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Abstract—The mixed-potential electric-field integral equation
is used in conjunction with the Galerkin’s method and complex
image theory for analyzing a transmission line with multiple
strips embedded in different layers of a multilayered uniaxially
anisotropic dielectric substrate. The two-dimensional Green’s
functions for the scalar and vector potentials are analytically
obtained in the space domain due to the approximation of its
spectral-domain version with complex images, thus avoiding
lengthy numerical evaluations. Double integrals involved in the
computation of Galerkin’s matrix entries are quasi-analytically
carried out for the chosen basis functions, which are well suited to
the problem.

Index Terms—Complex image method, integral equations, lay-
ered media, planar transmission lines.

I. INTRODUCTION

T HE analysis of a planar multistrip system such as that
shown in Fig. 1 has been carried out by using a variety

of techniques during the past three decades, including both
quasi-TEM and full-wave formulations. Achieving high nu-
merical efficiency has been the goal of many recent papers. A
sample of this type of work in the frame of the quasi-TEM anal-
ysis can be found in [1] and references therein. In this paper,
emphasis is placed on the full-wave approach. Very efficient
algorithms dealing with the full-wave analysis of planar lines
have been also reported, including the singular integral-equa-
tion method [2], [3] and the eigenvalue approach [4] for boxed
structures, the Wiener–Hopf method [5], and various enhanced
implementations of the spectral-domain analysis (SDA)
[6]–[9]. In this paper, the authors propose a very fast analysis
of the structure in Fig. 1 based on the mixed-potential integral
equation (MPIE) [10]–[12]. The numerical performance of this
approach is drastically improved by using a suitable two-di-
mensional (2-D) space-domain representation of the potential
Green’s functions and quasi-analytical computation of the
reaction integrals appearing when a Galerkin scheme is used
for solving the MPIE to find the surface currents. This fast and
accurate computation of Galerkin’s matrix entries is the key
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Fig. 1. Cross section of the multiconductor transmission line under analysis.

point to get very high efficiency. In this way, the determination
of space-domain Green’s functions is carried out via the com-
plex images technique [13]–[15], thus avoiding commonly used
numerical spectral 2-D Sommerfeld-type integration [16], [17].
This method, originally intended for the analysis of a radiating
dipole in a three-dimensional (3-D) stratified medium, has been
adapted here to our 2-D problem. At this point, it should be
mentioned that a correction to the formulation of [15], intro-
duced by Kipp and Chan in [18], must be also applied in the
2-D case. As it is well known, first- and second-kind Chebyshev
polynomials weighed by the proper strip edge condition are
very suitable basis functions for the current expansion [9]. The
reaction integrals involving these functions and the closed-form
expression of the Green’s functions obtained with the complex
images method are quasi-analytically computed. Therefore,
the most time-consuming step in searching for the propagation
constants, which is the computation of Galerkin’s matrix, is
drastically accelerated.

II. FORMULATION OF THE INTEGRAL EQUATION

Let us consider a transmission line consisting of infin-
itely thin strips embedded in the various layers of a multilay-
ered substrate (see Fig. 1). Each layer is a uniaxial anisotropic
dielectric, with its optical axis perpendicular to the interfaces
between layers. Since we are interested in modes that propagate
in the -direction, we assume a common phase factor for
fields and currents, where is the unknown propagation con-
stant. By enforcing the boundary condition for the tangential
electric field at the surface of the conductors, we obtain an elec-
tric-field integral equation (EFIE). The kernel of this EFIE has
a severe singularity that makes it unsuitable for a direct appli-
cation of the method of moments [10]. To overcome this dif-
ficulty, we can transform this integral equation into an MPIE
form, whose kernel has a weaker singularity [10], [11], [19].
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Since the sources in our structure are perpendicular to, the
MPIE has the following form:

(1)

on the conducting strips. and in (1) are the magnetic
vector potential and electric scalar potential due to the surface
current on theth conductor

(2)

(3)

In (1)–(3), stands for the surface of theth conductor
placed at the plane . It is well known
that for a horizontally directed dipole, two components of
the vector potential are necessary to satisfy the boundary
conditions at the interfaces [20]. We have used the traditional
Sommerfeld’s formulation for the vector potential [21] so
the component of the vector potential is chosen together
with the component parallel to the source. This formulation
is convenient for the analysis of planar structures because

. Moreover, the revolution symmetry of our
problem substrate around the-axis leads to .
Therefore, only one spectral integral is necessary for obtaining
the 2-D Green’s function of the magnetic vector potential.

