
Comparison of heuristics for flowtime
minimisation in permutation flowshops

Technical report IO-2003/01

Version 0.5
Last version: 26/07/2003

Jose M. Framinan
Industrial Management, School of Engineering, University of Seville

Rainer Leisten

Production Management, University Duisburg-Essen in Duisburg

A revised, enhanced version of this Report is to be published in Computers &
Operations Research

ABSTRACT

We focus our attention on the problem of sequencing jobs in a permutation flow shop

with the objective of minimising the sum of completion times or flowtime. This

objective is considered to be more relevant and meaningful for today’s dynamic

production environment, and therefore it has attracted the attention of researchers during

the last years. As a result, a number of different types of heuristics have been recently

developed, each one claiming to be the best for the problem. However, these heuristics

have been independently developed and only partial comparisons among them exist.

Consequently, there are no conclusive results on their relative performance. Besides,

some of these types of heuristics are of a different nature and could be combined in

order to obtain composite heuristics. In this paper we first conduct an extensive

comparison among the existing heuristics. Secondly, based on the results of the

experiments, we suggest two new composite heuristics for the problem. The subsequent

computational experience shows these two heuristics to be efficient for the problem

under consideration.

1. Introduction

A flowshop consists of n jobs that must be processed on m machines in the same order.

The scheduling problem in flow shops is finding a sequence of jobs for each machine

according to certain performance measure(s). Additionally, for many situations, it is

assumed that the job sequences will be the same on every machine (permutation

flowshops). Other hypotheses common in scheduling research are, e.g. the simultaneous

availability of all jobs and of all stations, deterministic processing times, etc. For a

complete list of these assumptions, see e.g. [6].

Among the objectives to be considered when scheduling in a flowshop, the

minimisation of the total completion time or makespan is shown to be directly related to

the maximisation of the throughput and the usage of the resources. Therefore, it is not

surprising that most of the research during the last decades has concentrated in the

minimisation of the makespan.

More recently, the amount of research devoted to the minimisation of the sum of the

completion times of the jobs (or equivalently mean flow time or mean completion time)

has increased. This objective is also known as (total or average) flow time minimisation,

and it is denoted as the F|prmu|ΣCj problem, according to the notation by [11]. Flow

time minimisation leads to stable or even use of resources, a rapid turn-around of jobs

and the minimisation of in-process inventory [21]. Therefore, it is considered to be more

relevant and meaningful for today’s dynamic production environment [14].

Given the NP-hard nature of the F|prmu|ΣCj problem, most of the research on this topic

is devoted to propose heuristics that yield good approximate solutions. Prior to year

2000, the best constructive heuristics available for the problem were the heuristics by

Woo and Yim [25], and by Rajendran and Ziegler [21].

More recently, a number of heuristic approaches for the problem have been published,

i.e. the heuristic by Liu and Reeves [14], the set of composite heuristics by Allahverdi

and Aldowaisan [1], the work by Framinan et al. [9] on the application of the NEH

heuristic [17] to the F|prmu|ΣCj problem, and the heuristic by Framinan and Leisten [7].

Most of these works have been independently developed and only a partial comparison

between the heuristics by Allahverdi and Adowaisan and that of Framinan and Leisten

is reported [7]. Hence, there are no conclusive results on the comparison of these

suggested heuristics. Besides, some of these heuristics are of a different nature: on one

hand, the heuristic by Liu and Reeves consists of a first phase were the jobs are sorted

according to an index taking into account the idle time followed by a local improvement

phase. On the other hand, the set of heuristics by Allahverdi and Aldowaisan can be

considered as composite heuristics in the sense defined e.g. in Pinedo [18], i.e. they

contain other heuristics – namely the Woo and Yim, and the Rajendran and Ziegler

ones. Therefore, it will be worth to investigate whether different combinations of

heuristics could be employed for constructing new composite heuristics, and whether

there exist other local improvement schemes that could be applied in order to improve

their performance.

The paper is organised as follows: In the next section we review the main contributions

regarding heuristic solutions for the problem under consideration. Additionally, we

develop a framework to classify the different phases of these heuristics. This framework

will be useful when searching for new combinations of the existing heuristics. In

Section 3 we present the experimental design for the comparison of heuristics, while the

results of these comparisons are presented in Section 4. This section is divided in two

parts: first the simple heuristics are compared, and secondly new combinations of

heuristics are tested. Finally, Section 5 is devoted to conclusions.

2. Review of existing heuristics

The problem of minimising flowtime in permutation flowshops has been addressed by a

number of researchers. Prior to 1998, there are some heuristics that have been clearly

outperformed by the new developments on the problem. These ‘old’ heuristics are

presented by Gupta [12], Miyazaki et al. [16], Rajendran and Chaudhuri [19],

Rajendran [19], Ho [13], and Wang et al. [24]. Since there exists a number of papers

proving that all these heuristics are outperformed by the new heuristics that were

appearing since 1997 (see e.g. [1], or [14]), we do not elaborate further on these.

Additionally, it should be mentioned that in [14] it is shown that several of these

heuristics perform worse than random choice of a sequence for the usual parameter

combinations set in most numerical studies. The only exception is the Ho heuristic,

which consists of several iterations of an improvement scheme based on finding a local

optimum by adjacent pairwise interchange of jobs, and then improving the solution by

insertion (or shift) movements. This heuristic seems closer to local search techniques

such as simulated annealing or tabu search than to constructive heuristics and its CPU

time requirements do not make it suitable for large problem sizes and/or in those

environments where sequencing decisions are required in short time intervals (see the

evolution of the CPU times required for this heuristic e.g. in [10]). As a consequence,

the Ho heuristic has not been included in previous comparisons of heuristics for the

problem under consideration (see e.g. [1], or [14]), and it is neither included in this

study.

The oldest heuristic that we discuss in this review is the Rajendran and Ziegler [21]

heuristic – RZ in the following –. This heuristic consists in, first, obtaining a seed

sequence by sorting the jobs according to a priority rule similar to the shortest weighted

total processing time. Secondly, the seed sequence is improved by sequential insertion

of each job, according to the seed sequence, into the best sequence found so far.

