DETERMINACIÓN DE ²³⁸PU, ^{239±240}PU Y ²⁴¹PU EN MUESTRAS MEDIOAMBIENTALES MEDIANTE ESPECTROMETRÍA ALFA CON DETECTORES SEMICONDUCTORES DE IMPLANTACIÓN IÓNICA

I.VIOQUE, R.GARCÍA-TENORIO, M.C. JIMÉNEZ RAMOS Y G. MANJÓN

INTRODUCCIÓN

El grupo Física Nuclear Aplicada de la Universidad de Sevilla, dentro de sus prestaciones en el campo de la radioecocología y la vigilancia radiológica ambiental, ha desarrollado un procedimiento para la determinación de isótopos de Pu emisores alfa en muestras ambientales mediante la aplicación de la técnica de espectrometría alfa con detectores de implantación iónica.

Este procedimiento lleva asociado la aplicación de un método radioquímico, que ha sido puesto a punto y validado en nuestro laboratorio para su aplicación a suelos, sedimentos y muestras de vegetación, y cuyo fin es el aislamiento y purificación de los isótopos de Pu de las matrices a las que se encuentran asociadas, y su posterior deposición en láminas delgadas para la adecuada realización de la medida espectrométrica. La descripción del procedimiento en su conjunto y su validación constituyen el centro de este trabajo.

DESCRIPCIÓN DEL PROCEDIMIENTO

Una descripción exhaustiva del método radioquímico puesto a punto ya ha sido publicada¹, por lo que, en este trabajo, simplemente indicaremos que las etapas esenciales de este procedimiento son: a) calcinación de la muestra a 550°C durante 24 horas, b) oxidación húmeda de la muestra con 8M HNO₂₁ c) coprecipitación de actínidos con Fe3[±], d) eliminación de elementos estables y emisores alfa (isótopos de U y Th, ²¹⁰Po, ²⁴¹Am) interferentes utilizando resinas de intercambio iónico, e)extracción de la fracción purificada de Pu de la resina, y f) electrodeposición del Pu sobre planchetas de acero inoxidable. El rendimiento del proceso radioquímico es controlado mediante la adición de cantidades conocidas de un trazador, en nuestro caso ²⁴²Pu, antes de la oxidación húmeda de la muestra.

Las medidas se realizan utilizando un sistema espectrométrico alfa formado por un total de 8 cámaras independientes, cada una de ellas equipada con un detector semiconductor de implantación iónica. Todos los detectores tienen una superficie de 450 mm², y una resolución nominal de 18-20 keV a una distancia fuente-detector de 1,5 mm.

Cuatro son los isótopos de Pu que pueden encontrarse en la actualidad en diversos compartimentos en la naturaleza, obviamente con origen en actividades antropogénicas. Tres de ellos, ²³⁹Pu, ²⁴⁰Pu, y ²³⁸Pu son emisores alfa por lo que teóricamente podrían ser determinados de forma independiente por espectrometría alfa, mientras el cuarto, ²⁴¹Pu es un emisor beta débil. No obstante, la similitud en energía de las emisiones alfa de los isótopos ²³⁹Pu y ²⁴⁰Pu, impide su discriminación espectrométrica, a través de la medida directa por espectrometría alfa con detectores semiconductores de implantación iónica, por lo que sólo podemos determinar independientemente los niveles de ^{239±240}Pu y ²³⁸Pu presentes en las muestras ambientales analizadas.

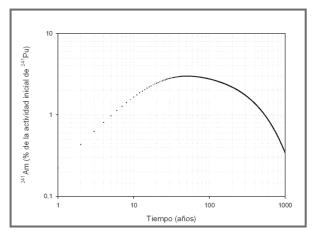


Figura 1.- Curva de crecimiento del 241Am en función del tiempo.

Pero adicionalmente, los niveles de ²⁴¹Pu (emisor beta puro cuyo periodo de semidesintegración es igual a 14,4 años) presente en dichas muestras se pueden determinar también aplicando la técnica de espectrometría alfa, a partir de la medida de su descendiente emisor alfa, el ²⁴¹Am, siempre que se deje transcurrir el tiempo necesario (varios años) para que la actividad creciente de ²⁴¹Am pueda ser cuantificada. Una vez determinada la actividad de ²⁴¹Am a través de una segunda medida de la fuente electrodepositada, la actividad de ²⁴¹Pu presente en la muestra original se deduce fácilmente a partir de las ecuaciones de Bateman. (Figura 1).

