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An Improved Iterative Technique for the Quasi-TEM 
Analysis of Generalized Planar Lines 

Enrique Drake, Francisco Medina, Member IEEE, and Manuel Homo, Member IEEE 

Abstract-The Generalized Bioconjugate Gradient Method 
(GBGM) and FFT algorithms are used for the quasi-TEM anal- 
ysis of generalized multistrip lines embedded in multilayered 
lossless/lossy, iso/anisotropic dielectric and/or magnetic media. 
Important computational improvement is achieved by includ- 
ing asymptotic extraction techniques in the determination of 
the spatial Green’s function matrix. Comparisons with other 
iterative procedures are presented. Several practical structures 
are analyzed and numerical results are compared with previ- 
ously published data. 

I. INTRODUCTION 
N THE PAST decades, the quasi-TEM approximation I has been extensively used to analyze planar microstrip- 

like lines appearing in MIC and MMIC. As it is well 
known, quasi-TEM analysis is useful and reasonably ac- 
curate at the lower end of the frequency spectrum for many 
practical lines involving lossless/lossy dielectridmag- 
netic materials [l] .  

Under quasi-TEM assumption, the propagation prob- 
lem can be reduced to solving the two dimensional La- 
place’s equation subjected to the appropriate boundary 
conditions. A wide variety of techniques has been used to 
solve that problem (conformal mapping, spectral and 
variational methods, integral equation method and so on). 
When one of these standard methods is applied to the 
analysis of planar structures of arbitrary geometry, the ad- 
dition of substrate layers and metallizations considerably 
complicates the application of the method. This also oc- 
curs in the resolution of other electromagnetic problems 
(scattering, radiation . . .) in which planar structures are 
involved. Owing to this, several iterative procedures have 
been recently proposed to deal with this type of problems 
[2]-[8]. These iterative techniques, in conjunction with 
FFT algorithms, provide an efficient way to solve integral 
or matrix convolutional equations. In the case of large 
size matrix operators, the primary advantage arising from 
the use of recursive algorithms is to circumvent the ex- 
cessive storage problems inherent in the Gaussian elimi- 
nation or other direct inversion methods. Another argu- 
ment for iteratively solving an operator equation is the 
obvious fact that the process can be stopped once a pre- 
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specified degree of accuracy in the solution is reached. 
This generally results in CPU time savings. In addition, 
the choice of the initial estimate (starting point of the it- 
erative process) is not critical. Therefore, it is not nec- 
essary to have previous knowledge of the features of the 
solution. 

The different versions of the Conjugate Gradient 
Method (CGM) are probably the best known iterative 
techniques [6]. In contrast to the spectral iterative tech- 
niques [3], [7], the C G d  offers theoretical convergence 
to the exact solution in a finite number of steps (in absence 
of round-off error). Nevertheless, in some practical cases, 
the spectral iterative techniques (CCST [3], SIM [7]) have 
proved to have a higher rate of convergence than the 
CGM . 

A modification of the CGM has been recently devel- 
oped to enhance its rate of convergence: the Generalized 
Biconjugate Gradient Method (GBGM) [8]. The GBGM 
simultaneously solves both the operator equation and its 
adjoint equation, thus avoiding the resolution of the nor- 
mal equation associated with non-Hermitian operators- 
this is the case in this paper-, which is one of the main 
reasons for the slow convergence in the CGM. In the 
present paper, we intend to use the GBGM for analyzing 
a very general class of planar transmission lines under 
quasi-TEM assumption and to compare the GBGM with 
other iterative schemes. 

Prior to solving the integral equation for the unknown 
free charge density per unit length (p.u.1.) on the con- 
ducting strips, it is necessary to determine the spatial 
Green’s function matrix corresponding to the structure 
under analysis. In this paper, we have also focused our 
attention on the efficient computation of this quantity. To 
achieve this goal, we have used an efficient asymptotic 
extraction technique in the determination of the spatial 
Green’s function from its spectral representation. The 
spectral Green’s function is readily obtained by using the 
theory explained in [9], [ 11. This technique, together with 
the FFT algorithm, has made it possible to minimize 
memory storage and CPU time. 

In order to illustrate the validity and the strength of the 
method, numerical results are presented and compared 
with published data for some practical structures. 