III. K ERNEL OF THEINTEGRAL EQUATION

It is feasible to obtain a closed-form expression for
and in the spectral domain

[21], [22], namely, and , being

( and are the Cartesian
spectral variables and is the radial polar spectral variable).
It should be pointed out that if the structure has conductors
placed at different levels, and
must be evaluated for source and observation points at any of
the levels. Taking into account the reciprocity of the Green’s
functions, this lead to combinations of source
and observation planes. Once the spectral version of the kernel
of our integral equation is known, its 2-D spatial counterpart
can be obtained from the following spectral integral:

(4)

In (4) and stand for the spatial (2-D) and spectral repre-
sentations of any of the and functions.
The -dependence is not explicitly shown since it will not play
any role in the development thereafter.

The integrand in (4) may have several poles in the real axis
of the -plane, which depend on the structure and frequency.

These poles can be easily removed, as will be explained later on.
Another important topological feature of the spectral-domain
Green’s functions is the existence of branch points at .
These branch points are related to the free-space unbounded
upper layer of the structure, and they will play an important role
in the development of the numerical approach.

The computation of (4) takes a significant part of the overall
computation time since the integrands are typically oscillatory
and slowly decaying. Since the integrands depend on, that in-
tegral must be recalculated for every value of the propagation
constant in the root search process. Therefore, a fast method to
evaluate (4) is of paramount importance. The complex image
method already used in the analysis of planar circuits, antennas,
and scattering problems [13]–[15], [18] can be adapted to ac-
complish that goal. The basic idea of this method is to extract
from the spectral kernel its quasi-static and surface-wave contri-
butions, and to approximate the remaining function by a sum of
complex exponentials. In the 3-D case, the Sommerfeld identity
can then be employed to evaluate in closed form the Sommerfeld
integrals. This leads to a very efficient algorithm provided that
we have a mean to evaluate the quasi-static and surface-wave
contributions in closed form. In the 2-D case, as far as the au-
thors know, the spectral integrals in (4) are usually numerically
calculated [16], [17]. Although efficient numerical integration
algorithms are used, the procedure is not as efficient as those
reported in [13]–[15], [18]. What we propose in this paper is to
adapt the complex image method to our problem. In order to do
this, it is instructive to examine the spectral-domain version of
both the vector- and scalar-potential Green’s function of a trav-
eling-wave line source in the free space at a heightabove a
ground plane. These formulas can be written in the following
form:

(5)

where , ( ), for the
component of the dyadic spectral Green’s function of the

vector potential and for the scalar potential. The
first term in (5) corresponds to the effect of the source itself,
whereas the second term is the image contribution. Hence, it
seems reasonable to think that if the source is embedded in a
stratified medium, the spectral Green’s function is suitable to
be expressed as a quasi-static term (which accounts
for the near-field contribution of the source and has a singular
space-domain counterpart) plus a number of images of the
form . However, it is well known that a stratified
medium is also capable of propagating surface waves, which are
independent of the source. The influence of these propagating
modes in the spectral-domain Green’s function is the existence
of a finite number of poles that do not appear in the free-space
problem. These poles modify the spectral-domain Green’s
function behavior that can no longer be exclusively expressed
as a sum of exponential functions. As a mean to evaluating (4)
in a efficient way, we then write the spectral Green’s function
in the following approximating form:

(6)
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The term is the quasi-static contribution, represents
the surface wave term, and is the remaining term, which
is to be expanded by a finite series of complex exponential func-
tions.

A. Quasi-Static Term

The quasi-static fields are dominant when the distance
between the source and field points is small compared to the
free-space wavelength. In such a case, the complex exponen-
tial appearing in the integrand of (4) oscillates with a large
period. Therefore, the behavior of the spatial Green’s function
is strongly affected by the asymptotic values of the spectral
Green’s function ( ). Since the integrands decrease very
slowly, the following asymptotic behavior for
and must be extracted out:

otherwise
(7)

otherwise
(8)

where is the position of the th interface (see Fig. 1). On
the other hand, and are the relative permittivities of the
th layer in directions perpendicular and parallel to the-axis,

respectively. Note that we will have nonzero asymptotic terms
only when source and observation points are at the same level.
From (7) and (8), we can, in general, write

(9)

whereκ is a constant that is zero if and whose value
depends on the cases treated in (7) and (8) if source and obser-
vation points are at the same level ( ). The constant
was defined in (4).

