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ABSTRACT 
 
 
 
We focus our attention on the problem of sequencing jobs in a permutation flow shop 

with the objective of minimising the sum of completion times or flowtime. This 

objective is considered to be more relevant and meaningful for today’s dynamic 

production environment, and therefore it has attracted the attention of researchers during 

the last years. As a result, a number of different types of heuristics have been recently 

developed, each one claiming to be the best for the problem. However, these heuristics 

have been independently developed and only partial comparisons among them exist. 

Consequently, there are no conclusive results on their relative performance. Besides, 

some of these types of heuristics are of a different nature and could be combined in 

order to obtain composite heuristics. In this paper we first conduct an extensive 

comparison among the existing heuristics. Secondly, based on the results of the 

experiments, we suggest two new composite heuristics for the problem. The subsequent 

computational experience shows these two heuristics to be efficient for the problem 

under consideration. 



1. Introduction 

 

A flowshop consists of n jobs that must be processed on m machines in the same order. 

The scheduling problem in flow shops is finding a sequence of jobs for each machine 

according to certain performance measure(s). Additionally, for many situations, it is 

assumed that the job sequences will be the same on every machine (permutation 

flowshops). Other hypotheses common in scheduling research are, e.g. the simultaneous 

availability of all jobs and of all stations, deterministic processing times, etc. For a 

complete list of these assumptions, see e.g. [6]. 

 

Among the objectives to be considered when scheduling in a flowshop, the 

minimisation of the total completion time or makespan is shown to be directly related to 

the maximisation of the throughput and the usage of the resources. Therefore, it is not 

surprising that most of the research during the last decades has concentrated in the 

minimisation of the makespan. 

 

More recently, the amount of research devoted to the minimisation of the sum of the 

completion times of the jobs (or equivalently mean flow time or mean completion time) 

has increased. This objective is also known as (total or average) flow time minimisation, 

and it is denoted as the F|prmu|ΣCj problem, according to the notation by [11]. Flow 

time minimisation leads to stable or even use of resources, a rapid turn-around of jobs 

and the minimisation of in-process inventory [21]. Therefore, it is considered to be more 

relevant and meaningful for today’s dynamic production environment [14]. 

 

Given the NP-hard nature of the F|prmu|ΣCj problem, most of the research on this topic 

is devoted to propose heuristics that yield good approximate solutions. Prior to year 

2000, the best constructive heuristics available for the problem were the heuristics by 

Woo and Yim [25], and by Rajendran and Ziegler [21]. 

 

More recently, a number of heuristic approaches for the problem have been published, 

i.e. the heuristic by Liu and Reeves [14], the set of composite heuristics by Allahverdi 

and Aldowaisan [1], the work by Framinan et al. [9] on the application of the NEH 

heuristic [17] to the F|prmu|ΣCj problem, and the heuristic by Framinan and Leisten [7]. 



Most of these works have been independently developed and only a partial comparison 

between the heuristics by Allahverdi and Adowaisan and that of Framinan and Leisten 

is reported [7]. Hence, there are no conclusive results on the comparison of these 

suggested heuristics. Besides, some of these heuristics are of a different nature: on one 

hand, the heuristic by Liu and Reeves consists of a first phase were the jobs are sorted 

according to an index taking into account the idle time followed by a local improvement 

phase. On the other hand, the set of heuristics by Allahverdi and Aldowaisan can be 

considered as composite heuristics in the sense defined e.g. in Pinedo [18], i.e. they 

contain other heuristics – namely the Woo and Yim, and the Rajendran and Ziegler 

ones. Therefore, it will be worth to investigate whether different combinations of 

heuristics could be employed for constructing new composite heuristics, and whether 

there exist other local improvement schemes that could be applied in order to improve 

their performance. 

 

The paper is organised as follows: In the next section we review the main contributions 

regarding heuristic solutions for the problem under consideration. Additionally, we 

develop a framework to classify the different phases of these heuristics. This framework 

will be useful when searching for new combinations of the existing heuristics. In 

Section 3 we present the experimental design for the comparison of heuristics, while the 

results of these comparisons are presented in Section 4. This section is divided in two 

parts: first the simple heuristics are compared, and secondly new combinations of 

heuristics are tested. Finally, Section 5 is devoted to conclusions. 

 

 

2. Review of existing heuristics 

 

The problem of minimising flowtime in permutation flowshops has been addressed by a 

number of researchers. Prior to 1998, there are some heuristics that have been clearly 

outperformed by the new developments on the problem. These ‘old’ heuristics are 

presented by Gupta [12], Miyazaki et al. [16], Rajendran and Chaudhuri [19], 

Rajendran [19], Ho [13], and Wang et al. [24]. Since there exists a number of papers 

proving that all these heuristics are outperformed by the new heuristics that were 

appearing since 1997 (see e.g. [1], or [14]), we do not elaborate further on these. 

Additionally, it should be mentioned that in [14] it is shown that several of these 



heuristics perform worse than random choice of a sequence for the usual parameter 

combinations set in most numerical studies. The only exception is the Ho heuristic, 

which consists of several iterations of an improvement scheme based on finding a local 

optimum by adjacent pairwise interchange of jobs, and then improving the solution by 

insertion (or shift) movements. This heuristic seems closer to local search techniques 

such as simulated annealing or tabu search than to constructive heuristics and its CPU 

time requirements do not make it suitable for large problem sizes and/or in those 

environments where sequencing decisions are required in short time intervals (see the 

evolution of the CPU times required for this heuristic e.g. in [10]). As a consequence, 

the Ho heuristic has not been included in previous comparisons of heuristics for the 

problem under consideration (see e.g. [1], or [14]), and it is neither included in this 

study. 

 

The oldest heuristic that we discuss in this review is the Rajendran and Ziegler [21] 

heuristic – RZ in the following –. This heuristic consists in, first, obtaining a seed 

sequence by sorting the jobs according to a priority rule similar to the shortest weighted 

total processing time. Secondly, the seed sequence is improved by sequential insertion 

of each job, according to the seed sequence, into the best sequence found so far.  

