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The amplification of demand variation in a supply chain network (SCN) is a well-known phenomenon called the 

bullwhip effect, which creates inefficiencies due to high variation in the order quantities placed between 

companies, leading to a flow of a larger number of units than the actual need, increasing stock and generating 

stock-outs. Since this phenomenon has been recognized as one of the main obstacles for improving SCN 

performance, recently it has received a lot of attention by SCN managers and researchers. One of the most 

common simplifying assumptions in the literature is to assume that the SCN adopts a serial structure. The 

present work addresses a comparative analysis of the bullwhip effect between a serial SCN and a more complex 

divergent SCN. To do so, we adopt the framework proposed by Towill et al. (2007), and analyze the response of 

both SCNs under two different input demands: a stationary demand and an impulse demand. The results reveal 

that there are not significant differences in terms of bullwhip effect between both SCNs for a stationary demand. 

Nevertheless, we show how for a violent disturbance in customer demand there is a great different between the 

two SCNs. 
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1. Introduction 

The amplification of demand variation in a Supply Chain Network (SCN) is called the 

bullwhip effect (Lee et al., 1997), and it can be defined as the tendency to see an increase in 

variability in the replenishment orders with respect to the true demand due to distortion in the 

demand information as we move upstream in the SCN (Nepal et al., 2012). As consequence, 

orders placed by upstream nodes exhibit a higher variability as compared to that of orders 

placed by their downstream partners (Chatfield and Pritchard, 2013). This phenomenon has 

many undesirable effects such as increasing stock and generating stock-outs (Adenso-Diaz et 

al., 2012).  

The bullwhip effect is relevant both for individual companies that face an unnecessarily 

variable demand as well as for the entire SCN (Zotteri, 2012). Moreover, the most recent 

economic downturn has no doubt created a lot of bullwhips around the world (Lee, 2010). For 

instance, the electronics manufacturing sector has experienced something akin to the bullwhip 

effect in terms of larger sales declines occurring further upstream (Dvorak, 2009). More 

specifically, in the last quarter of 2008, consumer demand had declined 8 percent, while 

product shipments fell 10 percent and chip sales fell 20 percent. These data suggest that 

electronics retailers, wholesalers and manufacturers responded differently to the decline in 

consumer demand (Dooley et al., 2010).  

Since the bullwhip effect has been long recognized as one of the main obstacles for improving 

the performance of a SCN, it has received in the last years a lot of attention by managers and 

researchers (Li, 2012). More specifically, several studies have been generated in the last 

decade to better understand the causes, economics consequences and remedies to the bullwhip 

effect. In order to analyze this phenomenon under real business world conditions, increasingly 

complex mathematical representations of SCNs (such as multi-product scenarios, stochastic 

lead times, production/distribution capacity constraints, reverse logistic and so on) have been 

developed. However, several assumptions are commonly made to simplify the analysis 

(Chatfield and Pritchard, 2013), being one of the most relevant what it can be labeled as a 

“serial structure model”, i.e. each echelon k in the system has a single successor k+1 and a 

single predecessor k-1. Undoubtedly, the serial SCN system analysis has represented and 

continues to represent a powerful technique for studying the dynamics of the bullwhip effect, 

but this assumption is seldom verified in real SCNs (Bhattacharya and Bandyopadhyay, 

2011). The main reason for the adoption of this modeling structure is probably due to the fact 

that most of the studies dealing with supply chain dynamics are based on classical operational 



 

 

research methods, continuous time differential equation models, and discrete time difference 

equation models. Classical operational research methods approaches are not always able to 

cope with the characteristics of dynamics SCNs (Riddalls et al., 2000; Long et al., 2011). 

Analogously, continuous time and discrete time difference equation models are not always 

suitable for analyzing complex supply chain structures outside the serial supply chain, given 

the high order of differential equations (one tier generally gives a 2nd-4th order system; 2 

tiers even 2nd-6th order), which makes analytical analysis difficult (Holweg and Disney, 

2005). Essentially, due to the complexity and mathematical intractability of multi-echelon 

systems, the majority of the literature tends to focus on serial two-echelon systems (Hwarng, 

2005). 