Independently developed, the Woo and Yim (WY) heuristic [25] exploits the idea

presented in the NEH heuristic [17] for makespan minimisation. The NEH heuristic

consists of two phases: First the jobs are ranked according to the descending sum of

their processing times. In a second phase, a solution is constructed in the following

manner: Starting from a partial sequence constructed by taking the first job of the rank,

then, for k = 2,…,n, k partial sequences are constructed by inserting the kth job of the

rank in all k slots of the partial sequence. These k partial sequences are evaluated with

respect to makespan and the one obtaining the lowest value is retained as partial

sequence for step k + 1. Obviously, a straightforward adaptation of this heuristic to the

F|prmu|ΣCj problem consist of evaluating the partial sequences in the second phase

with respect to flowtime. In the following, we name this adaptation NEH-flowtime.

In the WY heuristic, jobs are initially sorted according to the ascending sum of their

processing times. Then, in an iterative process, a partial sequence is constructed by

trying to insert all non-scheduled jobs in all possible slots of the partial sequence. More

specifically, for iteration k of this heuristic, all non scheduled n – k + 1 jobs are inserted

into all k possible slots of the partial sequence of size k – 1. Several comparisons carried

out between WY and RZ heuristics (e.g. [1] and [9]) indicate that, for a small number of

jobs, the latter outperforms the former, while the opposite occurs when the number of

jobs is growing. With respect to computation times, WY is much slower than RZ.

Liu and Reeves [14] present a heuristic based on developing an index function to sort

the jobs. The index function is based on two terms: the weighted total machine idle

time, and the artificial total flow time. The so-obtained solution is then improved by

employing several kinds of greedy pairwise interchanges named FPE and BPE (we will

detail both procedures later on). The heuristic can be enhanced by generating x different

schedules consisting in using each of the first x jobs (according to the above-described

index) and constructing a sequence by selecting jobs one by one using the index

function. The sequence obtaining the minimum flow time is selected and the pairwise

interchange schemes are then applied. Adapting Liu and Reeves’ notation, we label this

set of heuristics as LR(x), meaning x the number of schedules generated. The LR(x)

heuristics are shown to clearly outperform both WY and RZ [14].

Allahverdi and Aldowaisan [1] present seven heuristics – named IHx – which are

constructed by combining several heuristics such as WY and RZ. These heuristics are

compared with the original WY and the RZ heuristic, and it turns out that the so-called

IH7 is the best in terms of the quality of the solutions, outperforming both heuristics.

The IH7 heuristic consists of employing the solution provided by the WY heuristic as

initial solution, then applying the second phase of the RZ heuristic to construct a

schedule, and finally using a local search method based on general pairwise interchange

in order to improve the solution. The mechanism of the other six IHx heuristics is

summarised in table 1.

The idea of extending the mechanism of solution construction of the NEH heuristic to

the flowtime minimisation problem is extensively investigated by Framinan et al. [9]. In

this study, the authors study 177 different approaches for ranking the jobs in the first

phase of the NEH heuristic. They evaluate a large test-bed for all possible five-tupels

among the 177 approaches and select the best of them (named B5FT in the following),

i.e. the five-tupel which on average yields the best solution by taking the minimum

flowtime of the five solutions generated by the second phase of NEH for all five initial

sequences for the respective five-tupel. According to their results, the B5FT heuristic

outperforms both WY and RZ in terms of quality of the solutions.

Framinan and Leisten [7] present a heuristic – FL in the following – based on

constructing a partial schedule in the manner of the NEH heuristic. However, here the

jobs are initially ordered according to the ascending sum of processing times. As in

NEH, the kth job of this index is inserted into the k possible slots, and the partial

schedule with lowest flow time is retained as best solution. After that, a general

pairwise interchange is applied to this partial schedule, and the best partial solution with

respect to flow time is retained. The process is repeated until all jobs are scheduled.

This heuristic is shown to outperform the WY and the RZ heuristic. Finally, in order to

compare their heuristic with the composite heuristics of Allahverdi and Aldowaisan, a

version of the IH7 heuristic is presented consisting of employing the FL heuristic as an

initial solution instead of the WY heuristic as in the original IH7. The experiments show

that the latter heuristic – named IH7-FL– clearly improves the original IH7.

As a summary of the review, within the last years a number of heuristics for the flow

time minimisation problem have been developed independently and therefore no

extensive comparison among them has been carried out. Furthermore, some of the

heuristics presented are of a very different nature (i.e. some are composite heuristic

based on one or more simple heuristics). Since no classification and comparison of the

existing simple heuristics has been carried out, the process of building composite

heuristics has not been completed.

In order to classify the different relevant heuristics for the problem under consideration,

we follow the scheme employed by Framinan et al. [8] when classifying simple

heuristics for makespan minimisation. They divide the existing heuristics into three

phases, namely index development, solution construction, and solution improvement.

Each heuristic can use one or more of these phases. During the index development

phase, jobs are sorted by employing some characteristic of the problem (e.g. processing

times) or some analogy (e.g. the Travelling Salesman Problem). The solution

construction phase consists of developing a solution starting from a given order of jobs

(possibly employing the order in the index development phase). Note that, in this phase,

there is no guarantee that the final solution is better than the initial solution. Finally, the

solution improvement phase consists of employing some local search mechanism in

order to improve the current solution.

The term ‘composite heuristic’ itself is not always clear. For instance, [14] classify the

heuristics into constructive heuristics and improvement heuristics. A heuristic is then

labelled as composite if it is a combination of a constructive heuristic plus an

improvement heuristic. From this point of view, heuristics such as IH6 in [1] will be

classified together with constructive heuristics such as the WY heuristic, being the latter

the first phase of the former.

Extending the above classification in [8] to include composite heuristics, we define the

term composite heuristic in the following manner: a heuristic is regarded as composite if

it employs another heuristic for one or more of the three above-mentioned phases.

Consequently, a heuristic is regarded as simple if it does not contain another heuristic

within any of the three phases. According to the above presented classification, among

the simple heuristics mentioned there are several strategies for phase I (sorting jobs).

These are:

• Descending sum of processing times (for NEH-flowtime)

• Weighted descending sum of processing times (for RZ)

• Five different indices based on functions depending on the processing times of

the jobs (for B5FT, see [9] for details)

• Ascending sum of processing times (for FL)

• An index function based on the weighted total machine idle time and the

artificial total flow time (for LR)

With respect to the solution construction phase, several strategies are employed:

• NEH-C. This strategy consists of inserting the kth job of the initial solution in

each of the k + 1 possible slots of the best partial solution. Each of these so-

obtained partial sequences is evaluated, and the best partial sequence is retained

as the best partial solution. The process is repeated until a whole schedule is

constructed.