En la Figura 1 se muestra la curva de crecimiento del ²⁴¹Am en función del tiempo, expresado éste como el tanto por ciento de la actividad inicial del ²⁴¹Pu presente en la muestra. Este método para la determinación de ²⁴¹Pu en muestras ambientales está siendo ya aplicado asiduamente en nuestro laboratorio.

VALIDACION

La validación de un procedimiento como el aquí mostrado para la determinación de los niveles de ^{239±240}Pu, ²³⁸Pu y ²⁴¹Pu en muestras ambientales es un proceso bastante complejo. La participación en ejercicios de intercomparación y la utilización de muestras de referencia sólo permiten una validación parcial del procedimiento, pues los niveles certificados o intercomparados se circunscriben a ^{239±240}Pu, al ser estos isótopos (²³⁹Pu y ²⁴⁰Pu) los que poseen una mayor implicación radiológica atendiendo a su tipo de emisión y a sus concentraciones en la naturaleza.

No obstante, la determinación con la mayor precisión posible de los niveles de ²³⁸Pu y ²⁴¹Pu tiene una enorme utilidad, fundamentalmente para intentar discriminar a través de los cocientes isotópicos ²³⁸Pu/^{239±240}Pu y ²⁴¹Pu/^{239±240}Pu el origen del Pu asociado a la muestra analizada, y en el caso del ²⁴¹Pu para poder evaluar la evolución futura de los niveles de su descendiente, el ²⁴¹Am en el ecosistema estudiado.

Mostraremos a continuación cómo, de forma precisa, podemos validar el procedimiento aquí descrito para la determinación de ²³⁸Pu y ²⁴¹Pu a través de la determinación de los cocientes isotópicos 238Pu/^{239±240}Pu y ²⁴¹Pu/^{239±240}Pu en muestras ambientales en las que el origen del Pu es conocido.

La validación del procedimiento para la determinación de ^{239±240}Pu se ha realizado a través de la participación con resultados muy satisfactorios en un número elevado de ejercicios de intercomparación¹. Únicamente como ejemplo, en la Tabla 1 mostramos los resultados obtenidos en el marco de un ejercicio de intercomparación auspiciado por el Consejo de Seguridad Nuclear (CSN).

Alícuota 1	Alícuota 2	V.R.
0,12±0,01	0,11±0,01	0,121±0,011

Tabla 1.- Ejercicio de intercomparación CSN-CIEMAT 2002. Concentración de actividad de ^{239±240}Pu (Bq/kg).(V.R.= Valor de referencia).

COCIENTE ISOTÓPICO DE ACTIVIDADES ²³⁸PU/^{239±240}PU

En el caso de poder disponer de muestras ambientales en las que es conocido el origen del plutonio presente en ellas, la determinación del cociente isotópico ²³⁸Pu/^{239±240}Pu de su actividades puede utilizarse como método de validación de las medidas de ²³⁸Pu realizadas. Ello ese debe a que este cociente posee un valor bien definido y característico dependiendo del origen de la fuente de contaminación.

Efectivamente, de forma global, este cociente toma un valor de 0,03-0,04² en muestras colectadas en el hemisferio norte y afectadas fundamentalmente por la deposición de plutonio con origen en las pruebas nucleares atmosféricas realizadas en las décadas de 1950 y 1960, mientras que toma un valor de 0,2³ en muestras del hemisferio sur afectadas por la dispersión de ²³⁸Pu con origen en el accidente del satélite SNAP- 9A además de por la deposición del plutonio originado en las pruebas nucleares (fuentes globales de contaminación).

Por otra parte, en el ámbito local o regional, existen áreas afectadas por accidentes o descargas controladas en las que el cociente ²³⁸Pu/^{239±240}Pu toma también unos valores particulares y característicos: por ejemplo 0,02⁴ en los ecosistemas de Palomares y Thule afectados por la dispersión en esas zonas del contenido de bombas termonucleares que por accidente experimentaron una explosión química, y

0,47⁵ en muestras fuertemente contaminadas por el accidente del reactor de la central de Chernobyl.