 

Independently developed, the Woo and Yim (WY) heuristic [25] exploits the idea 

presented in the NEH heuristic [17] for makespan minimisation. The NEH heuristic 

consists of two phases: First the jobs are ranked according to the descending sum of 

their processing times. In a second phase, a solution is constructed in the following 

manner: Starting from a partial sequence constructed by taking the first job of the rank, 

then, for k = 2,…,n, k partial sequences are constructed by inserting the kth job of the 

rank in all k slots of the partial sequence. These k partial sequences are evaluated with 

respect to makespan and the one obtaining the lowest value is retained as partial 

sequence for step k + 1. Obviously, a straightforward adaptation of this heuristic to the 

F|prmu|ΣCj problem consist of evaluating the partial sequences in the second phase 

with respect to flowtime. In the following, we name this adaptation NEH-flowtime. 

 

In the WY heuristic, jobs are initially sorted according to the ascending sum of their 

processing times. Then, in an iterative process, a partial sequence is constructed by 

trying to insert all non-scheduled jobs in all possible slots of the partial sequence. More 



specifically, for iteration k of this heuristic, all non scheduled n – k + 1 jobs are inserted 

into all k possible slots of the partial sequence of size k – 1. Several comparisons carried 

out between WY and RZ heuristics (e.g. [1] and [9]) indicate that, for a small number of 

jobs, the latter outperforms the former, while the opposite occurs when the number of 

jobs is growing. With respect to computation times, WY is much slower than RZ. 

 

Liu and Reeves [14] present a heuristic based on developing an index function to sort 

the jobs. The index function is based on two terms: the weighted total machine idle 

time, and the artificial total flow time. The so-obtained solution is then improved by 

employing several kinds of greedy pairwise interchanges named FPE and BPE (we will 

detail both procedures later on). The heuristic can be enhanced by generating x different 

schedules consisting in using each of the first x jobs (according to the above-described 

index) and constructing a sequence by selecting jobs one by one using the index 

function. The sequence obtaining the minimum flow time is selected and the pairwise 

interchange schemes are then applied. Adapting Liu and Reeves’ notation, we label this 

set of heuristics as LR(x), meaning x the number of schedules generated. The LR(x) 

heuristics are shown to clearly outperform both WY and RZ [14]. 

 

Allahverdi and Aldowaisan [1] present seven heuristics – named IHx – which are 

constructed by combining several heuristics such as WY and RZ. These heuristics are 

compared with the original WY and the RZ heuristic, and it turns out that the so-called 

IH7 is the best in terms of the quality of the solutions, outperforming both heuristics. 

The IH7 heuristic consists of employing the solution provided by the WY heuristic as 

initial solution, then applying the second phase of the RZ heuristic to construct a 

schedule, and finally using a local search method based on general pairwise interchange 

in order to improve the solution. The mechanism of the other six IHx heuristics is 

summarised in table 1. 

 

The idea of extending the mechanism of solution construction of the NEH heuristic to 

the flowtime minimisation problem is extensively investigated by Framinan et al. [9]. In 

this study, the authors study 177 different approaches for ranking the jobs in the first 

phase of the NEH heuristic. They evaluate a large test-bed for all possible five-tupels 

among the 177 approaches and select the best of them (named B5FT in the following), 

i.e. the five-tupel which on average yields the best solution by taking the minimum 



flowtime of the five solutions generated by the second phase of NEH for all five initial 

sequences for the respective five-tupel. According to their results, the B5FT heuristic 

outperforms both WY and RZ in terms of quality of the solutions.  

 

Framinan and Leisten [7] present a heuristic – FL in the following – based on 

constructing a partial schedule in the manner of the NEH heuristic. However, here the 

jobs are initially ordered according to the ascending sum of processing times. As in 

NEH, the kth job of this index is inserted into the k possible slots, and the partial 

schedule with lowest flow time is retained as best solution. After that, a general 

pairwise interchange is applied to this partial schedule, and the best partial solution with 

respect to flow time is retained. The process is repeated until all jobs are scheduled. 

This heuristic is shown to outperform the WY and the RZ heuristic. Finally, in order to 

compare their heuristic with the composite heuristics of Allahverdi and Aldowaisan, a 

version of the IH7 heuristic is presented consisting of employing the FL heuristic as an 

initial solution instead of the WY heuristic as in the original IH7. The experiments show 

that the latter heuristic – named IH7-FL– clearly improves the original IH7. 

 

As a summary of the review, within the last years a number of heuristics for the flow 

time minimisation problem have been developed independently and therefore no 

extensive comparison among them has been carried out. Furthermore, some of the 

heuristics presented are of a very different nature (i.e. some are composite heuristic 

based on one or more simple heuristics). Since no classification and comparison of the 

existing simple heuristics has been carried out, the process of building composite 

heuristics has not been completed. 

 

In order to classify the different relevant heuristics for the problem under consideration, 

we follow the scheme employed by Framinan et al. [8] when classifying simple 

heuristics for makespan minimisation. They divide the existing heuristics into three 

phases, namely index development, solution construction, and solution improvement. 

Each heuristic can use one or more of these phases. During the index development 

phase, jobs are sorted by employing some characteristic of the problem (e.g. processing 

times) or some analogy (e.g. the Travelling Salesman Problem). The solution 

construction phase consists of developing a solution starting from a given order of jobs 

(possibly employing the order in the index development phase). Note that, in this phase, 



there is no guarantee that the final solution is better than the initial solution. Finally, the 

solution improvement phase consists of employing some local search mechanism in 

order to improve the current solution. 

 

The term ‘composite heuristic’ itself is not always clear. For instance, [14] classify the 

heuristics into constructive heuristics and improvement heuristics. A heuristic is then 

labelled as composite if it is a combination of a constructive heuristic plus an 

improvement heuristic. From this point of view, heuristics such as IH6 in [1] will be 

classified together with constructive heuristics such as the WY heuristic, being the latter 

the first phase of the former.  

 

Extending the above classification in [8] to include composite heuristics, we define the 

term composite heuristic in the following manner: a heuristic is regarded as composite if 

it employs another heuristic for one or more of the three above-mentioned phases. 