• RZ-C. This strategy consists of inserting each of the jobs of the initial solution

into each of the possible slots.

• FL-C. This strategy consists of inserting the k-th job of the initial solution in

each of the k + 1 possible slots of the best partial solution. Each of these so-

obtained partial sequences is evaluated, and the best partial sequence is retained

as the best partial solution. The chosen partial solution is tried to be improved by

performing a pairwise interchange. If a better result is obtained, the new partial

solution is retained as the best partial sequence. The process is repeated until a

whole schedule is constructed.

• WY. As mentioned before, this strategy can be seen as an extension of the NEH

strategy, where all non-scheduled (n – k) jobs are tried into all possible k slots.

The partial schedule yielding the lowest flow time is retained as the best partial

schedule for the next iteration.

Finally, with respect to the solution improvement phase, several strategies have been

adopted in the reviewed heuristics:

• FPE – Forward Pairwise Interchange ([14]). It consists of starting from an initial

sequence and then tries to exchange each job with each of a certain number of

jobs following it in the sequence. For each trial, if the new sequence obtained is

better, then the exchange is actually made. Otherwise, the two jobs are kept in

their positions. After all the exchanges are tried, the process starts over again

from the first job in the sequence, and the procedure continues until no

improvement can be made for a whole round of trials.

• BPE – Backward Pairwise Interchange ([14]). This strategy is similar to FPE,

but now the exchanges start from right to left.

• FPE-R – Forward Pairwise Interchange (Restart). This strategy is followed in [1]

under the name of ‘pairwise interchange’. It is identical to FPE, but when the

exchange is actually made because the new solution improves the current one,

the process of exchange starts from the first job in the new sequence.

Additionally, there is one strategy that follows directly from the ideas expressed above:

BPE-R or Backward Pairwise Interchange (Restart). This is similar to BPE, but when

the exchange is actually made because the new solution improves the current one, the

process of exchange starts from the last job in the new sequence.

 Phase I Phase II Phase III

 NEH-flowtime ASC(sum(pt)) NEH-C

 B5FT Best of 5 initial

sequences NEH-C

 WY WY

 RZ ASC(w sum(pt)) RZ-C

 LR LR (3 versions)

Si
m

pl
e

he
ur

is
tic

s

 FL DESC(sum(pt)) FL-C

 IH1 NEH-flowtime FPE-R

 IH2 NEH-flowtime (best of 5 runs)

 IH3 NEH-flowtime (best of 5 runs) FPE-R

 IH4 WY FPE-R

 IH5 RZ FPE-R

 IH6 WY RZ-C

 IH7 WY RZ-C FPE-R

C
om

po
si

te
 h

eu
ris

tic
s

 IH7-FL FL RZ-C FPE-R

Table 1. Summary of simple and composite heuristics for the flowtime minimisation problem. In this table, the
composite heuristics are expressed in terms of the simple heuristics (appearing in shadowed boxes)

The four above-mentioned strategies for the improvement phase exploit the pairwise

interchange neighbourhood. Although there are no studies specifically on the case of

flow time minimisation, the insertion neighbourhood is considered to be the most

efficient neighbourhood scheme for local search with makespan minimisation objective.

Additionally, the RZ-C strategy is based on insertion movements. Therefore, it may be

of interest to see whether these results can be extended to the case of flow time

minimisation. In Section 4.2 we will introduce four insertion strategies equivalent to the

four presented here for the exchange neighbourhood.

Table 1 summarises the phases employed by the heuristics described in this section.

3. Experimental design

In order to compare the heuristics described in the previous section, it is required to

obtain or develop a set of problem instances. Perhaps the most well-known test-bed for

permutation flowshop problems is the one developed by Taillard [22]. This is a testbed

available in the OR-Library [2] and consists of a set of 120 problem instances of various

problem sizes (10 instances for each problem size). However, there are several problems

for employing this test-bed here: on one hand Taillard’s test-bed was specifically

designed for makespan minimisation and not for flow time minimisation, since the

problem instances were chosen so that the distance between their lower bound (referring

to makespan) and the results obtained by a lengthy tabu search was high. On the other

hand, we try to perform an exhaustive comparison including hypothesis testing, and the

number of instances for each problem size in the test bed (10) is not sufficient to draw

concluding results.

For almost all of the reviewed heuristics, the test beds in which these heuristics are

compared generate the processing times using a discrete rectangular distribution [1,99]

(see e.g. [1], [9], or [25]). Although this distribution is not likely to be found in practice,

it is known to produce difficult type of problem instances (see e.g. [4] or [5]) and

therefore constitutes an excellent benchmark for the comparison of heuristics.

With respect to the problem sizes, after reviewing the papers describing heuristics for

flowtime minimisation, we try to cover a high range of problem sizes. Therefore, n the

number of jobs is chosen as n ∈ {10,20,30,40,50,60,70,80,100,200}, and m the number

of machines is chosen as m ∈ {5, 10, 15, 20}. For each problem size, 100 instances are

generated. This relatively high number of problem instances of the same size is chosen

such that the results with respect to hypotheses contrasts are as high as possible. In total,

the number of problem instances of the test-bed is 4,000.

4. Comparison of heuristics

In this section, we carry out the comparison of the heuristics presented in section 2 by

employing the test-bed designed in section 3. In order to obtain a clear picture of the

results, we first compare the simple heuristics among them in terms of the quality of the

solutions and their computational effort. According to these results, we then construct

two composite heuristics which are compared with existing composite heuristics.

4.1. Simple heuristics

The heuristics to be compared are WY, RZ, B5FT, LR (in the three versions described

in [15]), and FL. The results of the comparison are presented in tables 3 and 4. In table

3, the Average Relative Percentage Deviation (ARPD) and the CPU time (in seconds)

of each heuristic for each combination of n and m are presented. The ARPD has been

obtained with respect to the best known solution for each instance.

In order to check the statistical significance of the results, we test a number of

hypotheses using a one-sided test for the differences of means of paired samples (see

e.g. [2] or [14]) for every combination of m and n. More specifically, we test all

combinations among the WY, RZ, LR(x), B5FT, and FL heuristics. In table 2, we

summarize the hypotheses H0 and the corresponding hypotheses H1 in the symmetric

position of the matrix.