En los últimos años hemos procedido de forma sistemática a determinar el cociente isotópico ²³⁸Pu/^{239±240}Pu en diversas matrices naturales en el que el origen del Pu, y como consecuencia el valor de este cociente, era conocido. Los resultados obtenidos, comparados con los valores esperados son mostrados en la Tabla 2. Se observa que la concordancia entre valores obtenidos y esperados es total, lo que nos pone de manifiesto la bondad del procedimiento aplicado para la determinación de los niveles de ²³⁸Pu.

Este proceso de validación es necesario pues en las muestras analizadas existen otros radionucleidos alfa cuyas emisiones se solapan con las del ²³⁸Pu (como el ²⁴¹Am), y aunque el método radioquímico está diseñado de manera que estos isótopos interferentes se extraen de la resina en pasos previos al de la recuperación del plutonio, es conveniente verificar que la separación selectiva de los isótopos de plutonio se produce de forma efectiva. En particular, la no eliminación total del ²⁴¹Am en la muestra electrodepositada, llevaría consigo una determinación errónea de los niveles de ²³⁸Pu e impediría o afectaría la determinación posterior de ²⁴¹Pu por el método descrito en la introducción de este trabajo.

Muestra	^{239 ± 240} Pu (Bq/kg)	²⁴¹ Pu (Bq/kg)	²⁴¹ Pu/ ^{239 ± 240} Pu	
B4.0	$2,57 \pm 0,13$	$6,5 \pm 1,8$	$2,5 \pm 0,7$	
B7.1	$6,98 \pm 0,18$	$8,9 \pm 1,2$	$1,3 \pm 0,2$	
D7.4	$7,58 \pm 0,21$	$10,6 \pm 1,3$	$1,4 \pm 0,2$	
E7.4	$7,46 \pm 0,20$	10.3 ± 1.1	$1,4 \pm 0,2$	
F2.0	$4,93 \pm 0,22$	$5,3 \pm 1,1$	1.1 ± 0.2	
F6.0	3.7 ± 0.4	10±5	2.8 ± 1.5	
G1.9	$1,55 \pm 0,08$	$3,5 \pm 1,0$	$2,2 \pm 0,6$	
G3.9	$10,1 \pm 0,4$	25 ± 6	$2,4 \pm 0,6$	
G7,9	$6,05 \pm 0,24$	13±3	$2,1 \pm 0,5$	
P11	$1,41 \pm 0.07$	1.8 ± 0.4	$1,3 \pm 0,3$	

Tabla 3. Concentraciones de ^{239±240}Pu y ²⁴¹Pu (Bq/kg) y cociente de actividades ²⁴¹Pu/^{239±240}Pu en muestras sedimentarias del hemisferio norte afectadas exclusivamente por las pruebas nucleares atmosféricas.

COCIENTE ISOTÓPICO DE ACTIVIDADES 241 PU/239±240 PU

De una forma totalmente análoga a la explicada en el apartado anterior, hemos procedido a validar nuestro procedimiento para la determinación de ²⁴¹Pu, a través de la medida del cociente de actividades ²⁴¹Pu/^{239±240}Pu en muestras donde es conocido el origen del Pu contenido en ellas.

En particular, este cociente de actividades ha sido determinado en un total de 10 muestras sedimen-

Lugar de muestreo	Fuente del Pu	Tipo de muestra	²³⁸ Pu/ ^{239±240} Pu (este trabajo)	²³⁸ Pu/ ^{239±240} Pu (valor esperado) (ref)
Suecia (55°N)	Global	sedimento	0.034 ± 0.003	0.034 ± 0.007 (2)
Suecia (55°N)	Global	turba	0.034 ± 0.004	$0,034 \pm 0,007$ (2)
España(35-40°N)	Global	suelo	$0,035 \pm 0,010$	0.036 ± 0.004 (6)
Perú (10-30°S)	Global	suelo	0.15 ± 0.06	0.22 ± 0.15 (2)
Antártida (70°S)	Global	liquen	$0,23 \pm 0,02$	0.22 ± 0.02 (7)
Ucrania	Chernobyl	Snelo	0.46 ± 0.08	$0.47 \pm 0.07 (5)$
España	Palomares	Suelo	$0,017 \pm 0,002$	0.018 ± 0.003 (8)
España	Palomares	Snelo	0.016 ± 0.001	0.018 ± 0.003 (8)