Consequently, a heuristic is regarded as simple if it does not contain another heuristic 

within any of the three phases. According to the above presented classification, among 

the simple heuristics mentioned there are several strategies for phase I (sorting jobs). 

These are: 

 

•  Descending sum of processing times (for NEH-flowtime) 

•  Weighted descending sum of processing times (for RZ) 

•  Five different indices based on functions depending on the processing times of 

the jobs (for B5FT, see [9] for details) 

•  Ascending sum of processing times (for FL) 

•  An index function based on the weighted total machine idle time and the 

artificial total flow time (for LR) 

 

With respect to the solution construction phase, several strategies are employed: 

 

•  NEH-C. This strategy consists of inserting the kth job of the initial solution in 

each of the k + 1 possible slots of the best partial solution. Each of these so-

obtained partial sequences is evaluated, and the best partial sequence is retained 



as the best partial solution. The process is repeated until a whole schedule is 

constructed.  

•  RZ-C. This strategy consists of inserting each of the jobs of the initial solution 

into each of the possible slots. 

•  FL-C. This strategy consists of inserting the k-th job of the initial solution in 

each of the k + 1 possible slots of the best partial solution. Each of these so-

obtained partial sequences is evaluated, and the best partial sequence is retained 

as the best partial solution. The chosen partial solution is tried to be improved by 

performing a pairwise interchange. If a better result is obtained, the new partial 

solution is retained as the best partial sequence. The process is repeated until a 

whole schedule is constructed. 

•  WY. As mentioned before, this strategy can be seen as an extension of the NEH 

strategy, where all non-scheduled (n – k) jobs are tried into all possible k slots. 

The partial schedule yielding the lowest flow time is retained as the best partial 

schedule for the next iteration. 

 

Finally, with respect to the solution improvement phase, several strategies have been 

adopted in the reviewed heuristics: 

 

•  FPE – Forward Pairwise Interchange ([14]). It consists of starting from an initial 

sequence and then tries to exchange each job with each of a certain number of 

jobs following it in the sequence. For each trial, if the new sequence obtained is 

better, then the exchange is actually made. Otherwise, the two jobs are kept in 

their positions. After all the exchanges are tried, the process starts over again 

from the first job in the sequence, and the procedure continues until no 

improvement can be made for a whole round of trials. 

•  BPE – Backward Pairwise Interchange ([14]). This strategy is similar to FPE, 

but now the exchanges start from right to left. 

•  FPE-R – Forward Pairwise Interchange (Restart). This strategy is followed in [1] 

under the name of ‘pairwise interchange’. It is identical to FPE, but when the 

exchange is actually made because the new solution improves the current one, 

the process of exchange starts from the first job in the new sequence. 

 



Additionally, there is one strategy that follows directly from the ideas expressed above: 

BPE-R or Backward Pairwise Interchange (Restart). This is similar to BPE, but when 

the exchange is actually made because the new solution improves the current one, the 

process of exchange starts from the last job in the new sequence.  

 
    Phase I  Phase II  Phase III 
         

 NEH-flowtime  ASC(sum(pt))  NEH-C   

       
 B5FT  Best of 5 initial 

sequences  NEH-C   

       
 WY    WY   

       
 RZ  ASC(w sum(pt))  RZ-C   

       
 LR  LR (3 versions)    

       

Si
m
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e 
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ur
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tic

s 

 FL  DESC(sum(pt))  FL-C   

         
 IH1  NEH-flowtime  FPE-R 

       
 IH2  NEH-flowtime  (best of 5 runs)   

       
 IH3  NEH-flowtime (best of 5 runs)  FPE-R 

       
 IH4  WY  FPE-R 

       
 IH5  RZ  FPE-R 

       
 IH6  WY  RZ-C   

       
 IH7  WY  RZ-C  FPE-R 

       

C
om

po
si

te
 h

eu
ris

tic
s 

 IH7-FL  FL  RZ-C  FPE-R 

         
 

Table 1. Summary of simple and composite heuristics for the flowtime minimisation problem. In this table, the 
composite heuristics are expressed in terms of the simple heuristics (appearing in shadowed boxes) 

 

The four above-mentioned strategies for the improvement phase exploit the pairwise 

interchange neighbourhood. Although there are no studies specifically on the case of 

flow time minimisation, the insertion neighbourhood is considered to be the most 

efficient neighbourhood scheme for local search with makespan minimisation objective. 



Additionally, the RZ-C strategy is based on insertion movements. Therefore, it may be 

of interest to see whether these results can be extended to the case of flow time 

minimisation. In Section 4.2 we will introduce four insertion strategies equivalent to the 

four presented here for the exchange neighbourhood. 

 

Table 1 summarises the phases employed by the heuristics described in this section. 

 
 
3. Experimental design 

 

In order to compare the heuristics described in the previous section, it is required to 

obtain or develop a set of problem instances. Perhaps the most well-known test-bed for 

permutation flowshop problems is the one developed by Taillard [22]. This is a testbed 

available in the OR-Library [2] and consists of a set of 120 problem instances of various 

problem sizes (10 instances for each problem size). However, there are several problems 

for employing this test-bed here: on one hand Taillard’s test-bed was specifically 

designed for makespan minimisation and not for flow time minimisation, since the 

problem instances were chosen so that the distance between their lower bound (referring 

to makespan) and the results obtained by a lengthy tabu search was high. On the other 

hand, we try to perform an exhaustive comparison including hypothesis testing, and the 

number of instances for each problem size in the test bed (10) is not sufficient to draw 

concluding results. 

 

For almost all of the reviewed heuristics, the test beds in which these heuristics are 

compared generate the processing times using a discrete rectangular distribution [1,99] 

(see e.g. [1], [9], or [25]). Although this distribution is not likely to be found in practice, 

it is known to produce difficult type of problem instances (see e.g. [4] or [5]) and 

therefore constitutes an excellent benchmark for the comparison of heuristics. 