11. OUTLINE OF THE PROBLEM: QUASI-TEM ANALYSIS 
The cross section of the general planar multiconductor 

transmission line to be analyzed is shown in Fig. 1 .  The 
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Electric wall. magnetic wall or open boundary of the operator equation appearing in (1) when substrate 
losses, or longitudinally magnetized semiconductors or 
ferrites are present. Nevertheless, in the present work we 
have checked that the GBGM has a faster convergence 
than the ordinary CGM even if the operator of (1) is Her- 
mitian. 

To solve (1) by means of the GBGM, it is necessary to 
discretize that convolutional expression. Two possibili- 
ties are available for this purpose: the use of the Method 
of Moments (MM) [4], [lo] or the direct application of 
the GBGM. In the present paper, we choose the latter op- 
tion. The total region that takes part in the problem is 
divided into N ,  subintervals of width T. All the functions 
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i=N1 
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i= n 

i=nl 

i=2 Y 
i=l 
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Fig. 1. Cross-section of a general multilayered multistrip line. 

system presents translational symmetry in the direction 
perpendicular to the x-y plane. The stratified medium is 
made of N layers of lossy iso/anisotropic dielectric or 
magnetic substrates. The lower boundary of the configu- 
ration (interface 0) is an electric wall and the upper 
boundary (interface N) can be considered to be any one 
of these three possibilities: grounded plates, magnetic 
walls or open boundaries. The transverse permittivity ten- 
sor [4, and the transverse magnetic permeability tensor 
[ p J  of each layer (i = 1 ,  * , N) are assumed to be 
complex in order to account for substrate losses in the 
analysis. The equivalent permittivity tensor [l] used for 
the determination of the inductance matrix, [L] , becomes 
non-symmetrical if longitudinally magnetized semicon- 
ductors or ferrites are involved. In Fig. 1,  M interfaces 

r 

which are defined in that region and appear in the iterative 
process (including the charge density and the Green’s 
functions) are considered to be constant in each subinter- 
val and are assumed to be equal to their value at the center 
of the subregion. Once the discretization process has been 
carried out, in each iteration, the convolutions are eval- 
uated at the same points at which the original functions> 
are sampled. This is what a method of moment practi- 
tioner would term as delta function expansion and weight- 
ing. 

At this point, it must be noted that in order to compute 
a linear convolution sum in an efficient way, it is suitable 
to approximate that linear convolution by a cyclic discrete 
convolution, thus taking advantage of the use of FFT al- 
gorithms. After doing this, (1) is reduced to 

(nk, k = 1, * - , M) are occupied by an arbitrary num- M 

ber, N,, of infinitely thin perfect conducting strips with v,(m) = TFFT-l [  J =  c 1 ~ ; ~ ( n )  FFT { p j } ]  
arbitrary locations. 

The determination of the quasi-TEM propagation pa- 
rameters of the line is entirely based on the evaluation of 

v k / k T e  D, i = 1,  * - , M (2) 

the complex capacitance matrix per unit length (p.u.l), 
[C], [ 13. This evaluation implies the resolution of the fol- 
lowing system of integral equations (for N ,  canonical ex- 
citation problems): 

where Di is the region occupied by metallizations at the 
ith metallized interface, p j ( x )  and K(x) are the complex 
charge density and the voltage excitation at the ith metal- 
lized interface respectively, and Gij(x - x ’ )  (i, J = 1,  

- , M) stand for the values of the spatial Green’s func- 
tion at the metallized interfaces. 

111. APPLICATION OF THE GBGM-FFT ALGORITHM 
The GBGM [8] is an iterative method used to solve the 

operator equation A I  = Y in which A is a given linear 
operator and I is the unknown to be found for a particular 
excitation Y. As it is said in [8], the GBGM is specially 
fitted for the solution of the equation AI = Y when the 
operator A is non-Hermitian. In general, this is the case 

where K ( k T )  is the voltage (with value 0 or 1) on the kth 
point sampled on the strips of the i th metallized interface, 
FFT { p j }  is the Fast Fourier Transform of the sampled 
charge density at the jth metallized interface including the 
zero padding for the regions without metallizations, and 
the G:,(n) (i,  J = 1, - * - , M) are obtained as described 
in the following section. Once the discretization process 
has been carried out, the computational implementation 
of the GBGM is no longer a problem because (2) is just a 
system of a linear algebraic equations. 