It should be pointed out that the branch points appearing in
in the spectral Green’s functions are also present in

(9). Therefore, this term does not introduce any new branch
cut in the -plane topology [18]. In order to calculate the 2-D
space-domain version of (9), the following spectral integral
must be carried out:

(10)

where . α is supposed to be positive since
we are interested only in the bound regime (as opposite to the

leaky regime). The integral (10) can be analytically calculated
by using the following result [23]:

(11)

where is the zeroth-order modified Bessel function of the
second kind. The integral in (10) can be seen as the limit of (11)
when , hence, the contribution of the quasi-static term in
the space domain is

(12)

Note that since for small , the 2-D space-
domain Green’s functions have a logarithmic singularity when

and the field point approaches the source point ( ).

B. Surface-Wave Poles Contribution

The complex image scheme can be applied over a complex
path, thus avoiding problems related to the presence of poles on
the real axis of the complex plane [24]. However, there are
theoretical and numerical reasons that make it advisable to re-
move the pole contributions from the spectral Green’s functions.
Complex exponential functions cannot reproduce accurately in
the spectral domain the behavior associated to these poles. Since
the spectral functions are even functions of, the poles always
appear in pairs. Consequently, we can write [14], [15]

(13)

where is the number of poles, is the location of the th
pole in the -plane, and is its residue

Therefore, the space-domain contribution of the surface wave
poles is

(14)

where is supposed to be positive (bound regime).
An analytical expression for the integral in (14) is available from
[23], in such a way that

(15)

Note that, in contrast with the 3-D case [13], [14], the con-
tribution from the surface-wave poles in our 2-D situation does
not introduce any singularity. Thus, the treatments reported in
[25] or [26] to deal with this problem is not required in our case.
Therefore, we can directly extract the surface-wave contribution
from the complex image expansion, obtaining a well-behaved
approximation for any value of the spatial variable. This makes
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an important difference between the transmission and radiation
problems.

C. Application of the Complex Image Method

We have found closed-form expressions that allow us to ex-
tract the asymptotic and surface wave terms of the spectral-do-
main Green’s function and to recover them in the 2-D space do-
main. The remaining spectral —domain function is now suitable
to be expanded as a finite sum of complex exponential functions
by using, for instance, the general pencil of function (GPOF)
method [27]

(16)

where is the number of employed complex images. It is
expected that a short number of images is enough for practical
purposes because of the suitability of the expanding functions:
they are the spectral version of cylindrical waves.

In order to obtain the unknown coefficients and
appearing in (16), we have sampled our spectral functions on a
path in the -plane, which avoids the poles and branch point
singularity. To ensure an optimum result, we have applied
a two-step procedure that makes it possible to take more
samples near the origin, where, owing to the proximity of the
branch point, the spectral function presents fast variations.
This two-step approach has been proposed by Aksun in [24]
for approximating 3-D Green’s functions (although this author
does not extract the surface-wave contribution). The use of the
two-step algorithm is also advantageous to deal with structures
having very thin layers. The reasons for that are explained
in [28] in the context of the quasi-static analysis of coplanar
waveguide (CPW) structures. On the other hand, it is worth
noting that although we could also expand the term as

a sum of complex exponentials in the

or variables, this would
introduce a new branch point in the plane topology and,
therefore, the expansion would fail to approximate the actual
function in a correct way [18].

Now, the last term in (6) can be transformed into the 2-D spa-
tial domain by using (11). Therefore, we can write the following
expression for the whole 2-D space domain Green’s function:

(17)

The 2-D spatial-domain Green’s functions are obtained as a
sum of radial waves (plus the surface-wave contribution) in the
same way as spherical waves are obtained for the spatial-domain
3-D Green’s functions [13]. Note that (17) has the important ad-
vantage of being an explicit function of the propagation constant

through and ( ). In the root searching
process involved in the resolution of the eigenvalue problem,

the propagation constant is changed many times, but those
changes are automatically taken into account by (17). If a nu-
merical integration scheme is applied to solve for (4), the inte-
grals have to be recomputed for each new guess value of. The
use of our approach obviously implies important central pro-
cessing unit (CPU) time savings.