 

With respect to the problem sizes, after reviewing the papers describing heuristics for 

flowtime minimisation, we try to cover a high range of problem sizes. Therefore, n the 

number of jobs is chosen as n ∈  {10,20,30,40,50,60,70,80,100,200}, and m the number 

of machines is chosen as m ∈  {5, 10, 15, 20}. For each problem size, 100 instances are 

generated. This relatively high number of problem instances of the same size is chosen 



such that the results with respect to hypotheses contrasts are as high as possible. In total, 

the number of problem instances of the test-bed is 4,000. 

 

4. Comparison of heuristics 

 

In this section, we carry out the comparison of the heuristics presented in section 2 by 

employing the test-bed designed in section 3. In order to obtain a clear picture of the 

results, we first compare the simple heuristics among them in terms of the quality of the 

solutions and their computational effort. According to these results, we then construct 

two composite heuristics which are compared with existing composite heuristics. 

 

4.1. Simple heuristics 

 

The heuristics to be compared are WY, RZ, B5FT, LR (in the three versions described 

in [15]), and FL. The results of the comparison are presented in tables 3 and 4. In table 

3, the Average Relative Percentage Deviation (ARPD) and the CPU time (in seconds) 

of each heuristic for each combination of n and m are presented. The ARPD has been 

obtained with respect to the best known solution for each instance. 

 

In order to check the statistical significance of the results, we test a number of 

hypotheses using a one-sided test for the differences of means of paired samples (see 

e.g. [2] or [14]) for every combination of m and n. More specifically, we test all 

combinations among the WY, RZ, LR(x), B5FT, and FL heuristics. In table 2, we 

summarize the hypotheses H0 and the corresponding hypotheses H1 in the symmetric 

position of the matrix. 

 

The results are shown in table 4, where ps are given as the maximum level of 

significance to reject H0 (p represents the limit value to reject hypothesis H0 resulting 

from a t-test, i.e. for every level of significance α ≤ p, H0 would have to be rejected, 

whereas for every α > p, H0 would not be rejected. A high p indicates that H0 can be 

rejected with high level of significance and therefore H1 can be accepted.) 

 



 

 

WY 

 

RZ H(n) B5FT FL 

WY  

 

F(WY) ≤ F(RZ) 

 

F(WY) ≤ F(H(n)) F(WY) ≤ F(B5FT) F(WY) ≤ F(FL) 

RZ 

 

F(WY) > F(RZ) 

 

 

 

F(RZ) ≤ F(H(n)) 

 

F(RZ) ≤ F(B5FT) F(RZ) ≤ F(FL) 

H(n) F(WY) > F(H(n)) 

 

F(RZ) > F(H(n)) 

 

 

 

F(H(n)) ≤ F(B5FT) 

 

F(H(n)) ≤ F(FL) 

B5FT F(WY) > F(B5FT) F(RZ) > F(B5FT) 

 

F(H(n)) > F(B5FT) 

 

 

 

F(B5FT) ≤ F(FL) 

 

FL 

 

F(WY) > F(FL) 

 

F(RZ) > F(FL) F(H(n)) > F(FL) F(B5FT) > F(FL)  

 

Table 2. Hypotheses to be tested for the simple heuristics 

 
 

In view of the results of both tables, the following statements can be made: 

 

- Regarding the overall results, there are three heuristics that are outperformed by the 

others: these are the WY, RZ, and the LR(1) heuristic. WY performs better than RZ 

for most problem sizes except the smallest instances, where the latter outperforms 

WY. LR(1) is better than both for the combination of m = 5 and n ≥ 40, and better 

than RZ for m ≥ 10 and n ≥ 100. For the rest of the combinations LR(1) is 

outperformed by both WY and RZ. However, the small CPU requirements 

consumed by LR(1) in order to obtain results that are only around 5% of the best 

have to be taken into account. 

- With respect to the rest of the heuristics, the FL heuristic is best in terms of the 

quality of the solutions obtained. However, it is outperformed by LR(n) for the 

combination of a big number of jobs and a small number of machines (i.e. for n ≥ 

60 and m = 5, and for n =200 and m =10), and also by B5FT for a small number of 

jobs combined with a large number of machines. 

- The B5FT heuristic is second in terms of quality of the results, being outperformed 

by LR(n) and LR(n/10) – third and four in quality of results – only for the 

combination of small number of machines and big number of jobs. Additionally, it 

is a very fast heuristic, and therefore it seems to be particularly suitable for 

H0 

H1 



environments where scheduling decisions should be taken in very small time 

intervals. 

- As mentioned before, LR(n) is third in quality of the results. However, the CPU 

requirements are much higher than for the rest of the heuristics. From this point of 

view, it seems that the relative performance of LR(x) deteriorates as x increases: in 

the whole test-bed, LR(n) takes more than 2,800 seconds to obtain an ARPD of 

3.150, while LR(1) takes less than 18 seconds to obtain 4.217. This may speak for 

the suitability of the approach by Liu and Reeves to obtain fast, good solutions, but 

not for the approach of trying different initial job orders. 

 

 

4.2. Composite heuristics.  

 

In this subsection, we try to combine some of the heuristics tested in the previous 

section. Specifically, we are interested in combining two or more heuristics in order to 

obtain a new (composite) heuristic that covers at least the phases I and II depicted in 

table 1. After that, for phase III we employ some of the local search methods described 

above in order to improve the obtained solutions. Note that the process of obtaining 

composite heuristics can be nested into several loops, i.e. we can obtain a ‘second 

generation’ of composite heuristics consisting of combining several composite 

heuristics. However, here we restrict our attention in obtaining ‘first generation’ 

composite heuristics whose computation times do not differ very much from existing 

(simple or composite) heuristics.  

 

With respect to the first phase – index development – it seems clear that LR obtains 

reasonably good results in negligible CPU time. In contrast, for the solution 

construction phase (phase II), the so called FL-C seems to obtain very good results. 

Therefore, it seems reasonable to combine both phases into a single heuristic. We 

therefore build a composite heuristic named C1, consisting of applying the FL solution 

construction scheme (labelled FL-C in table 1) starting from the solution provided by 

LR. 