Tabla 2.- Cociente isotópico de actividades ²³⁸Pu/^{239±240}Pu en muestras ambientales afectadas por una fuente bien definida de Pu. Los resultados obtenidos en nuestro laboratorio son comparados con los valores esperados para muestras obtenidas en la misma latitud o zona geográfica, y afectadas por la misma fuente de contaminación de plutonio .

tarias integradas (muestras que corresponden a la deposición total sedimentaria producida durante los últimos 100 años), que han sido colectadas en un lago sueco, y que se encuentran afectadas exclusivamente por la deposición de plutonio con origen en las pruebas nucleares atmosféricas (global). Los resultados obtenidos, corregidos a fecha de 1/1/1998

se muestran en la Tabla 3, los cuales son concordantes, dentro de sus márgenes de incertidumbre, con los resultados esperados para la misma fecha atendiendo al origen del Pu analizado^{9,10}. Ello nos pone de manifiesto la bondad del procedimiento aplicado para la determinación de los niveles de ²⁴¹Pu, que asume como hipótesis de partida la nula presencia de ²⁴¹Am en la fuente obtenida, justo después de la electrodeposición.

Actualmente, este procedimiento totalmente validado está siendo aplicado para investigar la influencia de las características de la fuente de contaminación en la posible migración de isótopos de plutonio en suelos y sedimentos y en la transferencia de estos isótopos suelo-planta.

REFERENCIAS

- 1. Vioque I., Manjón G., García-Tenorio R. y El-Daoushy F. Determination of alpha emitting Pu isotopes in environmental samples. Analyst 127, 530-535 (2002).
- 2. Hardy E.P., Krey P.W., y Volchock H.L. Global inventory and distribution of fallout plutonium. Nature 241, 444, 446 (1973)
- 3. Roos P., Holm E., Persson R.B.R., Aarkrog A. y Nielsen S.P. Deposition of ²¹⁰Pb, ¹³⁷Cs, ^{239±240}Pu, ²³⁸Pu and ²⁴¹Am in the antartic Peninsula Area. J. Environ. Radioactivity 24, 235-251 (1994)
- 4. Manjón G., García-León M., Balllestra S. y López J. J. The presence of man-made radionuclides in the

- marine environment in the South of Spain. J. Environ. Radioactivity 28, 171-189 (1995)
- 5. Aarkrog A. The radiological impact of the Chernobyl debris compared with that from nuclear weapons fallout. J. Environ. Radioactivity 6, 151-162 (1988).
- 6. Holm E., Fukai R. y Whitehead N.E. Radiocesium and transuranium elements in the Mediterranean sea: sources, inventories and environmental levels. Proceedings International Conference on Environmental Radioactivity in the Mediterranean Sea. Barcelona, Mayo 1988, 601-615 (1988)
- 7. Mietelski, J. W., Gaca, P. and Olech, M. A. Radioactive Contamination of Lichens and Mosses Collected in South Shetland and Antarctic Peninsula. J. Radioanal. and Nucl. Chem., 245 (3) 527-537 (2000).
- 8. Espinosa M.A. Comportamiento Ambiental de las partículas de combustible nuclear (fundamentalmente Pu) tras un accidente nuclear en un ecosistema de tipo mediterráneo. Tesis Doctoral. Editada en Colección Documentos CIEMAT, ISBN:84-7834-459-4 (2003).
- 9. Mietelski J.W., Dorda J. y Was, B. Pu-241 in samples of forest soil from Poland. Applied Radiation and Isotopes 51,435-447 (1991).
- 10. Mitchell P.I., Schell W.R., McGarry A., Ryan T.P., Sanchez-Cabeza J.A., Vidal Quadras, A. Studies of the vertical distribution of ¹³⁴Cs, ¹³⁷Cs, ²³⁸Pu, ^{239±240}Pu, ²⁴¹Pu, ²⁴¹Am and ²¹⁰Pb in ombrogenous mires at mid-latitudes. J. Radioanal. Nucl. Chem. Articles 156, 361-387(1992).