It can be observed that the use of FFT (corresponding 
to cyclic convolutions) to compute linear convolution 
sums implies that the cross section of the line under study 
presents a periodic nature (in the x-axis direction). In fact, 
if To is the total width of the sampled region (To = N,, T ) ,  
the equation (2) corresponds to the structure obtained by 
the periodic repetition of that region with period To. 
Therefore, the aperiodic sections must be periodically 
simulated by introducing two fictitious side walls far away 
from the metallized regions. As we will see, the choice 
of the width (To) of an appropriate simulating period is a 
function of the geometrical characteristics of each line. 
Obviously, really periodic structures are taken into ac- 
count in an exact way. 
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IV. TREATMENT OF THE GREEN’S FUNCTION MATRIX 
The computation of the spatial Green’s function matrix 

for a general multilayered configuration cannot be 
achieved in closed form. On the contrary, a very simple 
systematic algorithm can be implemented to obtain its 
Fourier transform. This has been done here by using the 
recurrent scheme reported in [9]-valid for non-coplanar 
conducting strips-in conjunction with the theory devel- 
oped in [ 11-which enables us to deal with lossy and mag- 
netic substrates. This technique has been recently called 
the Equivalent Boundary Method (EBM) [ 1 13. 

In practice, the efficient computation of the convolution 
sums is achieved by using the Discrete Convolution Theo- 
rem and the FFT algorithms. The application of this tech- 
nique only requires the knowledge of the spectral Green’s 
function matrix. However, a computational question 
drives us to build an approximation of the spatial Green’s 
function matrix. When the periodic simulation of an aper- 
iodic structure is performed, all the discretized functions 
must be usually padded with a large number of zeros. This 
zero padding may force us to store an excessive amount 
of samples with the consequent problems of CPU time 
and memory storage limitation. The knowledge of an ap- 
proximation of the spatial Green’s function matrix would 
allow us to overcome this drawback by keeping only the 
part of it which is involved in the convolution process, 
i.e., a middle region whose width is twice the total width 
of the region with metallizations. 

As a first possibility, we might sample the spectral 
Green’s functions { Gl, (a)} = and apply the adequate 
inverse FFT’s. However, the band-unlimited character of 
these spectral functions, specially when i = j ,  would force 
us to keep a high number of samples to reduce the inher- 
ent error associated with the spectral truncation. In the 
present paper, a new asymptotic extraction technique has 
been applied to the diagonal spectral Green’s function 
{Gii(a))fn= I to minimize the storage requirements and the 
CPU time of these inverse FFT’s. Off-diagonal elements 
have not been treated since they exponentially approach 
to zero when the spectral variable, a, approaches infinity. 

From the studies presented in [9] and [ l ] ,  it is easy to 
check that the asymptotic behavior of the diagonal spec- 
tral Green’s function associated with each metallized in- 
terface (i = 1, * * - , M) is 

K’, 
IaI 

G,<a) + - f o r a  + +03 

where 

j being the imaginary unit G, and 

(3) 

(4) 

Observe that when any substrate adjacent to the metal- 
lizations has a complex non-symmetrical permeability 
tensor and, therefore, a complex non-symmetrical equiv- 
alent permittivity tensor, the asymptotic behavior of the 
corresponding Green’s function has not any symmetry 
with respect to the spectral variable a (in this sense, we 
have in general a non-symmetrical spectral Green’s func- 
tion). 

In the following, we are going to define auxiliary func- 
tions e;(,) associated with the diagonal spectral Green’s 
functions &(a). The functions &(CY) and Gll(a) must 
have the same asymptotic behavior in the spectral domain 
for a given value of i. In addition, the spatial counterpart 
of eL(a) must be analytically known. In the application 
of the asymptotic extraction technique the spectral Green’s 
function matrix is first obtained by using the EBM. Then, 
the auxiliary e&(,) are substracted from the diagonal 

Let Gh(a) be the spectral Green’s function at the ith 
metallized interface corresponding to the structure ob- 
tained from the original line by removing the upper 
boundary and replacing the original substrates by an iso- 
tropic and homogeneous medium with dielectric permit- 
tivity CL. The analytical expression of &,(a) may be eas- 
ily obtained from the EBM [9]: 