 



n m RZ B5FT WY FL LR(1) LR(n/10) LR(n) 
  ARPD CPU(s) ARPD CPU(s) ARPD CPU(s) ARPD CPU(s) ARPD CPU(s) ARPD CPU(s) ARPD CPU(s) 

10 5 1.435 0.00 0.681 0.00 1.836 0.00 1.194 0.00 2.208 0.00 2.208 0.00 1.696 0.00 
10 10 1.357 0.00 0.487 0.00 1.423 0.00 1.044 0.00 2.362 0.00 2.362 0.00 1.743 0.00 
10 15 1.005 0.00 0.356 0.01 1.355 0.00 0.642 0.00 1.815 0.00 1.815 0.00 1.471 0.00 
10 20 3.081 0.00 2.359 0.01 3.260 0.06 2.749 0.00 3.821 0.00 3.821 0.00 3.298 0.00 
20 5 5.504 0.01 4.745 0.02 5.553 0.00 4.614 0.00 6.132 0.00 5.662 0.00 5.353 0.05 
20 10 5.268 0.01 3.885 0.02 5.246 0.05 4.383 0.06 6.355 0.00 5.697 0.00 5.090 0.06 
20 15 4.063 0.02 2.855 0.04 4.192 0.00 3.321 0.05 4.988 0.00 4.529 0.00 4.223 0.11 
20 20 3.517 0.02 2.471 0.05 3.631 0.06 2.882 0.05 4.395 0.00 4.009 0.00 3.732 0.16 
30 5 5.311 0.03 4.809 0.05 5.237 0.11 4.140 0.11 5.372 0.00 4.836 0.00 4.735 0.17 
30 10 4.460 0.04 3.575 0.08 4.534 0.16 3.697 0.17 6.070 0.00 5.110 0.05 4.614 0.27 
30 15 4.150 0.06 2.983 0.11 4.149 0.17 3.213 0.22 5.076 0.05 4.369 0.06 4.150 0.50 
30 20 3.567 0.07 2.424 0.14 3.534 0.22 2.633 0.28 4.565 0.00 3.647 0.05 3.492 0.60 
40 5 5.717 0.07 5.066 0.12 5.282 0.27 4.032 0.38 4.726 0.06 4.247 0.06 4.185 0.50 
40 10 4.658 0.10 3.668 0.18 4.621 0.39 3.674 0.55 5.092 0.00 4.278 0.11 4.045 0.87 
40 15 4.051 0.14 2.932 0.26 3.866 0.54 3.045 0.71 5.252 0.00 4.068 0.11 3.923 1.37 
40 20 3.711 0.17 2.637 0.34 3.691 0.61 2.893 0.93 4.780 0.06 3.897 0.22 3.586 1.81 
50 5 5.186 0.12 5.016 0.24 4.862 0.61 3.692 0.83 4.467 0.05 3.934 0.11 3.898 1.10 
50 10 5.166 0.20 4.105 0.36 4.601 0.93 3.745 1.32 5.730 0.05 4.411 0.22 4.268 2.20 
50 15 3.988 0.26 2.943 0.49 3.814 1.27 2.921 1.81 5.042 0.11 3.778 0.33 3.549 3.30 
50 20 3.742 0.34 2.650 0.63 3.620 1.53 2.843 2.30 5.068 0.11 3.794 0.44 3.606 4.39 
60 5 4.788 0.21 4.684 0.38 4.439 1.15 3.230 1.75 3.833 0.06 3.230 0.27 3.207 2.25 
60 10 5.148 0.33 4.445 0.64 4.946 1.87 3.869 2.69 6.017 0.11 4.544 0.44 4.359 4.45 
60 15 4.577 0.46 3.449 0.85 4.204 2.47 3.388 3.63 5.482 0.11 4.180 0.66 3.973 6.70 
60 20 3.455 0.59 2.458 1.09 3.391 3.19 2.697 4.67 4.657 0.16 3.128 0.93 3.018 8.90 
70 5 4.586 0.32 4.430 0.59 3.997 2.30 2.901 3.08 2.984 0.06 2.613 0.39 2.597 4.06 
70 10 5.059 0.53 4.427 0.94 4.657 3.30 3.782 4.89 5.661 0.16 4.317 0.82 4.218 8.13 
70 15 4.113 0.74 3.238 1.30 3.890 4.56 2.932 6.70 4.748 0.17 3.376 1.26 3.215 12.14 
70 20 3.647 0.93 2.605 1.67 3.386 5.76 2.506 8.56 4.795 0.22 3.236 1.60 3.046 16.20 
80 5 4.819 0.50 4.495 0.89 4.063 3.63 2.917 5.44 3.262 0.11 2.779 0.66 2.758 6.87 
80 10 5.332 0.78 4.817 1.43 4.976 5.71 3.929 8.18 5.588 0.17 4.435 1.37 4.324 13.73 
80 15 4.161 1.06 3.261 1.91 3.769 7.75 2.919 11.26 4.859 0.28 3.358 2.03 3.259 20.54 
80 20 3.481 1.38 2.674 2.46 3.499 9.83 2.545 14.39 4.586 0.33 3.128 2.75 2.956 27.41 
100 5 3.301 0.94 2.574 1.71 2.154 8.79 1.064 12.63 1.149 0.16 0.840 1.65 0.832 16.53 
100 10 3.172 1.51 2.713 2.75 2.559 13.40 1.570 20.49 2.891 0.33 1.801 3.35 1.710 32.90 
100 15 2.772 2.09 2.098 3.68 2.435 18.62 1.515 27.30 3.788 0.50 2.386 4.94 2.260 49.27 
100 20 2.610 2.68 1.768 4.73 2.355 23.73 1.463 34.99 3.539 0.66 2.014 6.65 1.880 65.53 
200 5 2.961 7.51 1.729 13.17 1.533 137.04 0.658 193.83 0.613 1.27 0.404 25.70 0.401 255.51 
200 10 2.810 12.01 2.428 20.93 2.081 208.55 1.024 309.23 1.581 2.63 0.831 51.36 0.792 510.15 
200 15 2.649 16.44 2.171 28.70 1.873 285.12 1.073 424.08 2.320 3.90 1.290 76.95 1.183 764.29 
200 20 2.426 21.15 1.815 36.89 1.787 365.75 1.046 543.87 3.029 5.22 1.472 102.61 1.347 1019.36 