The results are shown in table 4, where ps are given as the maximum level of

significance to reject H0 (p represents the limit value to reject hypothesis H0 resulting

from a t-test, i.e. for every level of significance α ≤ p, H0 would have to be rejected,

whereas for every α > p, H0 would not be rejected. A high p indicates that H0 can be

rejected with high level of significance and therefore H1 can be accepted.)

WY

RZ H(n) B5FT FL

WY

F(WY) ≤ F(RZ)

F(WY) ≤ F(H(n)) F(WY) ≤ F(B5FT) F(WY) ≤ F(FL)

RZ

F(WY) > F(RZ)

F(RZ) ≤ F(H(n))

F(RZ) ≤ F(B5FT) F(RZ) ≤ F(FL)

H(n) F(WY) > F(H(n))

F(RZ) > F(H(n))

F(H(n)) ≤ F(B5FT)

F(H(n)) ≤ F(FL)

B5FT F(WY) > F(B5FT) F(RZ) > F(B5FT)

F(H(n)) > F(B5FT)

F(B5FT) ≤ F(FL)

FL

F(WY) > F(FL)

F(RZ) > F(FL) F(H(n)) > F(FL) F(B5FT) > F(FL)

Table 2. Hypotheses to be tested for the simple heuristics

In view of the results of both tables, the following statements can be made:

- Regarding the overall results, there are three heuristics that are outperformed by the

others: these are the WY, RZ, and the LR(1) heuristic. WY performs better than RZ

for most problem sizes except the smallest instances, where the latter outperforms

WY. LR(1) is better than both for the combination of m = 5 and n ≥ 40, and better

than RZ for m ≥ 10 and n ≥ 100. For the rest of the combinations LR(1) is

outperformed by both WY and RZ. However, the small CPU requirements

consumed by LR(1) in order to obtain results that are only around 5% of the best

have to be taken into account.

- With respect to the rest of the heuristics, the FL heuristic is best in terms of the

quality of the solutions obtained. However, it is outperformed by LR(n) for the

combination of a big number of jobs and a small number of machines (i.e. for n ≥

60 and m = 5, and for n =200 and m =10), and also by B5FT for a small number of

jobs combined with a large number of machines.

- The B5FT heuristic is second in terms of quality of the results, being outperformed

by LR(n) and LR(n/10) – third and four in quality of results – only for the

combination of small number of machines and big number of jobs. Additionally, it

is a very fast heuristic, and therefore it seems to be particularly suitable for

H0

H1

environments where scheduling decisions should be taken in very small time

intervals.

- As mentioned before, LR(n) is third in quality of the results. However, the CPU

requirements are much higher than for the rest of the heuristics. From this point of

view, it seems that the relative performance of LR(x) deteriorates as x increases: in

the whole test-bed, LR(n) takes more than 2,800 seconds to obtain an ARPD of

3.150, while LR(1) takes less than 18 seconds to obtain 4.217. This may speak for

the suitability of the approach by Liu and Reeves to obtain fast, good solutions, but

not for the approach of trying different initial job orders.

4.2. Composite heuristics.

In this subsection, we try to combine some of the heuristics tested in the previous

section. Specifically, we are interested in combining two or more heuristics in order to

obtain a new (composite) heuristic that covers at least the phases I and II depicted in

table 1. After that, for phase III we employ some of the local search methods described

above in order to improve the obtained solutions. Note that the process of obtaining

composite heuristics can be nested into several loops, i.e. we can obtain a ‘second

generation’ of composite heuristics consisting of combining several composite

heuristics. However, here we restrict our attention in obtaining ‘first generation’

composite heuristics whose computation times do not differ very much from existing

(simple or composite) heuristics.

With respect to the first phase – index development – it seems clear that LR obtains

reasonably good results in negligible CPU time. In contrast, for the solution

construction phase (phase II), the so called FL-C seems to obtain very good results.

Therefore, it seems reasonable to combine both phases into a single heuristic. We

therefore build a composite heuristic named C1, consisting of applying the FL solution

construction scheme (labelled FL-C in table 1) starting from the solution provided by

LR.

n m RZ B5FT WY FL LR(1) LR(n/10) LR(n)
 ARPD CPU(s) ARPD CPU(s) ARPD CPU(s) ARPD CPU(s) ARPD CPU(s) ARPD CPU(s) ARPD CPU(s)

