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Abstract. In this paper we present an application of the stacking tech-
nique to a chunking task: named entity recognition. Stacking consists in
applying machine learning techniques for combining the results of diffe-
rent models. Instead of using several corpus or several tagger generators
to obtain the models needed in stacking, we have applied three transfor-
mations to a single training corpus and then we have used the four ver-
sions of the corpus to train a single tagger generator. Taking as baseline
the results obtained with the original corpus (Fβ=1 value of 81.84), our
experiments show that the three transformations improve this baseline
(the best one reaches 84.51), and that applying stacking also improves
this baseline reaching an Fβ=1 measure of 88.43.

1 Introduction

There are many tasks in natural language processing that consist in associating 
some kind of category to a group of words. Named Entity Extraction, Shallow 
Parsing, or Semantic Role Identification are three good examples. In this type of 
tasks, we can identify two subtasks: one that finds the boundaries of the group 
of words (chunk) and a second process that associates the correct tag to this 
group. In this paper we present a series of experiments on a clear example of 
chunking: the NER (Named Entity Recognition) problem. We show that corpus 
transformation and system combination techniques improve the performance in 
this task.

The NER task consists in the identification of the group of words that form a 
named entity. IOB notation is usually employed to mark the entities in a corpus. 
In this notation, the B tag denotes the beginning of a name, the I tag is assigned 
to those words that are within (or at the end of) a name, and the O tag is 
reserved for those words that do not belong to any named entity.

In the development of our experiments we have used a Spanish corpus tagged 
with NER information, and a re-trainable tagger generator based on Markov 
Models. In order to improve the performance of the NER task we have defined 
three transformations that give us modified versions of the training corpus, and 
we have trained the tagger generator with them to obtain different taggers.



Finally we have applied a stacking (machine learning) scheme to combine the
results of the models.

Experiments show that the three transformations improve the results of the
NER task, and that system combination achieves better results than the best of
the participant models in isolation.

2 Resources, Evaluation and Baseline

The two main resources employed in our experiments are the corpus and the
tagger generator. The corpus provides a wide set of named entity examples in
Spanish. It was used in the Named Entity Recognition shared task of CoNLL-
02 [14] and it is distributed in three different files, a train corpus, and two
test corpus. We have used the additional test corpus in stacking experiments to
generate the training database.

There are four categories in the corpus taxonomy: PER (people), LOC
(places), ORG (organizations) and MISC (rest of entities). However, the NER
task does not need the category information, so we have simplified the corpus
by removing the category information from the tags. Figure 1 shows a fragment
of the original corpus, and its simplified version used in the NER task.

The other main resource is the tagger generator. We have chosen TnT [1],
one of the most widely used re-trainable tagger in NLP applications. It is based
upon second order Markov Models, consisting of word emission probabilities
and tag transition probabilities computed from trigrams of tags. As a first step
it computes the probabilities from a tagged corpus through maximum likeli-
hood estimation, then it implements a linear interpolation smoothing method
to manage the sparse data problem. It also incorporates a suffix analysis for
dealing with unknown words, assigning tag probabilities according to the word
ending.

Word Tag
La O
Delegación B-ORG
de I-ORG
la I-ORG
Agencia I-ORG
EFE I-ORG
en O
Extremadura B-LOC
transmitirá O
hoy O
... ...

NEE corpus

Word Tag
La O
Delegación B
de I
la I
Agencia I
EFE I
en O
Extremadura B
transmitirá O
hoy O
... ...

NER corpus

Fig. 1. Original corpus and corpus tagged only for the recognition subtask



Table 1. Baseline, TnT trained with NER coprpus

Precision Recall Fβ=1

Baseline 81.40% 82.28% 81.84

To evaluate our experiments, we have used the classical measures precision,
recall and Fβ=1. Precision is defined as the percentage of correctly extracted
entities. Recall is defined as the proportion of entities that the system has been
able to recognize from the total correct entities in the test corpus. The overall
Fβ=1 measure combines recall and precision, giving to both the same relevance:

Fβ=1 =
2 Precision Recall

Precision + Recall

We will use Fβ=1 measure for comparing the results of our experiments. It is
a good performance indicator of a system and it is usually used as comparison
criterion. Table 1 shows the results obtained when TnT is trained with the NER
corpus , we will adopt these results as the baseline for further experiments in
this paper.

3 Corpus Transformation

In order to have different views of the NER problem, we have defined three
transformations that applied to the original corpus give us three additional ver-
sions of it. This way, the tagger generator learns in four different ways and the
resulting models can specialize in the recognition of named entities of different
nature.

3.1 Vocabulary Reduction

In this transformation we employ a technique similar to that used in [12] replac-
ing the words in the corpus with tokens that contain relevant information for
recognition. One of the problems that we try to solve is the treatment of unknown
words: the words that do not appear in the training corpus and, therefore, the
tagger can not make any assumption about them. In the NER task, the lack of
information of an unknown word can be mitigated with its typographic informa-
tion because capitalization is a good indicator of the presence of a proper name.
We also include in this transformation the knowledge given by non-capitalized
words that frequently appear before, after or inside named entities. We call them
trigger words and they are of great help in the identification of entity boundaries.
Both pieces of information, trigger words and typographic clues, are extracted
from the original corpus through the application of the following rules:

– Each word is replaced by a representative token, for example, it starts cap
for capitalized words. These word patterns are identified using a small set of
regular expressions.