Avg: 3.870  3.073 3.608 2.710  4.217 3.346 3.150  
 

Table 3. Comparison of the simple heuristics for the flowtime minimisation problem 



  Hypotheses to be tested 
n m WY ≤ RZ WY ≤ LR(n) WY ≤ B5FT WY ≤ FL RZ ≤ LR(n) RZ ≤ B5FT RZ ≤ FL LR(n) ≤ B5FT LR(n) ≤ FL B5FT ≤ FL

10 5 100.000 100.000 100.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000
10 10 100.000 0.000 100.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000
10 15 100.000 0.000 100.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000
10 20 100.000 0.307 100.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000
20 5 99.559 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
20 10 4.133 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000
20 15 100.000 7.243 100.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000
20 20 100.000 0.000 100.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000
30 5 0.000 100.000 100.000 100.000 100.000 100.000 100.000 0.045 100.000 100.000
30 10 100.000 0.000 100.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000
30 15 71.357 73.027 100.000 100.000 52.814 100.000 100.000 100.000 100.000 0.000
30 20 3.643 99.981 100.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000
40 5 0.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000 100.000 100.000
40 10 0.396 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 73.729
40 15 0.000 0.002 100.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000
40 20 6.801 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000
50 5 0.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000 100.000 100.000
50 10 0.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
50 15 0.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 99.537
50 20 0.000 88.509 100.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000
60 5 0.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000 8.318 100.000
60 10 0.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000 100.000 100.000
60 15 0.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
60 20 0.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000
70 5 0.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000 0.000 100.000
70 10 0.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000 100.000 100.000
70 15 0.000 100.000 100.000 100.000 100.000 100.000 100.000 3.198 100.000 100.000
70 20 0.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
80 5 0.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000 0.000 100.000
80 10 0.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000 100.000 100.000
80 15 0.000 100.000 100.000 100.000 100.000 100.000 100.000 37.711 100.000 100.000
80 20 92.531 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
100 5 0.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000 0.000 100.000
100 10 0.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000 100.000 100.000
100 15 0.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
100 20 0.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
200 5 0.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000 0.000 100.000
200 10 0.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000 0.000 100.000
200 15 0.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000 100.000 100.000
200 20 0.000 100.000 0.000 100.000 100.000 100.000 100.000 0.000 100.000 100.000
 
Table 4. Maximum level of significance (p) for the rejection of H0 for the simple heuristics 



With respect to the local improvement method to employ within the third phase, it has 

been previously mentioned that, in addition to the existing three strategies employed in 

the literature (FPE, FPE-R, and BPE) and the BPE-R strategy that follows straight from 

the previous, the insertion strategy can be also considered. This strategy seems to be 

interesting because, although there are no studies on the efficiency of this 

neighbourhood for the problem under consideration, the insertion is considered to be the 

most efficient neighbourhood with respect to the makespan minimisation problem (see 

e.g. [22]). Additionally, the insertion neighbourhood constitutes the basis for the 

improvement phase of the RZ heuristic, which produces acceptable solutions 

(particularly if integrated into a composite heuristic, as in the IH7 heuristic). Therefore, 

we also consider the following four neighbourhood strategies: FIE (Forward Insertion 

Exchange), FIE-R (Forward Insertion Exchange – Restart), BIE (Backward Insertion 

Exchange), and BIE-R (Backward Insertion Exchange – Restart). Their definition is 

analogous to the strategies presented in section 2, so we omit their explicit description. 

 

Obviously, the efficiency of the improvement strategy may depend on the quality of the 

initial (starting) solution and on whether the heuristic is connected or not to a specific 

kind of neighbourhood (i.e., the FL heuristic is connected to the FPE neighbourhood 

and therefore, it may seem foreseeable that this insertion neighbourhood may explore 

different solutions and thus be more effective). In order to check these assumptions, we 

obtain the ARPD values for all eight neighbouring strategies starting from the solutions 

provided by several heuristics (i.e. Random solution, RZ, WY, FL, and C1). The results 

are shown in table 5 in terms of the relative ARPD improvement of each strategy with 

respect to the starting solution, i.e.: 100
ARPD(H)

ARPD(N(H))ARPD(H) ×−  

 

where ARPD(H) is the ARPD obtained by applying a specific heuristic H and 

ARPD(N(H)) is the ARPD obtained after applying the neighbouring strategy N to the 

solution obtained by H. The higher the value of the relative ARPD improvement, the 

greater the improvement obtained when applying that specific neighbouring strategy to 

the solution provided by the heuristic. In table 5, the ranks of these relative ARPD 

improvements are shown within brackets. In view of this table, the following statements 

can be made: 

 



•  With the exception of the case with the random solution as starting solution, the 

forward strategy always produces better results than the corresponding backward 

strategy. 

•  For most of the cases, re-starting the search after finding a new solution 

improves the results with respect to not doing so. 

•  For random, WY, and RZ, the pairwise interchange neighbourhood seems to be 

more efficient than the insertion neighbourhood. However, for FL and Comp_1, 

the best results are achieved for the insertion neighbourhood. 

 

With all the information gathered from the above results, we built a second composite 

heuristic C2, consisting of employing C1 to obtain an initial solution, then applying the 

RZ-C construction phase, and finally applying FIE-R to the resulting solution . These 

two heuristics – C1 and C2 – are compared with the most effective composite heuristics, 

i.e. the IH7 heuristic by [1], and FL-IH7 [7]. Additionally, we include the FL heuristic 

in order to check whether C1 outperforms FL or not. The results are presented in table 

6. 