IV. A PPLICATION OFGALERKIN’S METHOD

Once the space-domain kernel of the integral equation has
been efficiently obtained, we can apply the Galerkin’s method.
A well-established set of basis functions for planar-type struc-
tures has been chosen. In fact, for a planar strip of widthand
whose central point coordinate is, the basis functions for the
components of the current density have been taken to be

(18)

(19)

where is the number of basis functions employed for the
transverse component of the current density(one more basis
function must be used for the axial component of the current
density to ensure that the total current fulfills the continuity
equation). and stand for first- and second-kind
Chebyshev polynomials, respectively. These functions mimic
the real behavior of the currents near the edge of the conducting
strips and are quasi- orthogonal for the space kernel we are
using. This allows us to attain accurate results while using very
few basis functions.

The next step is to calculate the convolution and inner product
integrals by using the basis functions in (18) and (19) and the
kernel in (17). Thanks to the relationship between first- and
second-kind Chebyshev polynomials [29], we only need to com-
pute integrals involving first-kind polynomials. The function
presents a logarithmic singularity that might cause problems
in the convolution integral. Fortunately, the contribution to the
convolution integrals of this singularity can be handled in closed
form, such as explained in [1]. The rest of the kernel is regular
and does not generate integration problems. Due to the type of
singularity present in the basis functions, low-order Chebyshev
quadratures are suitable to accurately carry out the integrations
involving the regular part of the kernel. In this way, the elements
of Galerkin’s matrix are generated both very accurately and ef-
ficiently.

V. NUMERICAL RESULTS

The first step for checking the performance of the proposed
approach is to verify that the approximation for the 2-D
space-domain Green’s functions is correct. These functions
show an exponential decay with the distance between source
and field points, which is quite different from that obtained
in the 3-D case. This decaying is faster for large values of.
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We have compared in this paper the space-domain Green’s
functions computed by direct integration a combination of the
Romberg’s method, and the weighted averages method re-
ported in [11] has been used against those obtained by using
the technique in this paper. In this way, Fig. 2 shows for
the two-layer structure depicted in the figure. The relative
difference between numerical and GPOF results is plotted.
The GPOF has been applied with and without pole extrac-
tion (but always with extraction of the quasi-static term). For
the 9-GHz case [see Fig. 2(a)], we can see that the GPOF
approximation is very accurate (but fairly better if pole ex-
traction is applied) in the whole range of interest. Relative
error is large only for those regions where the values of
the approximated function is negligible. In Fig. 2(b), similar
data are plotted for a frequency of 33 GHz (two poles are
involved in this case). Note that if poles are not removed,
large errors are obtained, while a very good approximation is
achieved after removing them. Therefore, removing the poles
is strongly advised, after all, it is neither difficult nor time
consuming to find them [30], while numerical benefits are
important. It is worth mentioning that the example considered
in Fig. 2 corresponds to a configuration having a very thin
dielectric layer. This could cause serious numerical problems,
which have been overcome thanks to the application of the
two-step scheme used in our study. Although we have concen-
trated our attention on , similar conclusions are valid for

. This study has been carried out for many combinations
of substrates and source and field point locations (coplanar
and noncoplanar). The overall conclusion is that the two-step
approach in conjunction with the quasi-static term and pole
extraction provide an excellent space-domain representation of
the required 2-D Green’s functions.

Once we are certain about the accuracy of the 2-D space-do-
main Green’s functions computed via (6), we have evaluated the
global performance of our method. First of all, we have checked
the accuracy and convergence properties of the reaction inte-
grals defining the entries of Galerkin’s matrix. We have con-
firmed that these entries are computed with extreme accuracy
(more than six correct figures) using very low-order Chebyshev
quadratures and closed-form evaluation of the logarithmic sin-
gularity contribution. On the other hand, we have carried out
exhaustive comparisons with propagation constants computed
using numerical evaluation of the Green’s function and using
enhanced versions of the SDA [31]. The agreement between
the various results is total and we only detect differences in the
computational effort (CPU time). It has been verified that pole
extraction is necessary for many cases because otherwise the
error in the space Green’s functions meaningfully affects the
final result for the propagation constants. As an example, some
numerical results for the fundamental and first two higher order
modes of a simple microstrip line are included in Table I. Those
results have been obtained by using four basis functions for the
longitudinal current and three functions for the transverse one
(three and two are enough for the fundamental mode) with and
without pole extraction. Extraction of poles is clearly necessary
for frequencies above 35 GHz. Otherwise results are not reliable
because they are strongly dependent on the number of images,
sample points, and quadrature points. Moreover, spurious solu-

(a)

(b)

Fig. 2. Magnitude ofK (solid line) and relative difference between
numerical integration computation and complex images computation with
(black dots) and without (white dots) pole extraction for: (a) 9 GHz and (b) 33
GHz. Data:d = 1 mm,d = 0:01 mm," = " = 10, " = 2:25, and
" = 1:5.