Nowadays, the increasing challenges of the new generation of SCNs such as those mentioned 

in Butner (2010), Christopher and Holweg (2011), and Stank et al. (2011), require more 

realistic models to analyze the increasing complexity of those structures. Hence, there is a 

need to assess the dynamics of SCNs characterized by more than one member in the same 

echelon of the chain (Moser et al., 2011; Xuan et al., 2011; Ma et al., 2013). More 

specifically, in this work we address one of most common adopted SCN structures in the real 

world, i.e. the divergent or arborescent SCN (Beamon and Chen, 2001). Mineral industries 

and in general consumer-oriented industries, such as cell phone manufacturers, often adopt 

this typology of SCN (Hung, 2011). This structure is characterized by a tree-like structure, 

where every stock point in the system receives supply from exactly one higher echelon stock 

point, but can supply to one or more lower echelon stock points (Ganeshan, 1999; Hwarng et 

al., 2005). 

The aim of this paper is to analyze the bullwhip effect of a complex SCN. To do so, we 

perform a comparative analysis between a classical serial SCN with a more complex 

(divergent) SCN, modeled by means of a multi-agent based-simulation platform named 

SCOPE. More specifically we firstly reproduce the four-echelon serial SCN structure (i.e. 1 

Retailer, 1 Wholesaler, 1 Distributor and 1 Manufacturer) adopted by Chatfield et al. (2004) 

under identical boundary conditions. Secondly, we generate a new divergent multi-echelon 

SCN model (i.e. 8 Retailer, 4 Wholesaler, 2 Distributor and 1 Manufacturer) in which each 

member is furnished by two downstream members. To perform the study we adopt the 

framework proposed by Towill et al. (2007) for studying the bullwhip effect. In this work, the 

authors identify three “observer’s perspectives” to analyze the bullwhip effect: Variance lens, 

Shock lens and Filter lens. Basically, this framework suggests the typology of endogenous 



 

 

input that can be adopted in bullwhip analysis in order to study different characteristics of the 

SCN. More specifically we adopt two input demand patterns, i.e. the shock lens and the 

variance lens. The former aims at inferring on the performance of SCNs for a stationary input 

demand. The latter aims at inferring on the performance of SCNs for an unexpected and 

intense change in the end customer demand. This latter approach can be viewed as a “crash 

test” or a “stress test”: studying the system performance under an intense and violent 

solicitation test to determine the resilience of a given SCN structure (Cannella and 

Ciancimino, 2010).  

The computational results reveal that there are not significant differences in term of bullwhip 

effect between a divergent SCN and a serial SCN for a stationary input in customer demand. 

However, a violent disturbance in customer demand causes a great different between both 

SCNs: the divergent SCN is more sensitive to the higher forecast deviations in customer 

demand caused by this violent disturbance, showing higher variance of orders, taking more 

time to recover stability, and hence, incurring in higher costs. We can thus conclude that the 

divergent structure is less robust than the serial structure. 

The rest of the paper is organized as follows: Section 2 presents a literature review. Section 3 

describes the methodological approach. Section 4 presents the serial SCN and the divergent 

SCN. Section 5 presents the measurement system and the design of experiments. Section 6 

presents the numerical results. Finally, Section 7 and Section 8 present findings, limitations, 

future directions and conclusions. 

 

2. Literature review 

The bullwhip effect is one of the most widely investigated phenomena in the modern day 

SCN management research (Nepal et al., 2012). The investigation on this phenomenon has 

passed through diverse phases, from empirical and ad hoc studies on bullwhip causes to 

mathematical approaches to infer on demand amplification solutions. Bullwhip Avoidance 

Phase in the term coined by Holweg and Disney (2005) to identify the current phase of the 

studies devoted to the demand amplification phenomenon. One distinctive feature of this 

phase is the focus on the efficacy of bullwhip solving approaches (Cannella and Ciancimino, 

2010). To accomplish this aim, increasingly complex mathematical representations of SCNs 

have been developed to analyse solving approaches under several scenarios, characterised by 



 

 

reverse logistic, different forecasting techniques, stochastic lead times, collaborative systems, 

capacity constraints, batching, parameter configuration, pricing and so on.  

Table 1 reports an overview of relevant contributions published during the Bullwhip 

Avoidance Phase. Articles are classified according to the focus on the parameters and factors 

investigated (e.g., information sharing, lead time, order policy and demand forecasting), and 

the typology of SCN structure (e.g. serial and non-serial). 