10 5 1.435 0.00 0.681 0.00 1.836 0.00 1.194 0.00 2.208 0.00 2.208 0.00 1.696 0.00
10 10 1.357 0.00 0.487 0.00 1.423 0.00 1.044 0.00 2.362 0.00 2.362 0.00 1.743 0.00
10 15 1.005 0.00 0.356 0.01 1.355 0.00 0.642 0.00 1.815 0.00 1.815 0.00 1.471 0.00
10 20 3.081 0.00 2.359 0.01 3.260 0.06 2.749 0.00 3.821 0.00 3.821 0.00 3.298 0.00
20 5 5.504 0.01 4.745 0.02 5.553 0.00 4.614 0.00 6.132 0.00 5.662 0.00 5.353 0.05
20 10 5.268 0.01 3.885 0.02 5.246 0.05 4.383 0.06 6.355 0.00 5.697 0.00 5.090 0.06
20 15 4.063 0.02 2.855 0.04 4.192 0.00 3.321 0.05 4.988 0.00 4.529 0.00 4.223 0.11
20 20 3.517 0.02 2.471 0.05 3.631 0.06 2.882 0.05 4.395 0.00 4.009 0.00 3.732 0.16
30 5 5.311 0.03 4.809 0.05 5.237 0.11 4.140 0.11 5.372 0.00 4.836 0.00 4.735 0.17
30 10 4.460 0.04 3.575 0.08 4.534 0.16 3.697 0.17 6.070 0.00 5.110 0.05 4.614 0.27
30 15 4.150 0.06 2.983 0.11 4.149 0.17 3.213 0.22 5.076 0.05 4.369 0.06 4.150 0.50
30 20 3.567 0.07 2.424 0.14 3.534 0.22 2.633 0.28 4.565 0.00 3.647 0.05 3.492 0.60
40 5 5.717 0.07 5.066 0.12 5.282 0.27 4.032 0.38 4.726 0.06 4.247 0.06 4.185 0.50
40 10 4.658 0.10 3.668 0.18 4.621 0.39 3.674 0.55 5.092 0.00 4.278 0.11 4.045 0.87
40 15 4.051 0.14 2.932 0.26 3.866 0.54 3.045 0.71 5.252 0.00 4.068 0.11 3.923 1.37
40 20 3.711 0.17 2.637 0.34 3.691 0.61 2.893 0.93 4.780 0.06 3.897 0.22 3.586 1.81
50 5 5.186 0.12 5.016 0.24 4.862 0.61 3.692 0.83 4.467 0.05 3.934 0.11 3.898 1.10
50 10 5.166 0.20 4.105 0.36 4.601 0.93 3.745 1.32 5.730 0.05 4.411 0.22 4.268 2.20
50 15 3.988 0.26 2.943 0.49 3.814 1.27 2.921 1.81 5.042 0.11 3.778 0.33 3.549 3.30
50 20 3.742 0.34 2.650 0.63 3.620 1.53 2.843 2.30 5.068 0.11 3.794 0.44 3.606 4.39
60 5 4.788 0.21 4.684 0.38 4.439 1.15 3.230 1.75 3.833 0.06 3.230 0.27 3.207 2.25
60 10 5.148 0.33 4.445 0.64 4.946 1.87 3.869 2.69 6.017 0.11 4.544 0.44 4.359 4.45
60 15 4.577 0.46 3.449 0.85 4.204 2.47 3.388 3.63 5.482 0.11 4.180 0.66 3.973 6.70
60 20 3.455 0.59 2.458 1.09 3.391 3.19 2.697 4.67 4.657 0.16 3.128 0.93 3.018 8.90
70 5 4.586 0.32 4.430 0.59 3.997 2.30 2.901 3.08 2.984 0.06 2.613 0.39 2.597 4.06
70 10 5.059 0.53 4.427 0.94 4.657 3.30 3.782 4.89 5.661 0.16 4.317 0.82 4.218 8.13
70 15 4.113 0.74 3.238 1.30 3.890 4.56 2.932 6.70 4.748 0.17 3.376 1.26 3.215 12.14
70 20 3.647 0.93 2.605 1.67 3.386 5.76 2.506 8.56 4.795 0.22 3.236 1.60 3.046 16.20
80 5 4.819 0.50 4.495 0.89 4.063 3.63 2.917 5.44 3.262 0.11 2.779 0.66 2.758 6.87
80 10 5.332 0.78 4.817 1.43 4.976 5.71 3.929 8.18 5.588 0.17 4.435 1.37 4.324 13.73
80 15 4.161 1.06 3.261 1.91 3.769 7.75 2.919 11.26 4.859 0.28 3.358 2.03 3.259 20.54
80 20 3.481 1.38 2.674 2.46 3.499 9.83 2.545 14.39 4.586 0.33 3.128 2.75 2.956 27.41
100 5 3.301 0.94 2.574 1.71 2.154 8.79 1.064 12.63 1.149 0.16 0.840 1.65 0.832 16.53
100 10 3.172 1.51 2.713 2.75 2.559 13.40 1.570 20.49 2.891 0.33 1.801 3.35 1.710 32.90
100 15 2.772 2.09 2.098 3.68 2.435 18.62 1.515 27.30 3.788 0.50 2.386 4.94 2.260 49.27
100 20 2.610 2.68 1.768 4.73 2.355 23.73 1.463 34.99 3.539 0.66 2.014 6.65 1.880 65.53
200 5 2.961 7.51 1.729 13.17 1.533 137.04 0.658 193.83 0.613 1.27 0.404 25.70 0.401 255.51
200 10 2.810 12.01 2.428 20.93 2.081 208.55 1.024 309.23 1.581 2.63 0.831 51.36 0.792 510.15
200 15 2.649 16.44 2.171 28.70 1.873 285.12 1.073 424.08 2.320 3.90 1.290 76.95 1.183 764.29
200 20 2.426 21.15 1.815 36.89 1.787 365.75 1.046 543.87 3.029 5.22 1.472 102.61 1.347 1019.36

Avg: 3.870 3.073 3.608 2.710 4.217 3.346 3.150

Table 3. Comparison of the simple heuristics for the flowtime minimisation problem

 Hypotheses to be tested
n m WY ≤ RZ WY ≤ LR(n) WY ≤ B5FT WY ≤ FL RZ ≤ LR(n) RZ ≤ B5FT RZ ≤ FL LR(n) ≤ B5FT LR(n) ≤ FL B5FT ≤ FL

10 5 100.000 100.000 100.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000
10 10 100.000 0.000 100.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000
10 15 100.000 0.000 100.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000
10 20 100.000 0.307 100.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000
20 5 99.559 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
20 10 4.133 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000
20 15 100.000 7.243 100.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000
20 20 100.000 0.000 100.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000
30 5 0.000 100.000 100.000 100.000 100.000 100.000 100.000 0.045 100.000 100.000
30 10 100.000 0.000 100.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000
30 15 71.357 73.027 100.000 100.000 52.814 100.000 100.000 100.000 100.000 0.000
30 20 3.643 99.981 100.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000
40 5 0.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000 100.000 100.000
40 10 0.396 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 73.729
40 15 0.000 0.002 100.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000
40 20 6.801 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000
50 5 0.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000 100.000 100.000
50 10 0.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
50 15 0.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 99.537
50 20 0.000 88.509 100.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000
60 5 0.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000 8.318 100.000
60 10 0.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000 100.000 100.000
60 15 0.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
60 20 0.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000
70 5 0.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000 0.000 100.000
70 10 0.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000 100.000 100.000
70 15 0.000 100.000 100.000 100.000 100.000 100.000 100.000 3.198 100.000 100.000
70 20 0.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
80 5 0.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000 0.000 100.000
80 10 0.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000 100.000 100.000
80 15 0.000 100.000 100.000 100.000 100.000 100.000 100.000 37.711 100.000 100.000
80 20 92.531 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
100 5 0.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000 0.000 100.000
100 10 0.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000 100.000 100.000
100 15 0.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
100 20 0.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
200 5 0.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000 0.000 100.000
200 10 0.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000 0.000 100.000
200 15 0.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000 100.000 100.000
200 20 0.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000 100.000 100.000

Table 4. Maximum level of significance (p) for the rejection of H0 for the simple heuristics

With respect to the local improvement method to employ within the third phase, it has

been previously mentioned that, in addition to the existing three strategies employed in

the literature (FPE, FPE-R, and BPE) and the BPE-R strategy that follows straight from

the previous, the insertion strategy can be also considered. This strategy seems to be

interesting because, although there are no studies on the efficiency of this

neighbourhood for the problem under consideration, the insertion is considered to be the

most efficient neighbourhood with respect to the makespan minimisation problem (see

e.g. [22]). Additionally, the insertion neighbourhood constitutes the basis for the

improvement phase of the RZ heuristic, which produces acceptable solutions

(particularly if integrated into a composite heuristic, as in the IH7 heuristic). Therefore,

we also consider the following four neighbourhood strategies: FIE (Forward Insertion

Exchange), FIE-R (Forward Insertion Exchange – Restart), BIE (Backward Insertion

Exchange), and BIE-R (Backward Insertion Exchange – Restart). Their definition is

analogous to the strategies presented in section 2, so we omit their explicit description.

