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Steady Representation of the Homogeneous Cooling State of
a Granular Mixture

M.J. Ruiz-Montero and J. Javier Brey

Física Teórica. Universidad de Sevilla. Apdo. de Correos 1065. 41080-Sevilla, Spain

Abstract. The study of a freely evolving granular mixture using particle simulations presents the inherent limitation that, as
a consequence of the inelasticity of collisions, the system is continuously cooling. Therefore, the typical particle velocities
become very small rather soon, and numerical uncertainties very large. This difficulty can be solved by mapping the properties
of the freely evolving granular mixture into those of a stationary state by means of a change in the time scale, similarly as it
is done in one-component systems. This steady state representation will be used to study some properties of dilute granular
mixtures by using the Direct Simulation Monte Carlo method. We will focus on the temperature ratio of the two components
of the mixture, as well as on the fluctuations of the total energy of the mixture, as well as of each of the components.
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PACS: 45.70-n,51.10+y

INTRODUCTION

A granular fluid is a collection of particles, usually of macroscopic size, whose collisions are inelastic. In the rapid flow
regime, or granular gas state, particles move in a ballistic way between collisions. In this regime the behavior of the
system resembles that of a molecular fluid, although with many significant differences [1]. The most obvious reason for
them is that, as energy is continuously lost in collisions, a steady state of a granular gas can only be sustained if energy
is injected into the system by some external driving. Therefore, granular gases are always in a non-equilibrium state.
The simplest possible state of a freely evolving granular gas is the homogeneous cooling state (HCS), an homogeneous,
isotropic state whose energy decays monotonically in time. This state plays a relevant role in order to investigate
the transport properties of granular fluids, since it provides the reference state when applying the Chapman-Enskog
procedure to derive hydrodynamics starting from a given kinetic equation [2, 3, 4]. Also, linear response around the
HCS has been studied, and expressions for the transport coefficients of a granular gas, generalization to the inelastic
case of the Green-Kubo formulas, have been derived [5, 6].

Real granular materials are usually polydisperse. For that reason, the study of granular mixtures is important and
has attracted a lot of interest [7, 4, 8, 9]. Also, granular mixtures exhibit some effects that are specific to them,
such as segregation properties that are yet not well understood [10], or the violation of energy equipartition, both in
homogeneous [8, 11] and inhomogeneous states [12, 13, 14, 15, 16]. The coexistence of different temperatures in
a granular mixture raises some fundamental questions such as whether they have to be incorporated as independent
variables in a macroscopic description of the system. Finally, it is evident that the theoretical description of granular
mixtures is much more complicated than that of a one component system. A clear example of this is the determination
of the Navier-Stokes transport coefficients [4, 9].

Particle computer simulations have proven to be a very useful tool to investigate the properties of systems of particles
at the most fundamental level of description. That is also true in the case of granular systems. Nevertheless, the
simulation of a freely evolving granular system, even in the case of the HCS, has some intrinsic technical difficulties.
In particular, as the system is continuously cooling, the typical velocities of the particles become very small after some
time, and the numerical errors very large. In the case of one-component systems, this problem was solved by mapping
the dynamics of a system in the HCS onto the dynamics around a steady state, by means of a change in the time
scale [17, 18]. Another difficulty in the simulation of the HCS is that it is unstable with respect to long wavelength
perturbations [19, 20], so only small enough systems stay in the HCS.

In this work, the steady representation of the HCS will be generalized to the case of granular mixtures. It will
be done for the case of a binary system, but the arguments are directly extended to a mixture with any number of
components. The plan of the paper is as follows. In Sec. the peudo-Liouville dynamics for a mixture of inelastic hard
particles will be presented. A solution of the Liouville equation, the HCS, will be described in Sec. , and some of its
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properties will be summarized. In Sec. the previous results will be used to construct a steady representation of the
HCS. Finally, in Sec. particle simulations in the new dynamics will be presented, and some properties of the HCS of
a dilute granular mixture will be discussed, and compared with theoretical predictions in the gaussian approximation.

