The capture data for237Np, 240Pu and243Am have been taken in summer 2004. A large
number of resonances have been observed in the resolved resonance region with good
statistics in both the raw data for237Np and 240Pu, as it is shown in fig. 2 and 3,
respectively. Furthermore, the level of the background there is fairly low, thus allowing
to conclude already that the extraction of accurate resonance parameters is possible. The
cross section analysis in the unresolved resonance region will require a more detailed
study and subtraction of the background, dominated mainly by the effect of the Ti
canning of the samples. However, clear capture signals are visible in the TAC energy
deposition spectra up to a few tens of keV.
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