[Table 1 near here] 

All aforementioned papers have largely contributed to better understand the causes, 

economics consequences and remedies to bullwhip. Regardless the adopted methodological 

approaches, the modelled SCN structure and the metrics used to evaluate the SCN 

performance, the results have shown how factors such as lead time, the adoption of innovative 

order policy, specific forecasting techniques and different customer demand patterns can 

impact on the performance of SCN in terms of demand amplification. However, most of the 

above-reported studies, in order to quantitatively assess the performance of SCN, have 

exclusively adopted the classical single echelon structure or the two-stage serial SCN 

(Bhattacharya and Bandyopadhyay, 2011). In other studies, in order to assess the performance 

at different level of a multi-echelon system, it has been used the well-know four-echelon 

“beer-game” (Sterman, 1989) model (i.e. Retailer, Wholesaler, Distributor and Manufacturer). 

However, even in this case, most of those studies have adopted a classical serial SCN 

assumption. Essentially, most of the scientific work in SCN dynamics concerns pure 

retail/distribution chains or serial SCNs with few stages.  

We note that there are only few studies based on the non-serial SCN modelling assumption 

investigating the dynamics of SCNs and demand amplification phenomenon. However, most 

of these papers do not report any insight on the different dynamics between a classical serial 

SCN structure and a divergent SCN structure. To the best of our knowledge, the work of 

Sodhi and Tang (2011) is one of the few papers that have reported some insights on the 

differences between a serial SCN and a no-serial SCN in terms of their dynamic behaviour. 

They report anecdotal evidence of how the bullwhip effect increases as the SCN structure 

becomes more complex in an arborescent SCN due to the increase in the number of echelons, 

or in the number of successors at each echelon. However, they do not provide any information 

on the magnitude of this increment. This finding stimulates the need of further structured 

studies on the quantification of bullwhip effect in no-serial SCNs. In our work, by adopting a 



 

 

structured framework for studying the bullwhip effect, we also clarify and extend the 

conclusion by Sodhi and Tang (2011). More specifically, we show how the bullwhip effect 

is significantly higher for a divergent SCN compared to a serial SCN in the case of a shock in 

the end customer demand. Meanwhile, the bullwhip magnitude is very similar for both SCNs 

where customer demand has no shock. 

 

3. Methodological approach 

Analytic models, like linear programming, control theory, integer programming and mixed 

integer programming, are among the most popular approaches for modeling SCNs. However, 

a SCN is a complex adaptive system that involves dynamics, stochastic, and uncertainty (Sun 

and Wu, 2005; Surana et al., 2005; Pathak et al., 2007; Wang et al., 2008; Chen, 2012). 

Unfortunately, analytical models are unable to cope with these characteristics. In addition, 

analytical models may prove impossible to be solved due to their complexity and nonlinearity 

(Long et al., 2011). Simulation has rapidly become a significant methodological approach to 

theory development in the literature focused on strategy, organizations and SCN management, 

due to its ease for modeling and its capability of handling their dynamics and stochastic 

behavior (Chan and Prakash, 2012; Munoz and Clements, 2008). Particularly, multi-agent-

based distributed simulation turns out to be one of the most effective tools to model and 

analyze SCNs because there is a natural correspondence between SCN participants and agents 

in a simulation model (see Swaminathan et al., 1998; Julka et al., 2002; Dong et al., 2006; 

Chatfield et al., 2001; Govindu and Chinnam, 2010; Long et al., 2011; Chatfield et al., 2013; 

and Chatfield, 2013 among others). A simulation architecture that is able to both view a 

complex SCN and examine various causes and their effects at the same time would provide 

new insight to the various forces and influences in a SCN (Alony and Munoz, 2007). 

SCOPE is an agent-based SCN simulator described in Cañizares and Framinan (2012) for 

modeling and simulating different processes taking place in SCN management, focusing in 

the Order Fulfilment Process and allowing an easy model of real scale SCN. Every company 

in the model can be set up with different policies and parameter values for the different 

business functions. The simulator was implemented in Java and uses Swarm (a well-known 

software platform for agent-based system development). It has been conceived to be open-

source and help practitioners in their research. Its modular design makes easy to add new 

functions and behaviors to the agents and hence, it can be easily customized.  



 

 

SCOPE uses a two-layer framework for modeling the SCN. The first layer is composed of a 

collection of generic agents (Enterprise Agent), each one modeling a company in the SCN 

and interacting between themselves. The second layer includes a collection of nine different 

functional agents, which have been selected considering the Supply Chain Planning Matrix of 

Stadtler (2005). These agents are: Demand Fulfilment Agent, Demand Forecast Agent, Master 

Planning Agent, Production Planning Agent, MRP (Material Resource Planning) Agent, 

Scheduling Agent, Source Agent, Make Agent and Deliver Agent. Depending on the role 

played by the company, the Enterprise Agent will be composed of different combinations of 

these functional agents. Figure 1 shows the framework of SCOPE. 