PSEUDO-LIOUVILLE DYNAMICS FOR HARD SPHERICAL PARTICLES

We consider a binary mixture of smooth, inelastic hard spheres (d = 3) or disks (d = 2). The mass and diameter
of particles of species γ (γ = 1,2) are mγ and σγ respectively. The inelasticity of collisions is described by means
of constant coefficients of restitution, α11, α22, and α12 = α21, where αγλ refers to collisions between a particle of
species γ and a particle of species λ . These coefficients are defined in the interval 0 < αγλ ≤ 1, corresponding the
value αγλ = 1 to elastic collisions. The position and velocity of a particle i of component γ will be denoted by rrrγi, vvvγi,
with i = 1, . . . ,Nγ , and Nγ is the number of particles of species γ . The dynamics of a particle consists of free streaming
until it collides with a particle j of species λ . The effect of the collision is to instantaneously change the velocities of
the two involved particles according to

vvvγi −→ vvv′γi = vvvγi − mλ
mγ +mλ

(1+αγλ )(gggγi,λ j · σ̂σσ)σ̂σσ ,

vvvλ j −→ vvv′λ j = vvvλ j +
mγ

mγ +mλ
(1+αγλ )(gggγi,λ j · σ̂σσ)σ̂σσ , (1)

where gggγi,λ j = vvvγi − vvvλ j is the relative velocity, and σ̂σσ is the unit vector pointing from the center of particle j to the
center of particle i at contact. The above collision rule conserves the total momentum,

mγ vvvγi +mλ vvvλ j = mγ vvv′γi +mλ vvv′λ j , (2)

while the relative velocity is modified as

ggg′γi,λ j = gggγi,λ j − (1+αγλ )(gggγi,λ j · σ̂σσ)σ̂σσ . (3)

Then, there is an energy loss at each collision that is given by:

ΔEγi,λ j =−1

2

mγ mλ
mγ +mλ

(1−α2
γλ )(gggγi,λ j · σ̂σσ)2 . (4)

Let A(Γ) be some function of the dynamical state of the system representing a given observable. Here, Γ is a point
in the phase space defined by the positions and velocities of the particles, i.e., Γ ≡ {rrrγi,vvvγi;γ = 1,2; i = 1, . . . ,Nγ}. The
average of A(Γ) at time t for a given initial distribution ρ(Γ,0) is given by:

〈A(t)〉 ≡
∫

dΓρ(Γ,0)A [Γt(Γ)] , (5)

where Γt(Γ) is the point in phase space representing the state of the system at time t. given that the initial phase point
was Γ. The generator L for the representation of the dynamics in Eq. (5) is defined through the expression

〈A(t)〉 ≡
∫

dΓρ(Γ,0)etL A(Γ) . (6)

Due to the singular character of hard particle interactions, L is not the usual generator of Hamilton’s equations for
continuous interaction potentials, but somewhat more complex. It has been extensively studied for the case of elastic
collisions [21], and the analysis is easily extended to include the more general case of inelastic collisions [22]. The
result reads,

L = ∑
γ=1,2

Nγ

∑
i=1

vvvγ,i · ∂
∂ rrrγ,i

+ ∑
1≤i< j≤N1

T (11)(xxx1i,xxx1 j)+ ∑
1≤i< j≤N2

T (22)(xxx2i,xxx2 j)+
N1

∑
i=1

N2

∑
j=1

T (12)(xxx1i,xxx2 j) . (7)

Here xxxγi ≡ {rrrγi,vvvγi}, and the operator T γλ (xxxγi,xxxλ j) = T λγ(xxxλ j,xxxγi) describes the binary collision between particle
i of species γ and particle j of species λ . Its expression is

T γλ (xxxγi,xxxλ j) = σd−1
γλ

∫
dσ̂σσ Θ(−gggγi,λ j · σ̂σσ)|gggγi,λ j · σ̂σσ |δ (rrrγi,λ j −σσσγλ )

(
bγi,λ j −1

)
, (8)
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where σγλ = (σγ +σλ )/2, σσσγλ = σγλ σ̂σσ , and dσ̂σσ is the solid angle element for the unit vector σ̂σσ . rrrγi,λ j = rrrγi − rrrλ j is
the relative position vector of the involved particles, and Θ the Heaviside step function. Finally, bγi,λ j is a substitution
operator, that changes the velocities vvvγi, vvvλ j to its right into their post-collisional values, vvv′γi, vvv′λ j given by Eqs. (1).