Obviously, the efficiency of the improvement strategy may depend on the quality of the

initial (starting) solution and on whether the heuristic is connected or not to a specific

kind of neighbourhood (i.e., the FL heuristic is connected to the FPE neighbourhood

and therefore, it may seem foreseeable that this insertion neighbourhood may explore

different solutions and thus be more effective). In order to check these assumptions, we

obtain the ARPD values for all eight neighbouring strategies starting from the solutions

provided by several heuristics (i.e. Random solution, RZ, WY, FL, and C1). The results

are shown in table 5 in terms of the relative ARPD improvement of each strategy with

respect to the starting solution, i.e.: 100
ARPD(H)

ARPD(N(H))ARPD(H) ×−

where ARPD(H) is the ARPD obtained by applying a specific heuristic H and

ARPD(N(H)) is the ARPD obtained after applying the neighbouring strategy N to the

solution obtained by H. The higher the value of the relative ARPD improvement, the

greater the improvement obtained when applying that specific neighbouring strategy to

the solution provided by the heuristic. In table 5, the ranks of these relative ARPD

improvements are shown within brackets. In view of this table, the following statements

can be made:

• With the exception of the case with the random solution as starting solution, the

forward strategy always produces better results than the corresponding backward

strategy.

• For most of the cases, re-starting the search after finding a new solution

improves the results with respect to not doing so.

• For random, WY, and RZ, the pairwise interchange neighbourhood seems to be

more efficient than the insertion neighbourhood. However, for FL and Comp_1,

the best results are achieved for the insertion neighbourhood.

With all the information gathered from the above results, we built a second composite

heuristic C2, consisting of employing C1 to obtain an initial solution, then applying the

RZ-C construction phase, and finally applying FIE-R to the resulting solution . These

two heuristics – C1 and C2 – are compared with the most effective composite heuristics,

i.e. the IH7 heuristic by [1], and FL-IH7 [7]. Additionally, we include the FL heuristic

in order to check whether C1 outperforms FL or not. The results are presented in table

6.

Pairwise Exchange (PE) Insertion Exchange (IE)

Forward (F) Backward (B) Forward (F) Backward (B) Heuristic

FPE-R FPE BPE-R BPE FIE-R FIE BIE-R BIE

Random 91.548
(1)

87.753
(2)

84.491
(4)

85.632
(3)

76.856
(7)

74.353
(8)

77.819
(5)

77.263
(6)

RZ 36.099
(2)

32.293
(3)

31.558
(5)

31.293
(6)

32.231
(4)

44.403
(1)

27.293
(7)

27.236
(8)

WY 28.991
(2)

37.661
(1)

24.822
(6)

25.016
(5)

28.721
(3)

27.284
(4)

23.189
(8)

23.717
(7)

FL 3.589
(5)

3.381
(6)

3.178
(8)

3.271
(7)

16.505
(1)

15.870
(2)

12.894
(4)

13.345
(3)

Comp_1 22.176
(5)

22.082
(6)

21.870
(8)

21.905
(7)

23.821
(1)

23.625
(2)

22.531
(4)

22.693
(3)

Table 5. Average relative improvement over each heuristic solution obtained for the different neighbouring

strategies. The number within brackets is the rank that each neighbouring strategy occupies.

Again, we test a number of hypotheses using a one-sided test for the differences of

means of paired samples for every combination of m and n. More specifically, we tested

the combinations of the best simple heuristics B5FT and FL, and the IH7, FL-IH7, C1,

and C2 composite heuristics. We summarize in table 7 the hypotheses H0 and the

corresponding hypotheses H1 in the symmetric position of the matrix. The only

exception is the hypothesis FT(B5FT) ≤ FT(FL), which has been already tested in table

4.

B5FT

FL C1 IH7

IH7-FL C2

B5FT

F(B5FT) ≤ F(C1)

F(B5FT) ≤

F(IH7)

F(B5FT) ≤

F(IH7-FL)

F(B5FT) ≤ F(C2)

FL

F(FL) ≤ F(C1)

F(FL) ≤ F(IH7)

F(FL) ≤

F(IH7-FL)

F(FL) ≤ F(C2)

C1
F(B5FT) >

F(C1)

F(FL) > F(C1)

F(C1) ≤ F(IH7)

F(C1) ≤

F(IH7-FL)

F(C1) ≤ F(C2)

IH7
F(B5FT) >

F(IH7)

F(FL) > F(IH7)

F(C1) > F(IH7)

F(IH7) ≤

F(IH7-FL)
F(IH7) ≤ F(C2)

IH7-FL
F(B5FT) >

F(IH7-FL)

F(FL) > F(IH7-FL)

F(C1) >

F(IH7-FL)

F(IH7) >

F(IH7-FL)

F(IH7-FL) ≤

F(C2)

C2

F(B5FT) >

F(C2)
F(FL) > F(C2) F(C1) > F(C2) F(IH7) > F(C2)

F(IH7-FL) >

F(C2)

Table 7. Hypotheses to be tested for the composite heuristics

The results are shown in table 8, where ps are given as the maximum level of

significance to reject H0. From the results of tables 7 and 8, the following statements

can be made:

- The best simple heuristics (FL and B5FT) are outperformed by all the composite

heuristics for most of the problem sizes. More specifically, C1 outperforms FL for

all except two problem sizes (note that both heuristics only differ in the initial job

ordering). Therefore, employing the scheme by Liu and Reeves as starting order

seems to be of interest. C1 is also better than B5FT on the overall results, although

it is outperformed by the latter for one third of the settings (those involving the

smallest number of jobs). Finally, C1 is outperformed by the rest of the heuristics.