[Figure 1 near here] 

Cañizares and Framinan (2012) validated SCOPE by comparing the results obtained by other 

authors in the literature using different methodologies. More specifically, they followed the 

same steps followed by Chatfield et al. (2004) to validate SISCO, a software built by the 

authors to simulate the storage, modeling, and generation of SCNs for Integrated Supply 

Chain Operations. In SISCO, the user specifies the structure and policies of a SCN using a 

Graphical User Interface (GUI) based application, and then saves the SCN description in the 

open eXtensible Markup Language (XML) based Supply Chain Modeling Language (SCML) 

format. SISCO automatically generates the simulation model when needed by mapping the 

contents of the SCML file to a library of supply-chain-oriented simulation classes. The 

validation of SISCO consisted of modeling a simple serial four-stage SCN and comparing its 

results (in terms of amplification of the standard deviation of orders) with the results obtained 

by two well-know authors: Chen et al. (2000), employing a statistical approach, and 

Dejonckheere et al. (2003), employing a control engineering approach. Table 2 shows a 

comparison between SISCO and SCOPE with the experiments of Chen et al. (2000). In view 

of these results, we can conclude that SCOPE can be considered a validated platform for the 

subsequent computational experience. 

[Table 2 near here] 

4. Supply Chain Network employed as Testbed 

The serial SCN modeled is that of Chatfield et al. (2004), consisting of four echelons: one 

factory, one distributor, one wholesaler, and one retailer (Figure 2). The lower node places 

orders to the next upper node and this node fills these orders. The customer does not fill 



 

 

orders and the factory places orders with an outside supplier. A detailed description is 

provided in Chatfield et al. (2004). 

A divergent SCN is characterized by a tree-like structure, where every stock point in the 

system receives supply from exactly one higher echelon stock point, but can supply to one or 

more lower echelon stock points (Hwarng et al., 2005). The divergent SCN is modeled 

following the next two guidelines: 

1. In order to benchmark both SCNs and to isolate the main effects, the divergent SCN 

has to be analogous to the serial SCN of Chatfield et al. (2004). Hence, the resultant 

SCN should have identical values of parameters, number of stages (horizontal 

complexity) and, due to the divergent topology, an increasing number of nodes per 

stage (vertical complexity), maintaining the symmetry of the SCN. 

2. Due to the prospective nature of this work, the resultant divergent SCN must have the 

minimum complexity. To fulfill with all requirements, each node in the SCN supplies 

just two nodes downstream. 

The divergent SCN obtained is shown in conjunction with the serial SCN in Figure 2. The 

characteristics described in Chatfield et al. (2004) for the serial SCN are adapted to the 

divergent SCN as follows: 

- Customers Demand. Each customer demand follows the same normal distribution 

with mean 𝜇𝑂𝐶
, estimated by 𝐷̅𝑂𝐶

, and variance 𝜎𝑂𝐶

2 , estimated by 𝑠𝑂𝐶

2 . 

- Lead Time. The lead time, L, is stationary and independently and identically 

distributed with mean 𝜇𝐿 estimated by 𝐿̅, and variance 𝜎𝐿
2estimated by 𝑠𝐿

2 . The lead 

time of interest, or “protection period,” in periodic order-up-to systems, may also 

include safety lead time or other constant additions to the physical lead time, 

depending on the inventory policy or other situational characteristics. According to 

Chatfield et al. (2004), all nodes in the SCN use the (R, S) policy (where R is the 

review period and S is the order-up-to level) with R=1, and the time period of 

protection is L+R. The mean lead time is 4 time units for all nodes in the SCN (not 

including the review period, R=1), and 0 for customers. These delays are gamma-

distributed, with a coefficient of variation 𝑐. 𝑣. = 0.50. 