The average in Eq. (6) can be expressed in an alternative, equivalent way by integrating over Γt(Γ), rather than over
Γ. Then, the time dependence is translated to the probability,

〈A(t)〉 ≡
∫

dΓρ(Γ, t)A(Γ) . (9)

The time dependent distribution ρ(Γ, t) can be represented as

ρ(Γ, t) = etL ρ(Γ,0) , (10)

where L is defined by requiring that Eqs. (6) and (9) are equivalent. The pseudo-Liouville equation for the evolution
of the distribution function follows directly from the above equation,

∂ρ(Γ, t)
∂ t

= L ρ(Γ, t) . (11)

THE HOMOGENEOUS COOLING STATE

There is no stationary state of an isolated granular system due to the energy dissipation in collisions. Instead, it is
assumed that there is an homogeneous particular solution of the pseudo-Liouville equation, known as the HCS, for
which all the time dependence occurs through a scaling of the velocities with the thermal velocity, v0(t)

ρHCS(Γ, t) = [v0(t)l]
−d(N1+N2) ρ∗

({
rrrγi,λ j

l
,

vvvγi

v0(t)

})
, (12)

where the function ρ∗ is invariant under space translations, l is some characteristic length like the mean free path,

v0(t) =
[

2THCS(t)
μ

]1/2

(13)

with μ = m1m2/(m1 +m2), and THCS(t) the granular temperature of the system,

THCS(t) = ∑
γ=1,2

Nγ

N1 +N2
Tγ,HCS(t) . (14)

Here, Tγ,HCS(t) is the partial temperature of component γ , defined as

Tγ,HCS(t) =
mγ

d
〈v2

γ1(t)〉 , (15)

where the ensemble average has been taken with the HCS distribution defined by Eq. (12).
Equations for the time evolution of the partial temperatures can be easily derived using the Liouville dynamics to

get
∂Tγ,HCS(t)

∂ t
=−ζγ(t)Tγ,HCS(t) , (16)

with the partial cooling rate ζγ(t) given by

ζγ(t) =− mγ

dTγ,HCS(t)

∫
dΓ

[
L v2

γ1

]
ρHCS(Γ, t) . (17)

Also, the total temperature obeys the equation

∂THCS(t)
∂ t

=−ζ (t)THCS(t) , (18)
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where the total cooling rate is

ζ (t) =
N1T1,HCS(t)ζ1(t)+N2T2,HCS(t)ζ2(t)

NTHCS(t)
. (19)

A relevant consequence of the assumed scaling for ρHCS(Γ, t) is that both partial temperatures T1,HCS(t) and
T2,HCS(t) are proportional to THCS(t), so their ratio, T1,HCS(t)/T2,HCS(t) is constant, i.e.

∂
∂ t

[
T1,HCS(t)
T2,HCS(t)

]
= 0 . (20)

This requires that
ζ1(t) = ζ2(t) = ζ (t) . (21)

Another consequence of the scaling of the HCS distribution function is that ζγ(t) ∝ Tγ,HCS(t)1/2. This leads directly to
the Haff’s law for the evolution of the partial temperatures,

Tγ,HCS(t) = Tγ,HCS(0)

[
1+

ζγ(0)

2
t
]−2

. (22)

In the long time limit, the above equation reduces to

Tγ,HCS(t)∼ 4
(

ζγ t
)−2

, (23)

where

ζγ =
ζγ(t)

Tγ,HCS(t)1/2
, (24)

does depend neither on time nor on the initial temperature. Therefore, in the long time limit both the partial and the
global temperatures become independent of the initial values. This is an exact property that follows from the existence
of the HCS.

STEADY REPRESENTATION OF THE HCS

Let us define a new time scale τ by

ω0τ = ln
t
t0
, (25)

where ω0 and t0 are constants with dimensions of frequency and time, respectively. The velocity wwwγi of a particles in
the new scale is

wwwγi = ω0t0eω0τ vvvγi = ω0tvvvγi . (26)

The corresponding dynamics in these variables consists of an accelerating streaming between collisions,

∂ rrrγi

∂τ
= wwwγi ,

∂wwwγi

∂τ
= ω0wwwγi , (27)

while the effect of a collision between particle i of species γ and particle j of species λ is to instantaneously change
their velocities accordingly to the same rules as given in Eq. (1), only changing the velocities vvvγi by the scaled ones
wwwγi. Of course, the invariance of the collision rule is a consequence of the instantaneous character of hard particles
collisions.