- Regarding the quality of the results, C2 is the best of the heuristics under

consideration. It outperforms the rest for all problem sizes, with the exception of

IH7-FL for three specific settings. It is also the most time-consuming heuristic,

although in the order of magnitude of the heuristics under comparison.

H0

H1

- With respect to the rest of heuristics, IH7-FL performs only slightly better than IH7

in the overall results. However, this difference is consistent for all problem sizes.

n M FL C1 IH7 FL-IH7 C2
 ARPD CPU(s) ARPD CPU(s) ARPD CPU(s) ARPD CPU(s) ARPD CPU(s)

10 5 1.182 0.00 0.970 0.00 0.685 0.00 0.472 0.00 0.405 0.00
10 10 1.042 0.00 0.693 0.00 0.508 0.01 0.470 0.01 0.307 0.00
10 15 0.619 0.00 0.718 0.00 0.466 0.01 0.301 0.01 0.303 0.00
10 20 2.749 0.00 2.649 0.00 2.477 0.01 2.375 0.01 2.333 0.01
20 5 4.614 0.00 4.496 0.01 3.983 0.03 3.730 0.04 3.824 0.04
20 10 4.383 0.06 4.089 0.02 3.622 0.05 3.512 0.06 3.198 0.07
20 15 3.312 0.05 3.275 0.02 2.636 0.07 2.468 0.08 2.392 0.08
20 20 2.876 0.05 2.793 0.03 2.336 0.09 2.252 0.10 2.025 0.11
30 5 4.140 0.11 3.924 0.05 3.664 0.16 3.416 0.18 3.277 0.18
30 10 3.694 0.17 3.518 0.08 2.979 0.23 2.705 0.28 2.699 0.28
30 15 3.210 0.22 3.230 0.11 2.703 0.30 2.385 0.35 2.280 0.39
30 20 2.632 0.28 2.608 0.14 2.076 0.37 1.939 0.44 1.896 0.46
40 5 4.032 0.38 3.699 0.15 3.559 0.50 3.287 0.54 3.196 0.53
40 10 3.674 0.55 3.371 0.25 2.867 0.67 2.688 0.79 2.529 0.84
40 15 3.044 0.71 2.837 0.34 2.358 0.87 2.249 1.06 2.008 1.10
40 20 2.887 0.93 2.901 0.43 2.243 1.07 1.989 1.34 1.890 1.42
50 5 3.692 0.83 3.503 0.35 3.384 1.16 3.099 1.31 3.060 1.15
50 10 3.745 1.32 3.539 0.59 3.054 1.56 2.879 1.87 2.697 2.07
50 15 2.919 1.81 2.756 0.81 2.272 2.11 2.055 2.44 1.900 2.65
50 20 2.836 2.30 2.779 1.02 2.250 2.52 1.907 3.12 1.882 3.34
60 5 3.230 1.75 2.887 0.72 2.917 2.59 2.612 2.56 2.482 2.34
60 10 3.869 2.69 3.659 1.19 3.281 3.26 3.063 4.00 2.921 3.72
60 15 3.388 3.63 3.246 1.64 2.641 4.19 2.617 5.05 2.394 5.28
60 20 2.697 4.67 2.466 2.08 1.944 5.19 1.775 6.33 1.573 6.49
70 5 2.901 3.08 2.648 1.31 2.514 5.07 2.382 4.58 2.275 4.08
70 10 3.782 4.89 3.443 2.17 3.162 6.10 2.906 7.14 2.732 6.99
70 15 2.932 6.70 2.689 2.99 2.440 7.75 2.131 9.01 1.891 9.38
70 20 2.506 8.56 2.367 3.81 1.958 9.29 1.698 11.39 1.577 12.11
80 5 2.917 5.44 2.606 2.20 2.657 8.55 2.523 7.53 2.331 7.13
80 10 3.929 8.18 3.707 3.65 3.430 10.76 3.128 11.68 3.032 11.74
80 15 2.919 11.26 2.717 5.05 2.282 13.29 2.194 14.95 2.021 15.62
80 20 2.545 14.39 2.416 6.43 2.138 15.54 1.887 18.67 1.669 20.25
100 5 1.064 12.63 0.784 12.63 0.812 22.71 0.617 18.89 0.541 16.40
100 10 1.570 20.49 1.286 20.05 1.065 28.53 0.977 27.12 0.710 27.78
100 15 1.515 27.30 1.295 27.87 1.046 32.50 0.831 34.99 0.633 36.67
100 20 1.463 34.99 1.374 35.86 0.993 39.18 0.713 44.51 0.637 49.61
200 5 0.658 193.83 0.358 191.41 0.364 527.39 0.364 307.96 0.231 236.80
200 10 1.024 309.23 0.701 309.93 0.794 579.93 0.556 448.52 0.404 401.93
200 15 1.073 424.08 0.892 424.77 0.778 617.73 0.549 578.91 0.397 584.52
200 20 1.046 543.87 0.937 548.32 0.760 687.57 0.472 716.56 0.381 750.81

Avg. 2.708 2.521 2.202 2.004 1.873

Table 6. Comparison of the composite heuristics for the problem

n m B5FT ≤ C1 B5FT ≤
IH7

B5FT ≤
IH7-FL B5FT ≤ C2 FL≤C1 FL≤IH7 FL≤

IH7-FL FL≤C2 C1≤IH7 C1≤IH7-FL C1≤C2 IH7 ≤
IH7-FL IH7≤C2 IH7-FL≤C2

10 5 0.000 24.137 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
10 10 0.000 0.004 83.111 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 99.998 100.000 100.000
10 15 0.000 0.000 100.000 100.000 0.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 15.875
10 20 0.000 0.000 0.020 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
20 5 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000
20 10 0.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
20 15 0.000 100.000 100.000 100.000 99.861 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
20 20 0.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
30 5 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
30 10 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 63.348
30 15 0.000 100.000 100.000 100.000 7.877 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
30 20 0.000 100.000 100.000 100.000 99.266 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
40 5 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
40 10 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
40 15 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
40 20 0.000 100.000 100.000 100.000 16.833 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
50 5 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 99.993
50 10 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
50 15 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
50 20 0.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 99.864
60 5 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000 100.000 100.000 100.000 100.000 100.000
60 10 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
60 15 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 98.941 100.000 100.000
60 20 24.095 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
70 5 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
70 10 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
70 15 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
70 20 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
80 5 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000 100.000 100.000 100.000 100.000 100.000
80 10 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
80 15 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
80 20 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
100 5 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 0.002 100.000 100.000 100.000 100.000 100.000
100 10 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
100 15 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
100 20 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
200 5 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 1.514 10.223 100.000 64.500 100.000 100.000
200 10 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000 100.000 100.000 100.000 100.000 100.000
200 15 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
200 20 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