TABLE I
�=k FOR THE FUNDAMENTAL AND TWO

FIRST HIGHER MODES OF THEMICROSTRIP IN THETOPFIGURE. w = 3:0 mm,
h = 0:635 mm, AND " = 9:8. LEFT-HAND-SIDE COLUMN: WITH SURFACE

POLE EXTRACTION. RIGHT-HAND-SIDE COLUMN: NO POLE EXTRACTION
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tions may appear. Eight complex images in the approximation
of the Green’s functions and four quadrature points in the eval-
uation of the reaction integrals have been used in this table.

In order to illustrate CPU time saving, we have compared
the technique proposed in this paper with numerical eval-
uation of the space-domain Green’s function. Even though
the integration scheme we have used to generate the nu-
merical samples of the Green’s function is very efficient,
the application of the method proposed here still yields an
important reduction of CPU time. Moreover, complex im-
ages have not to be recomputed whenis changed in the
root searching process, whereas new numerical integrations
would be required for new values of. Hence, the relative
impact of using this approach in the analysis of transmission
lines (eigenvalue 2-D problem) is probably stronger than the
impact of using a similar technique in a 3-D planar problem
since, in the latter case, the generation of the Green’s func-
tions is a small fraction of the total numerical effort. As
an example, Fig. 3 shows the ratio of CPU times using nu-
merical integration against the method reported here as a
function of the number of strips (the same number of basis
functions has been used in each strip so as to keep the
same accuracy level). CPU time reduction is significant for
any case, becoming more important as the complexity of the
multistrip system increases.

As a final example, Fig. 4 shows the dispersion curves for
the fundamental modes of the five conductor microstrip trans-
mission line depicted in the figure. Two cases are considered:
in Case A, the strips are in the air–dielectric interface; in Case
B, the center conductor resides on the top interface of a very
thin cover layer. Dispersion curves of the configuration (A)
were published by Kitazawa in [32] and later reproduced by
Hsu in [33]. Results for the configuration B are given in [33].
Kitazawa uses a variational method, whereas Hsu employs
an MPIE scheme solved in the space domain by using the
method of moments with piecewise linear basis functions and
numerical computation of the spectral integrals. The agreement
between our results and those presented in [32] and [33] is
very good, as can been seen in the graphical representation. In
order to reproduce those data, we have used three longitudinal
and two transverse basis functions along with four quadrature
points and eight complex images for approximating the regular
part of the spectral-domain Green’s functions. Many other
results reported in the literature have been reproduced with our
method, but they are not included here for the sake of brevity.

As a final comment on the accuracy and robustness of the
proposed method, we have to say that very accurate results are
also obtained for the current distribution. A systematic increase
of the number of basis functions does not introduce numer-
ical instabilities and all the coefficients of the current expan-
sion are computed with very good accuracy (five correct figures
are easily obtained for the expansion coefficients). This is more
significant regarding the quality of the employed technique than
propagation constant results [9]. To sum up, our many numerical
experiments confirm that the developed method works properly,
providing very accurate results and important computational-ef-
fort savings.

Fig. 3. CPU time ratio for a microstrip analysis using numerical generation
of the Green’s function and the technique in this paper as a function of the
number of strips. Longitudinal and transverse currents have been approximated
by means of three and two basis functions, respectively. Substrate: thickness
= 0:635 mm,� = 9:8. Strip width= 3 mm. Strip separation: 1.5 mm.

Fig. 4. Dispersion curves of the five fundamental modes of the structure of
the figure. Dielectric data as in Fig. 2.w = 1 mm, s = 0:2 mm. Case (A):
d = 0. Black squares: results in [32] and [33], solid line: our results. Case (B):
d = 0:01d . White squares: results in [33], dash line: our results.

VI. CONCLUSIONS

A new method has been proposed for the computation of
the dispersion curves of multilevel multiconductor planar trans-
mission lines embedded in a uniaxially anisotropic stratified
medium. The approach is based on the complex image technique
and MPIE formulation. We take advantage of a closed-form
derivation of the 2-D space-domain Green’s function and of the
use of a suitable set of basis functions to obtain a fast and ac-
curate computer code. The evaluation of Galerkin’s matrix en-
tries is performed in a very efficient way. Numerical results have
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been presented and compared with data available in the litera-
ture and supplied by other methods. Very good agreement has
been found in all cases by using very modest computational re-
sources.
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