The pseudo-Liouville equation in the scaled phase space Γ̃ ≡ {rrrγi,wwwγi;γ = 1,2; i = 1, . . . ,Nγ} becomes

∂ ρ̃(Γ̃,τ)
∂τ

+ω0 ∑
γ=1,2

Nγ

∑
i=1

∂
∂wwwγi

· [wwwγiρ̃(Γ̃,τ)
]
= L (Γ̃)ρ̃(Γ̃,τ) . (28)
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Here, L (Γ̃) is the same operator as in Eq. (10), but substituting velocitites vvvγi by wwwγi. Also, ρ̃(Γ̃,τ) is the transformed
probability distribution,

ρ̃(Γ̃,τ) = (ω0t)−d(N1+N2)ρ(Γ, t) . (29)

Then, the only change is that a new term appears in the streaming part of the equation. This new term can be understood
as an accelerating homogeneous force proportional to the velocity of the particle.

The scaling of the HCS probability distribution in the phase space Γ̃ reads

ρ̃HCS(Γ̃,τ) = [ṽ0(τ)l]−d(N1+N2) ρ∗
({

rrrγi,λ j

l
,

wwwγi

ṽ0(τ)

})
, (30)

where

ṽ0(τ) =
[

2T̃HCS(τ)
μ

]1/2

(31)

with

T̃HCS(τ) = ∑
γ=1,2

Nγ

N1 +N2
T̃γ,HCS(τ) , (32)

and
T̃γ,HCS(τ) =

mγ

d
〈w2

γ1(τ)〉= (ω0t0eω0τ)2Tγ,HCS(t) . (33)

Using Eq. (22) it is found that the time dependence of the partial temperatures in the τ scale is given by

T̃γ,HCS(τ) =

(
2ω0

ζ γ

)2[
1+

(
2ω0

ζ γ T̃γ,HCS(0)1/2
−1

)
e−ω0τ

]−2

. (34)

Then, any initial value of the partial temperatures will equilibrate to a steady final value given by

T̃γ,st =

(
2ω0

ζ γ

)2

. (35)

Notice that this is consistent with the condition ζ 1T̃1,st = ζ 2T̃2,st , expressing the equalities of the cooling rates in the
new variables. Also, Eq. (35) shows that the partial steady temperatures for a given value of ω0 directly provide the

reduced partial cooling rates ζ γ .
Finally, the distribution function of the final steady state has the form

ρ̃st
HCS(Γ̃) =

[
ṽst

0 l
]−d(N1+N2) ρ∗

({
rrrγi,λ j

l
,

wwwγi

ṽst
0

})
, (36)

where ṽst
0 = (2T̃HCS,st/μ)1/2, T̃HCS,st = ∑γ=1,2 Nγ T̃γ,st/N, and ρ∗ obeys the equation

ω0 ∑
γ=1,2

Nγ

∑
i=1

∂
∂wwwγi

· [wwwγiρ∗(Γ̃)
]
= L (Γ̃)ρ∗(Γ̃) . (37)

SIMULATION RESULTS

In order to check the practical usefulness of the steady representation, we have carried out particle simulations by
using the Direct Monte Carlo method (DSMC) of a binary mixture of hard spheres (d = 3). This method is a N-
particle simulation algorithm that mimics the dynamics of a low density gas [23]. This includes fluctuations and non-
equilibrium correlations, although the precise relationship between the simulation algorithm and the theory describing
the system from non-equilibrium statistical mechanics has not been established yet. One of the technical advantages
of DSMC is that it allows to incorporate in the simulation the symmetries of the particular situation considered. For
instance, here we want the system to stay in the HCS, so the information on the position of the particles is not necessary.
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FIGURE 1. Evolution of the scaled temperatures for a system with α11 = 0.92, α = 0.98, Δ = 8. The filled circles are the total
temperature of the system, the empty squares the temperature of species 1, and the empty triangles that of species 2.

Since the technical details of the method have been extensively discussed in the literature [23, 24], they will not be
reproduced here.