Table 8. Maximum level of significance (p) for the rejection of H0 for the composite heuristics

5. Conclusions

In this paper, we have reviewed and compared the most noteworthy heuristics for the

problem of flowtime minimisation in permutation flowshops. For this comparison, we

have separated the simple heuristics from the composite heuristics (being the latter

formed by one or more simple heuristics). With respect to the simple heuristics, two

heuristics should be highlighted: the FL heuristic and the B5FT heuristic. The first is

best in terms of quality of the results (particularly as the problem size grows), and the

latter obtains very good results in short computation times. The fastest heuristic is the

LR(1), which allows obtaining reasonably good solutions in negligible computation

times.

In view of the results obtained from the comparison of the simple heuristics, we have

built a composite heuristic (C1) which is a combination of the FL heuristic using the

result of LR(1) as starting order. Since most of the composite heuristics incorporate a

local search phase for improving the solution obtained, we have studied several local

search schemes and selected the first one to build a second composite heuristic. This

heuristic – named C2 – employs the solution obtained by C1, the best constructive

scheme for composite heuristics, and the best local search mechanism. The

experimental results carried out show that C2 outperforms the existing heuristics.

6. References

[1] Allahverdi, A, and Aldowaisan, T., 2002, New heuristics to minimize total

completion time in m-machine flowshops, International Journal of Production

Economics, 77, pp. 71-83.

[2] Bamberg, G., and Baur F., 1998, Statistik, 10th edn (Munich: Oldenbourg)

[3] Beasley, J.E., 1990, OR-Library: Distributing test problems by electronic mail,

Journal of the Operational Research Society, 41, pp. 1069-1072.

[4] Campbell H. G., Dudek R. A. and Smith M. L., 1970, A heuristic algorithm for

the n-job, m-machine sequencing problem. Management Science, 16, B630-

B637.

[5] Dannenbring D. G., 1977, An evaluation of flow-shop sequence heuristics.

Management Science, 23, pp. 1174-1182.

[6] Dudek, R. A. and Teuton O.F., 1964, Development of m stage decision rule for

scheduling n jobs through m machines, Operations Research, 12.

[7] Framinan, JM and Leisten R, 2003, An efficient heuristic for flowtime

minimisation in permutation flowshops, OMEGA, 31, pp. 311-317.

[8] Framinan, JM, Leisten, R., and Gupta JND, 2001, A review and classification

heuristics for permutation flow shop scheduling with makespan objective,

Technical Report 2001/02, Industrial Management, University of Seville (under

revision in the Journal of the Operational Research Society).

[9] Framinan JM, Leisten R, and Rajendran C, 2003, Different initial sequences for

the heuristic of Nawaz, Enscore and Ham to minimize makespan, idletime or

flowtime in the static permutation flowshop, International Journal of

Production Research, 41, pp. 121-148.

[10] Framinan JM, Leisten R, and Ruiz-Usano R, 2002, Efficient heuristics for

flowshop sequencing with the objectives of makespan and flowtime

minimisation, European Journal of Operational Research, 141, pp. 561-571.

[11] Graham, R. L, Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H. G., 1979,

Optimisation and approximation in deterministic sequencing and scheduling: a

survey, Annals of Discrete Mathematics, 5, pp. 287-326.

[12] Gupta, J.N.D., 1972, Heuristic algorithms for multistage flowshop scheduling

problem, AIIE Transactions, 4, pp. 11-18.

[13] Ho, J.C., 1995, Flowshop sequencing with mean flowtime objective, European

Journal of Operational Research, 81, pp. 571-578.

[14] Kenkel, J.L., 1996, Introductory Statistics for Management and Economics, 4th

edn (Belmont: Duxbury)

[15] Liu, J., and Reeves, C.R., 2001, Constructive and composite heuristic solutions

to the P||ΣCi scheduling problem, European Journal of Operational Research,

132, pp. 439-452.

[16] Miyazaki, S., Nishiyama, N. and Hashimoto, F., 1978, An adjacent pairwise

approach to the mean flowtime scheduling problem, Journal of the Operations

Research Society of Japan, 21, pp. 287-299.

[17] Nawaz, M., Enscore, E.E., and Ham, I., 1983, A heuristic algorithm for the m-

machine, n-job flow-shop sequencing problem, OMEGA, 11, pp. 91-95.

[18] Pinedo, M., 1995, Scheduling: Theory, algorithms, and Systems. Englewood

Cliffs, New Jersey: Prentice Hall.

[19] Rajendran, C., 1993, Heuristic algorithm for scheduling in a flowshop to

minimise total flowtime, International Journal of Production Economics, 29,

pp. 65-73.

[20] Rajendran, C., and Chaudhuri, D., 1991, An efficient heuristic approach to the

scheduling of jobs in a flowshop, European Journal of Operational Research,

61, pp. 318-325.

[21] Rajendran, C., and Ziegler, H. 1997, An efficient heuristic for scheduling in a

flowshop to minimize total weighted flowtime of jobs, European Journal of

Operational Research, 103, pp. 129-138.

[22] Taillard E., 1990, Some efficient heuristic methods for the flow-shop

sequencing problem, European Journal of Operational Research, 47, pp. 65-74.

[23] Taillard, E., 1993, Benchmark for basic scheduling problems, European Journal

of Operational Research, 64, pp. 278-285.

[24] Wang, C., Chu, C., and Proth, J.M., 1997, Heuristic approaches for n|m|F|ΣCi

scheduling problems, European Journal of Operational Research, 96, pp. 636-

644.

[25] Woo, D.S., and Yim, H.S., 1998, A heuristic algorithm for mean flowtime

objective in flowshop scheduling, Computers and Operations Research, 25, pp.

175-182.