 
Pairwise Exchange (PE) Insertion Exchange (IE) 

Forward (F) Backward (B) Forward (F) Backward (B) Heuristic 

FPE-R FPE BPE-R BPE FIE-R FIE BIE-R BIE 

Random 91.548 
(1) 

87.753 
(2) 

84.491 
(4) 

85.632 
(3) 

76.856 
(7) 

74.353 
(8) 

77.819 
(5) 

77.263 
(6) 

RZ 36.099 
(2) 

32.293 
(3) 

31.558 
(5) 

31.293 
(6) 

32.231 
(4) 

44.403 
(1) 

27.293 
(7) 

27.236 
(8) 

WY 28.991 
(2) 

37.661 
(1) 

24.822 
(6) 

25.016 
(5) 

28.721 
(3) 

27.284 
(4) 

23.189 
(8) 

23.717 
(7) 

FL 3.589 
(5) 

3.381 
(6) 

3.178 
(8) 

3.271 
(7) 

16.505 
(1) 

15.870 
(2) 

12.894 
(4) 

13.345 
(3) 

Comp_1 22.176 
(5) 

22.082 
(6) 

21.870 
(8) 

21.905 
(7) 

23.821 
(1) 

23.625 
(2) 

22.531 
(4) 

22.693 
(3) 

Table 5. Average relative improvement over each heuristic solution obtained for the different neighbouring 

strategies. The number within brackets is the rank that each neighbouring strategy occupies. 

 

Again, we test a number of hypotheses using a one-sided test for the differences of 

means of paired samples for every combination of m and n. More specifically, we tested 

the combinations of the best simple heuristics B5FT and FL, and the IH7, FL-IH7, C1, 

and C2 composite heuristics. We summarize in table 7 the hypotheses H0 and the 

corresponding hypotheses H1 in the symmetric position of the matrix. The only 

exception is the hypothesis FT(B5FT) ≤ FT(FL), which has been already tested in table 

4. 



 

 

 

B5FT 

 

FL C1 IH7 

 

IH7-FL C2 

 

B5FT 

 

 
 

 
F(B5FT) ≤ F(C1) 

F(B5FT) ≤ 

F(IH7) 

 

F(B5FT) ≤ 

F(IH7-FL) 

F(B5FT) ≤ F(C2) 

FL 
 

 
 

 

F(FL) ≤ F(C1) 

 

F(FL) ≤ F(IH7) 

 

F(FL) ≤  

F(IH7-FL) 

F(FL) ≤ F(C2) 

C1 
F(B5FT) > 

F(C1) 

 

F(FL) > F(C1) 

 

 

 

F(C1) ≤ F(IH7) 

 

 

F(C1) ≤  

F(IH7-FL) 

F(C1) ≤ F(C2) 

IH7 
F(B5FT) > 

F(IH7) 

 

F(FL) > F(IH7) 

 

 

F(C1) > F(IH7) 

 

 
F(IH7) ≤ 

F(IH7-FL) 
F(IH7) ≤ F(C2) 

IH7-FL 
F(B5FT) > 

F(IH7-FL) 

 

F(FL) > F(IH7-FL) 

 

F(C1) >  

F(IH7-FL) 

F(IH7) >  

F(IH7-FL) 

 
F(IH7-FL) ≤ 

F(C2) 

 

C2 

 

F(B5FT) > 

F(C2) 
F(FL) > F(C2) F(C1) > F(C2) F(IH7) > F(C2) 

F(IH7-FL) > 

F(C2) 
 

 
 

Table 7. Hypotheses to be tested for the composite heuristics 

 
 

The results are shown in table 8, where ps are given as the maximum level of 

significance to reject H0. From the results of tables 7 and 8, the following statements 

can be made: 

 

- The best simple heuristics (FL and B5FT) are outperformed by all the composite 

heuristics for most of the problem sizes. More specifically, C1 outperforms FL for 

all except two problem sizes (note that both heuristics only differ in the initial job 

ordering). Therefore, employing the scheme by Liu and Reeves as starting order 

seems to be of interest. C1 is also better than B5FT on the overall results, although 

it is outperformed by the latter for one third of the settings (those involving the 

smallest number of jobs). Finally, C1 is outperformed by the rest of the heuristics. 

- Regarding the quality of the results, C2 is the best of the heuristics under 

consideration. It outperforms the rest for all problem sizes, with the exception of 

IH7-FL for three specific settings. It is also the most time-consuming heuristic, 

although in the order of magnitude of the heuristics under comparison. 

H0 

H1 



- With respect to the rest of heuristics, IH7-FL performs only slightly better than IH7 

in the overall results. However, this difference is consistent for all problem sizes. 

 

 

 
n M FL C1 IH7 FL-IH7 C2 
  ARPD CPU(s) ARPD CPU(s) ARPD CPU(s) ARPD CPU(s) ARPD CPU(s) 