The simulations we will present are for a binary mixture with N1 = N2 = N/2, N being the total number of particles.
In order to reduce the number of parameters still characterizing the problem, we have considered the diameters of the
particles of the two species to be the same, i.e. σ1 =σ2 =σ , and also in all the cases it is α12 =(α11+α22)/2. Then, the
properties of the system will depend on α11, α22 and the mass ratio, Δ = m2/m1. The number of particles in the system
is N = 2 ·104, but it must be noticed that this number has only an statistical meaning, since the dynamics corresponds
always to that of an homogeneous, low density gas. Also, for each set of values of the parameters characterizing the
system, twenty trajectories have been studied.

The simulations have been performed in the τ scale, i.e., the dynamics given by Eqs. (27), that is expected to yield

a steady state after a transient period. The value of ω0 was chosen in all the cases as ω0 = ζ/2, with ζ approximated
by its gaussian value, that has been given several times in the literature [3, 16]. If the gaussian value was exact, notice
that the steady value of the total temperature would be one. Once in the steady state, properties can be time-averaged,
as well as averaged over different trajectories. This improves the statistics of the measured properties, and it must be
remembered that the steady state properties are directly related with those of the HCS. In Fig. 1 the evolution of the
total temperature of the system (filled circles) and the partial temperatures of the two components (empty symbols)
are shown for given a value of the inelasticity and mass ratio. The observed behavior is consistent with the theoretical
prediction, and after a transient, all the three temperatures reach a steady value. It is important to remark that this
implies also that the partial temperatures are proportional to the total one, as it follows from the scaling properties of
the HCS. Also notice that the partial temperatures of the two components are different, showing that equipartition of
energy is violated in the system.

From the steady values of the temperatures, the cooling rates in the HCS as well as the temperature ratio can be
obtained. The results for two sets of values of the inelasticities are shown in Fig. 2 as functions of the mass asymmetry.
In the case of the cooling rate, it has been scaled with λ−1v0, with λ the mean free path and v0 the thermal velocity
in the steady situation. The symbols are the results from the simulation, while the lines are the theoretical prediction
using a gaussian approximation. The agreement is very good. Notice that, as expected, for a given value of the mass
ratio the scaled cooling rate is larger the more inelastic the system. Also, the temperature difference between the two
components is larger the more inelastic the system. For given inelasticity, a non-monotonic behavior of the scaled
cooling rate with the mass ratio is observed, again clearer the more inelastic the system. For these values of the
inelasticity, the scaled cooling rate is larger if the mass of the particles is similar. We must mention that results similar
to these had been found in previous studies of the HCS of mixtures [8, 25], although not using the steady representation
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FIGURE 2. Scaled cooling rate (left) and partial temperatures ratio (right) as functions of the mass ratio for two set of values of
the inelasticity, as indicated in the inset. The symbols are from the DSMC simulations, while the lines are the theoretical prediction
using a gaussian approximation.
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FIGURE 3. Second moment of the energy distribution multiplied by the number of particles for α11 = 0.92, α22 = 0.98 (left)
and α11 = 0.80, α22 = 0.98 (right). The filled circles are for the energy of the total system,while the empty squares and triangles
are for the energy of species 1 and 2, respectively (in the single component cases the moment is multiplied by N/2, the number of
particles of the component).

of the HCS.
Finally, we have studied the total energy fluctuation distribution in the steady state for different inelasticities and

mass ratios. In all the cases, it was found to be gaussian. The same applies for the distribution of energies of each
of the components. In Fig. 3 we have plotted Σ2 = Nσ2

E , where σ2
E is the second moment of the energy distribution,

once in the steady state, i.e. σ2
E = (〈E2〉− 〈E〉2)/〈E〉2. Notice that, as σE ∝ N−1/2, Σ2 is expected to be independent

of the number of particles. In the Figure, two different set of values of the inelasticities have been considered, and
the results are shown as functions of the mass ratio. As it also happens in the case of a one-component system in the
HCS [26], the fluctuations of the energy are larger the more inelastic the system. A non-monotonic behavior of the
energy fluctuations on the mass ratio is observed, more clearly in the case of the total energy, and also stronger the
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more inelastic the system. It must be noticed that, for not too different masses of the components, the fluctuations of
the total energy are smaller than those of each component. This is not an statistical fact due to the different number of
particles used to evaluate the total and partial energies, as this has been scaled out in Σ2. The reason for this behavior
are the correlations between the fluctuations of the two components, which are found to change in sign as the mass
anisotropy increases.
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