Word Tag

La O
Delegación B
de I
la I
Agencia I
EFE I
en O
Extremadura B
transmitirá O
hoy O
... ...

NER corpus

Word Tag

La O
starts cap B

de I
la I
starts cap I
all cap I

en O
starts cap B

transmitirá O
lower O

... ...

NER-V corpus

Word Tag

La det O
starts cap noun B

de prep I
la det I
starts cap noun I
all cap noun I

en prep O
starts cap noun B

transmitirá verb O
lower adv O

... ...

NER-P corpus

Fig. 2. Changing the words

– Not all words are replaced with its corresponding token, the trigger words
remain as they appear in the original corpus. The list of trigger words is
computed automatically counting the words that most frequently appear
around or inside an entity.

Figure 2 shows the result of applying vocabulary reduction (NER-V corpus).
The results of the experiment TnT-V are presented in Table 2, we can see that
this transformation makes TnT improve from 81.84 to 83.63.

3.2 Addition of Part-of-Speech Information

In this case we will make use of external knowledge to add new information
to the original corpus. Each word will be replaced with a compound tag that
integrates two pieces of information:

– The result of applying the first transformation (vocabulary reduction).
– The part-of-speech (POS) tag of the word.

To obtain the POS tag of a word we have trained TnT with the Spanish
corpus CLiC-TALP [4]. We make use of a compound tag in the substitution

Table 2. Results of corpus transformation

Precision Recall Fβ=1

Baseline 81.40% 82.28% 81.84
TnT-V 81.76% 85.59% 83.63
TnT-P 81.51% 84.79% 83.12
TnT-N 82.77% 86.33% 84.51



because the POS tag does not provide enough information to recognize an en-
tity. We complete this information with the knowledge given by typographical
features and trigger words. Figure 2 shows the result of the application of this
transformation (NER-P corpus). Adding POS information also results in a per-
formance improvement of TnT in the NER task. Table 2 presents the results of
the experiment TnT-P, in this case TnT reaches an Fβ=1 measure of 83.12.

3.3 Changing the Tags

We replace the original IOB notation with a more expressive one that includes
information about the position of words inside and around entities. In order to
consider the position inside entities, we have added two new tags E and BE that
are assigned, respectively, to words that end a multi-word named entity and to
single-word named entities. The meaning of the tags assigned to words inside
entities are now:

– B, that denotes the beginning of a named entity with more than one word.
– BE, that is assigned to a single-word named entity.
– I, that is assigned to words that are inside of a multiple-word named entity,

except to the last word.
– E, assigned to the last word of a multiple-word named entity.

We can also add more information to words outside entities, particularly we
are interested in those words that appear just before or after an entity. We split
the meaning of the non-informative O tag into four tags:

– BEF, that is assigned to those words that appear before an entity.
– AFT, assigned to words that appear after an entity.

Word Tag

La O
Delegación B
de I
la I
Agencia I
EFE I
en O
Extremadura B
transmitirá O
hoy O
... ...

NER corpus

Word Tag

La BEF
Delegación B
de I
la I
Agencia I
EFE E
en BET
Extremadura BE
transmitirá AFT
hoy O
... ...

NER-N corpus

Fig. 3. Changing the tags



– BET, for words that are between two entities.
– O, for words outside entities and not adjacent to entities

This new tag set give more relevance to the position of a word, forcing the
taggers to learn which words appear more frequently at the beginning, at the
end, inside or around a named entity.

Figure 3 shows the result of applying this new tag set to a corpus fragment.
Changing the tag set also leads to better results in the NER task than those
obtained with the original corpus. The results of the experiment TnT-N are
showed in Table 2. In this case, TnT improves from 81.84 to 84.51, the best
result of all the transformations studied.

4 System Combination

System combination is not a new approach in NPL tasks, it has been used in
several problems like part of speech tagging [7], word sense disambiguation [10],
parsing [8], noun phrase identification [13] and even in named entity extrac-
tion [6]. The most popular techniques are voting and stacking (machine learning
methods), and the different views of the problem are usually obtained using
several taggers or several training corpora. In this paper, however, we are in-
terested in investigate how stacking behaves when the combined systems are
obtained with transformed versions of the same training corpus.

4.1 Stacking

Stacking consists in applying machine learning techniques for combining the
results of different models. The main idea is to build a system that learns the
way in which each model is right or makes a mistake. In this way the final
decision is taken according to a pattern of correct and wrong answers.