10 5 1.182 0.00 0.970 0.00 0.685 0.00 0.472 0.00 0.405 0.00
10 10 1.042 0.00 0.693 0.00 0.508 0.01 0.470 0.01 0.307 0.00
10 15 0.619 0.00 0.718 0.00 0.466 0.01 0.301 0.01 0.303 0.00
10 20 2.749 0.00 2.649 0.00 2.477 0.01 2.375 0.01 2.333 0.01
20 5 4.614 0.00 4.496 0.01 3.983 0.03 3.730 0.04 3.824 0.04
20 10 4.383 0.06 4.089 0.02 3.622 0.05 3.512 0.06 3.198 0.07
20 15 3.312 0.05 3.275 0.02 2.636 0.07 2.468 0.08 2.392 0.08
20 20 2.876 0.05 2.793 0.03 2.336 0.09 2.252 0.10 2.025 0.11
30 5 4.140 0.11 3.924 0.05 3.664 0.16 3.416 0.18 3.277 0.18
30 10 3.694 0.17 3.518 0.08 2.979 0.23 2.705 0.28 2.699 0.28
30 15 3.210 0.22 3.230 0.11 2.703 0.30 2.385 0.35 2.280 0.39
30 20 2.632 0.28 2.608 0.14 2.076 0.37 1.939 0.44 1.896 0.46
40 5 4.032 0.38 3.699 0.15 3.559 0.50 3.287 0.54 3.196 0.53
40 10 3.674 0.55 3.371 0.25 2.867 0.67 2.688 0.79 2.529 0.84
40 15 3.044 0.71 2.837 0.34 2.358 0.87 2.249 1.06 2.008 1.10
40 20 2.887 0.93 2.901 0.43 2.243 1.07 1.989 1.34 1.890 1.42
50 5 3.692 0.83 3.503 0.35 3.384 1.16 3.099 1.31 3.060 1.15
50 10 3.745 1.32 3.539 0.59 3.054 1.56 2.879 1.87 2.697 2.07
50 15 2.919 1.81 2.756 0.81 2.272 2.11 2.055 2.44 1.900 2.65
50 20 2.836 2.30 2.779 1.02 2.250 2.52 1.907 3.12 1.882 3.34
60 5 3.230 1.75 2.887 0.72 2.917 2.59 2.612 2.56 2.482 2.34
60 10 3.869 2.69 3.659 1.19 3.281 3.26 3.063 4.00 2.921 3.72
60 15 3.388 3.63 3.246 1.64 2.641 4.19 2.617 5.05 2.394 5.28
60 20 2.697 4.67 2.466 2.08 1.944 5.19 1.775 6.33 1.573 6.49
70 5 2.901 3.08 2.648 1.31 2.514 5.07 2.382 4.58 2.275 4.08
70 10 3.782 4.89 3.443 2.17 3.162 6.10 2.906 7.14 2.732 6.99
70 15 2.932 6.70 2.689 2.99 2.440 7.75 2.131 9.01 1.891 9.38
70 20 2.506 8.56 2.367 3.81 1.958 9.29 1.698 11.39 1.577 12.11
80 5 2.917 5.44 2.606 2.20 2.657 8.55 2.523 7.53 2.331 7.13
80 10 3.929 8.18 3.707 3.65 3.430 10.76 3.128 11.68 3.032 11.74
80 15 2.919 11.26 2.717 5.05 2.282 13.29 2.194 14.95 2.021 15.62
80 20 2.545 14.39 2.416 6.43 2.138 15.54 1.887 18.67 1.669 20.25
100 5 1.064 12.63 0.784 12.63 0.812 22.71 0.617 18.89 0.541 16.40
100 10 1.570 20.49 1.286 20.05 1.065 28.53 0.977 27.12 0.710 27.78
100 15 1.515 27.30 1.295 27.87 1.046 32.50 0.831 34.99 0.633 36.67
100 20 1.463 34.99 1.374 35.86 0.993 39.18 0.713 44.51 0.637 49.61
200 5 0.658 193.83 0.358 191.41 0.364 527.39 0.364 307.96 0.231 236.80
200 10 1.024 309.23 0.701 309.93 0.794 579.93 0.556 448.52 0.404 401.93
200 15 1.073 424.08 0.892 424.77 0.778 617.73 0.549 578.91 0.397 584.52
200 20 1.046 543.87 0.937 548.32 0.760 687.57 0.472 716.56 0.381 750.81

          
Avg. 2.708  2.521  2.202  2.004  1.873  

 
Table 6. Comparison of the composite heuristics for the problem 

 



n m B5FT ≤ C1 B5FT ≤ 
IH7 

B5FT ≤ 
IH7-FL B5FT ≤ C2 FL≤C1 FL≤IH7 FL≤  

IH7-FL FL≤C2 C1≤IH7 C1≤IH7-FL C1≤C2 IH7 ≤  
IH7-FL IH7≤C2 IH7-FL≤C2 

10 5 0.000 24.137 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
10 10 0.000 0.004 83.111 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 99.998 100.000 100.000 
10 15 0.000 0.000 100.000 100.000 0.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 15.875 
10 20 0.000 0.000 0.020 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
20 5 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000 
20 10 0.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
20 15 0.000 100.000 100.000 100.000 99.861 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
20 20 0.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
30 5 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
30 10 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 63.348 
30 15 0.000 100.000 100.000 100.000 7.877 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
30 20 0.000 100.000 100.000 100.000 99.266 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
40 5 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
40 10 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
40 15 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
40 20 0.000 100.000 100.000 100.000 16.833 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
50 5 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 99.993 
50 10 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
50 15 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
50 20 0.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 99.864 
60 5 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000 100.000 100.000 100.000 100.000 100.000 
60 10 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
60 15 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 98.941 100.000 100.000 
60 20 24.095 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
70 5 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
70 10 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
70 15 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
70 20 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
80 5 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000 100.000 100.000 100.000 100.000 100.000 
80 10 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
80 15 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
80 20 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
100 5 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 0.002 100.000 100.000 100.000 100.000 100.000 
100 10 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
100 15 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
100 20 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
200 5 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 1.514 10.223 100.000 64.500 100.000 100.000 
200 10 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 0.000 100.000 100.000 100.000 100.000 100.000 
200 15 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
200 20 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 

     
Table 8. Maximum level of significance (p) for the rejection of H0 for the composite heuristics 

 



 

5. Conclusions 

 

In this paper, we have reviewed and compared the most noteworthy heuristics for the 

problem of flowtime minimisation in permutation flowshops. For this comparison, we 

have separated the simple heuristics from the composite heuristics (being the latter 

formed by one or more simple heuristics). With respect to the simple heuristics, two 

heuristics should be highlighted: the FL heuristic and the B5FT heuristic. The first is 

best in terms of quality of the results (particularly as the problem size grows), and the 

latter obtains very good results in short computation times. The fastest heuristic is the 

LR(1), which allows obtaining reasonably good solutions in negligible computation 

times. 

 

In view of the results obtained from the comparison of the simple heuristics, we have 

built a composite heuristic (C1) which is a combination of the FL heuristic using the 

result of LR(1) as starting order. Since most of the composite heuristics incorporate a 

local search phase for improving the solution obtained, we have studied several local 

search schemes and selected the first one to build a second composite heuristic. This 

heuristic – named C2 – employs the solution obtained by C1, the best constructive 

scheme for composite heuristics, and the best local search mechanism. The 

experimental results carried out show that C2 outperforms the existing heuristics. 
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