G’f,(a) = [ ~ & ( ( a (  + a coth (ah&))]-’ (5)  

where E &  must be chosen in such a way that the possible 
non-symmetrical asymptotic behavior of Glj (a) is accom- 
modated, i.e.: 

Gjj(a) fo r i  = 1, * 9 M. 

a > o  
(.:=.; 1 

and the effective substrate height h&, although arbitrary 
to some extent, has been chosen in such a way that the 
condition Re {G~,(O)}  = Re {eii(0)} is fulfilled. With 
this choice, GL(a) and Gjj(a) are not very different in the 
surroundings of a = 0, thus avoiding numerical problems 
as we will see later on. 

At this point, we can obtain a function matrix 
[Gj(a)] (i, j = 1,  , M) defined as follows: 
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A discrete approximation of the corresponding spatial 
function matrix [Gd(x - x ’ ) ]  can be built by taking Np 
samples (with period equal to l/To) of [Gd(a)] and ap- 
plying inverse FFT: 

I 
Ga(mT) = TFFT-’ {Ga(n/To)} 

m, n = - N p / 2 ,  * - , N p / 2  - 1 

i , j  = 1, , M .  (8) 
As a consequence of the asymptotic extraction process, 

the functions matrix [ed(a)] has a narrower range of val- 
ues significantly different from zero, thus making possible 
the drastic reduction of the number Np of samples. This 
reduction of Np and the consequent diminution of the size 
of the sampled spectral region ( N p / T o  = 1/T)  imply a 
larger separation (T) between the contiguous samples in 
the spatial domain. Third order spline interpolation is now 
used to increase the discretization level. Once the samples 
of [Gd] in (8) have been interpolated with an interpolation 
factor of Ni, we have Npi = NiNp points of [Gd(x - x ’ ) ]  
separated by a period = T / N i .  At this point, it is im- 
portant to remember that only the N ,  samples correspond- 
ing to a middle interval-whose width is twice the total 
width of the region with metallizations-are going to be 
involved in the convolutions. Hence, only N, samples of 
the discretized spatial Green’s functions Gij(mTi) m = 
- N , / 2 ,  * - - ? N , / 2  - 1 must be computed from 
G j ( m 6 )  and G&(m&): 

G2(m&) + GL(m&) fo r i  = j 

Gy  (mTJ fo r i  # j 
(9) Gij(m&) = 

where GL(m&) are samples of G’,(x - x’ ) which are the 
inverse Fourier transforms of infinite combs of samples 
of GL(a) taken with period equal to l/To. Note that the 
functions GL(x - x ’ )  computed in this way are the spatial 
Green’s functions of the asymptotic equivalent structures 
keeping the spatial periodicity (with period To) in the 
x-direction. The functions GL(x - x ‘ )  (i = 1, * , M )  
have been analytically obtained as 

GL(x - x ’ )  

where 

G o - -  - + -  ’ - ;i (€!+ E ! )  

~ 
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X-X‘ (m) 
(b) 

Fig. 2. (a) The spectral Green’s function and the remainder spectral 
functions after asymptotic extraction GA (with ha, = h) and Gd (with h., as 
in this work). Note the nonsymmetrical nature of the Green’s function with 
respect to a. (b) The middle region of the spatial Green’s function G and 
its analytical part Go. for a microstrip configuration on saturated FMS (h  
= 100 pm, w = 200 pm, e = 1%,, U = 5(flm)-’, 4 r M ,  = 2000 G, H, = 
1500 Oe, A H  = I 5  Oe). 

The singularities of Gij (0)  have been replaced by the 
numerically computed integral averages of Gij (x - x’ ) in 
the central interval [ - T / 2 ,  T / 2 ] .  Finally, the values of 

of ( 2 )  are worked out from the N, samples of the 
spatial Green’s functions Gij(m) (where the prime mark 
denotes the replacement of Gij (0)) by direct FFT’s: 

e i ( n )  = FFT {G:j(mTJ} 

m, n = - N c / 2 ,  - - , N , / 2  - 1 

i , j =  1, - - -  , M  (1 1) 

Once the functions G:j(n) have been computed, (2) is 
ready to be solved by GBGM. Since an interpolation pro- 
cess is assumed, we must substitute T by T, in (2). 