In order to be able to learn the way in which every model is right or wrong, we
use a training database. Each example in the training database includes the four
tags proposed by the models for a given word and the actual tag. From this point
of view, deciding the tag given the tags proposed by several models is a typical
classification problem. Figure 4 shows a small database written in “arff” format,
the notation employed by weka [16] to represent training databases. Weka is a
collection of machine learning algorithms for data mining tasks, and is the tool
that we have used in our stacking experiments.

An important advantage of using stacking as combining method is that we
can include in the database heterogeneous information. Making use of this fea-
ture, we do not only include the tags of a given word in its register, but the
tags assigned by the four models to its previous and following words are also
included. This way, the registers of our database have twelve features instead of
just four corresponding to the four tags of the word we are interested in.

We have used a corpus with new examples to generate the database, so we can
ensure that de database used in stacking is independent of the models (training
corpus) and it is also independent of the evaluation process (test corpus).



@relation combination
@attribute TnT {O, B, I}
@attribute TnT-V {O, B, I}
@attribute TnT-N {O, B, I}
@attribute TnT-P {O, B, I}
@data
I, I, I, B, I
O, O, O, O, O
B, B, B, B, B
I, I, I, I, I
O, I, I, I, I
B, I, I, I, I
O, O, O, O, O
O, O, O, O, O
B, B, B, O, O

Fig. 4. A training data base. Each register corresponds to a word

Table 3. Results of stacking with a decision tree as learning technique

Precision Recall Fβ=1

Baseline 81.40% 82.28% 81.84
Decision Tree 87.96% 88.44% 88.20

Table 3 shows the results of the experiment Decision Tree, carried out using
a decision tree [11] as stacking technique.

A decision tree uses a binary tree to predict the value of a target variable from
those of a set of predictor variables. The tree is built by successively splitting
nodes according to an information gain criterion. A pruning criterion is also
applied to confine the tree size to appropriate limits. This technique is one of
the best and most commonly used learning algorithm in classification.

The Fβ=1 measure is 88.20, which is better than the baseline (81.84) and also
better than the best of participant models in the stacking experiment (TnT-N
with 84.59).

4.2 Using Other Machine Learning Algorithms

Apart from allowing the use of heterogeneous information, the use of machine
learning as combination method has another important advantage: it is possible
to choose among a large variety of schemes and techniques to find the most
suitable for a specific problem. We have experimented with several machine
learning algorithms included in the weka package to compare their performance
when they are trained with the database that we have created. Most of them are
rule-based because this kind of classifiers behaves better with discrete databases:

– Bagging [2]is based on the generation of several training data sets taking
as base a unique data set. Each new version is obtained by sampling with



Table 4. Results of stacking with different classifiers

Precision Recall Fβ=1

Baseline 81.40% 82.28% 81.84
Decision Table 86.52% 87.59% 87.05
Random Tree 86.43% 87.84% 87.13
Part 87.70% 87.84% 87.72
Bagging 88.20% 88.42% 88.31
Ripper 88.88% 87.98% 88.43

replacement the original database. Each new data set can be used to train
a model and the answers of all models can be combined to obtain a joint
answer. Generally, bagging leads to better results than those obtained with
a single classifier. The price to pay is that this kind of combination methods
increase the computational cost associated to learning. In our experiment
we have used decision trees as base learner with this scheme.

– Decision Table [9] is a rule-based classifier. The model consists of a schema,
in which only the most representative attributes of the database are included,
and a body that has labelled instances of the database defined by the features
of the schema.

– Part [15] is the rule-based version of decision trees, it uses a divide and con-
quer strategy, building a partial decision tree in each iteration and converting
the best leaf of the tree into a rule.

– Ripper [5] applies an iterative and incremental pruning process to obtain an
error reduction. At a first stage it generates a set of rules that is optimized
by generating new rules with randomized data and pruning them.

– Random Tree [16] is an adaptation of decision tree in which every node
consider only a subset of the attributes of the database, this subset is chosen
randomly.

Table 4 shows the results of the experiments. All of them present good results,
the best one is achieved with Ripper (88.43) improving more than six percent
points the baseline. This performance is similar to state-of-the-art recognizers,
with comparable results to those obtained by one of the best NER systems for
Spanish texts [3].

5 Conclusions and Future Work

In this paper we have shown that the combination of several taggers is an effective
technique for improving a chunking task like named entity recognition. Taking
as baseline the results obtained when a tagger generator (TnT) is trained with
a corpus, we have investigated alternative methods for taking more advantage
of the knowledge provided by the corpus. By means of corpus transformation
we have obtained three different views of the training corpus, with them we
have obtained three taggers that improve the results obtained with the original
version of the corpus.



Once we had four different taggers we have applied stacking, combining them
by generating a training database of examples and applying machine learning.
We have experimented with several classifiers reaching a best result of 88.43 in
the Fβ=1 measure, more than six percent points better than the baseline (81.84).
This performance is similar to state of the art NER systems, with comparable
results to those obtained by the best system in the CoNLL-02 competition [3].

Much future work remains. We are interested in applying the ideas of this
paper in the recognition of entities in specific domains, and in the growth of
corpus, using the jointly assigned tag as agreement criterion in co-training or
active learning schemes.
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