V. NUMERICAL RESULTS 
To illustrate the asymptotic extraction technique de- 

scribed above, the Fig. 2(a) shows the absolute value of 
the real part of the normalized spectral Green’s function 
@a) of a microstrip configuration on saturated FMS sub- 
strate longitudinally magnetized. Notice that the presence 
of an external longitudinal magnetic field H, makes the 
spectral Green’s function be non-symmetrical with re- 

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on July 20,2020 at 15:24:58 UTC from IEEE Xplore.  Restrictions apply. 



656 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 40, NO. 4, APRIL 1992 

h, h 2 e o  

K 
v 

IY 

I Y -  W 

W 
0 

2 
3 
W 
IT 

0 
5 10 

SIMUIAT. PERIOD/METALLlZED WIDTH 

(b) 
Fig. 3. (a) Several microstrip configurations on a dielectric substrate of er 
= 15. (b) Relative error in the self-capacitance of a conducting strip with 
the configurations of Fig. 3(a) versus the ratio between the simulating pe- 
nod and the width of the metallized region. (4 . I 
with w / h ,  = 1, h z / h ,  = 20; (-) for (I) with w / h ,  = 
1 ,  h z / h ,  = 1; (-A--A--A--A--A-) for (11) with w / h  = 1 ,  s / h  = 0.1; 
(-H--D--H--H-) for (111) with w / h , ,  = 1 ,  h , / h ,  = 0.1. 

I ) for (1) 

spect to a. If we apply the asymptotic extraction scheme 
with the choice ha, = h,  the dashed line is obtained for 
the remainder Green's function Gi(a). It must be re- 
marked that the sharp nature of eJ(a) would force us to 
have fine sampling. Because of this, the choice of ha, that 
makes Re (e,(O)) = Re (QO)) is more suitable (solid 
line). Another advantage of the asymptotic extraction 
technique is that the central region of the spatial Green's 
function G(x - x ' ) ,  involved in the convolution process, 
is almost analytically built up (see Fig. 2(b)). The values 
of the Green's function in that region are mainly affected 
by the spectral asymptotic behavior, which is analytically 
taken into account. 

In a previous section, we have justified the need to se- 
lect a simulating period for the analysis of aperiodic struc- 
tures. In the present work, we have investigated the re- 
lation between the suitable size of the periodic window 
and the features of the line studied. Fig. 3(b) shows the 
relative error introduced for the periodic simulation in the 
self-capacitance of a conducting strip under different con- 
figurations (see Fig. 3(a)) as a function of the ratio be- 
tween the width of the simulating periodic window and 
the width of the metallized region. The error is relative to 
the value of the self-capacitance when the simulating pe- 

0 5 10 
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I I ' "  

CCST / 

E l  0 " " " " ' ~ ~  

- 0  10 20 
NUMBER OF ITERATIONS 

(b) 
Fig. 4. Rates of convergence of different iterative algorithms for the cal- 
culation of  (a) the capacitance of a symmetrical stripline on alumina ( E ,  = 
9.6, w / h  = 1) with 20 or 40 samples on the strip and (b) the self-capaci- 
tance of the lower strip of a broadside configuration ( E ,  = 15, w / h  = 1). 

riod approaches inifinity. Notice that the relative prox- 
imity between conductors (specially, grounded plates) 
implies a closer confinement of the electromagnetic field 
to the metallized region, thus allowing us to reduce the 
width of the periodic window. 

Another important aspect is to check the improvement 
introduced in the rate of convergence of the iterative pro- 
cess by the use of the GBGM instead of the ordinary CGM 
algarithm. A spectral iterative technique successfully used 
in [3] (named CCST) has been also programmed for com- 
parison. In Fig. 4(a), we compare the rates of conver- 
gence of the CGM, the GBGM and the CCST in the com- 
putation of the capacitance per unit length of a sym- 
metrical stripline. These results correspond to both 20 and 
40 samples on the strip. The 50% reduction in the number 
of iterations obtained by using the GBGM instead of CGM 
is a very typical result in the structures analyzed. Any- 
way, the highest rate of convergence corresponds to the 
CCST. Nevertheless, Fig. 4(b) repeats the comparison for 
a pair of broadside coupled strips, showing the stagnation 
process (one-step improvement is less than the computer 
precision) in the CCST. The stagnation problem in the 
spectral iterative techniques was observed in [7]. This led 
the authors of that paper to modify the algorithm. In re- 
lation to the CPU time, the GBGM presented an average 
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> 

0.5 W/b -+ 1 
Fig. 5.  Effective dielectric constants of  a broadside, edge-coupled micro- 
strip with inverted dielectric in [4] ( s / b  = d / b  = 0.2, c / b  = 10, 
E ,  = 10). 
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‘ ‘ I  0.2 

2 10 100 
FREQ (GHz) 

Fig. 6.  (a) Effective relative permeability of a microstrip on a latched gar- 
net substrate in [ 1 2 ] ( W / h  = 0.5, 4 ?rM, = 1780G. 4rM, = 1030 G). (b) 
Modal slow-wave factors and attenuation constants for a pair of asym- 
metrical strips on two layers in the partially demagnetized state (see [13]) 
(hl = 100 pn,  h2 = 1 0 0  pm, wI = 160 pm, s = 1 0 0  pn, w2 = 100 pm, 
e,, = = 14.9, 4rM, = 870 G, 4sM, = 550 G, dielectric losses: U = 
0.001 (Q “ . ) - I ,  magnetic losses: A = 0.01, N = 1.5). 

(b) 

of 20 ms per iteration (in the case of 40 samples) on a 
VAX-11/785 computer, while the other two algorithms 
presented 60 ms per iteration. 

Finally, in Figs. 5 and 6, we include the analysis of 
some practical structures for comparison purpose. The re- 
sults are compared with data reported in the bibliography, 
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and very good agreement is found. The structure analyzed 
in Fig. 5 is an example of multiconductor configuration 
with non-coplanar metallizations. Symmetry of this struc- 
ture is not taken into account because our aim is to check 
the efficiency of the algorithm programmed for the case 
of several metallized interfaces. In Fig. 6, a pair of con- 
figurations with gyromagnetic substrates are considered 
(non-symmetrical spectral Green’s functions are in- 
volved). 

The method has been exhaustively checked by compar- 
ing it with many other data reported in the literature with 
similar result. The convergence of the method in complex 
cases involving multilayered, lossy and anisotropic ma- 
terials has been also verified. We conclude that the results 
obtained with the computer programs based on the theory 
in this paper are accurate and reliable as long as quasi- 
TEM approximation remains valid. So, this method is an 
efficient alternative to other methods (for example the 
method of moments) applied to the quasi-TEM analysis 
of very general planar structures. 

VI. CONCLUSION 
In this paper, we have presented the quasi-TEM anal- 

ysis of a wide class of planar multiconductor transmission 
lines by employing the GBGM and FFT algorithms. 
Printed conductors are embedded in a layered structure 
including dielectrics, semiconductors or magnetic mate- 
rials. Natural anisotropy and anisotropy produced by lon- 
gitudinal magnetizing fields are accounted for in the anal- 
ysis. 

The spatial Green’s function matrix is used in the for- 
mulation of the problem to reduce memory storage and 
CPU time. This matrix is obtained for the multilayered 
structure from its spectral domain representation, which 
can be readily computed by means of a simple recurrent 
scheme (EBM). This process has been significantly ac- 
celerated by using an asymptotic extraction technique in 
the spectral domain. The singular behavior of the spatial 
domain Green’s matrix is analytically taken into account 
in such a way that the remainder spectral matrix is a nar- 
row band function. In particular, the presence of longi- 
tudinally magnetized ferrites or semiconductors-which 
results in non-symmetrical spectral Green’s functions- 
can be accommodated by using this method. 

Several aspects related to the convergence bahavior of 
the method have been investigated. The choice of simu- 
lating periods to analyze aperiodic lines has been found 
to be strongly related to the geometrical features of the 
lines. The superiority (in the sense of a faster rate of con- 
vergence) of the GBGM over the ordinary CGM algo- 
rithm has also been checked. In spite of the fact that CCST 
has proved to have the highest rate of convergence, it pre- 
sents some stagnation problems. Some examples have 
been included to illustrate the strength and the versatility 
of the method. Comparisons with published data indicate 
that the method presented yields accurate results, thus of- 
fering an efficient alternative technique for the quasi-TEM 
analysis of planar lines. 
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