- Lead-Time Demand. Let 𝑋𝑖𝑗
𝑡  be the demand received by node j in stage i during the 

protection period L+R. Then 𝑋𝑖𝑗
𝑡  has mean 𝜇𝑋 that we estimate by 𝑋̅𝑖𝑗

𝑡 , and variance 



 

 

𝜎𝑋
2  that we estimate by 𝑠

𝑋𝑖𝑗
𝑡

2 . Denoting by 𝐷𝑖𝑗
𝑡+𝑘 the demand received by node j in stage 

i at time t + k , we obtain 𝑋𝑖𝑗
𝑡  for an order placed at time t by the convolution: 

𝑋𝑖𝑗
𝑡 = ∑ 𝐷𝑖𝑗

𝑡+𝑘

𝐿+𝑅

𝑘=0

 
(1) 

- Inventory Policy and Forecasting. The order-up-to level, 𝑆𝑖𝑗
𝑡 , is the base stock that 

allows the system to meet the demand during the time period L+R: 

𝑆𝑖𝑗
𝑡 = 𝑋̅𝑖𝑗

𝑡 + 𝑧𝑠𝑋𝑖𝑗
𝑡  (2) 

Thus, at the beginning of every period t, each node j in stage i will place an order to 

raise or lower the inventory position to 𝑆𝑖𝑗
𝑡 . The term 𝑠𝑋𝑖𝑗

𝑡  is an estimation of the 

standard deviation of 𝑋𝑖𝑗
𝑡 , and the safety factor used is 𝑧 = 2.0 (service level of 

97.72%) , according to Chatfield et al. (2004). To update the 𝑆𝑖𝑗
𝑡  level, a node j in 

stage i can access to the demand data from previous periods (used to forecast the 

expected demand at time period t, 𝐷̅𝑖𝑗
𝑡 , and its variance, 𝑠

𝑂𝑖𝑗
𝑡

2 ), and to the lead time data 

from previous periods (used to forecast the expected lead time at time period t, 𝐿̅𝑖𝑗
𝑡 ), 

and finally uses this information to generate forecasts of lead-time demand mean 𝑋̅𝑖𝑗
𝑡  

and variance 𝑠
𝑋𝑖𝑗

𝑡
2 , as indicated in (3) and (4), respectively: 

𝑋̅𝑖𝑗
𝑡 = (𝐿̅𝑖𝑗

𝑡 + 𝑅)𝐷̅𝑖𝑗
𝑡  (3) 

𝑠
𝑋𝑖𝑗

𝑡
2 = (𝐿̅𝑖𝑗

𝑡 + 𝑅)𝑠
𝑂𝑖𝑗

𝑡
2  (4) 

To estimate (𝐷̅𝑖𝑗
𝑡 , 𝑠

𝑂𝑖𝑗
𝑡

2 ), according to Chatfield et al. (2004), each node uses a p-period 

moving averages (MA(p)) and a p-period moving variances (MV(p)) with p=15. To 

estimate (𝐿̅𝑖𝑗
𝑡 ), each node uses running averages, which utilizes data available from all 

previous periods. 

- Reverse Logistic. With the exception of the customers, all SCN nodes are allowed to 

return goods. Thus, replenishment order sizes may be negative. 



 

 

- Scope of Information. Each node’s SCN knowledge-base is derived from the 

incoming demand flow coming from the downstream partners and the outgoing flow 

of orders being placed with the upstream partner. 

- Timing of Actions. In each time period, each node (in a sequence from downstream 

stages to upstream stages, and randomly for nodes in the same stage) performs the 

following sequence of actions: 

1. Update the order-up-to level (𝑆𝑖𝑗
𝑡 ) using the forecast calculated in the previous 

period. 

2. Place an order to raise or lower the inventory position to the 𝑆𝑖𝑗
𝑡  level. 

3. Receive products from the upstream node. 

4. Receive new orders from the downstream nodes and satisfies demand. 

5.   Calculate a new forecast to be used in the next period. 

[Figure 2 near here] 

5. Metrics and experiments design 

First proposed by Chen et al. (2000), the Order Rate Variance Ratio (𝛷) is the most widely 

used indicator to detect the bullwhip effect (Cannella et al., 2013), measuring the internal 

process efficiency and showing the performance of each node in the SCN. It is a demand-

independent measure, allowing the comparison between different SCNs. Nevertheless, 

measuring the internal process efficiency at the individual level (single echelon) is insufficient 

as it only accounts for the individual performance of each link in the chain separately 

(Cannella et al., 2013). Therefore, a network measure has to be used as a complementary 

measure of Φ. The Bullwhip Slope (BwSl) summarizes all the ratios obtained for each stage in 

a single measure, allowing a complete comparison between different SCNs at the network 

level (Ciancimino et al., 2012; Cannella et al., 2013). The procedure to calculate this metric is 

to perform a linear regression on the values of Φ using the echelon position as independent 

variable (equation 6). A high value of the slope means a fast propagation of the bullwhip 

effect through the SCN, while a low value means a smooth propagation. Since BwSl is a 

synthesis of Φ, there are similar costs associated to this metric (procurement, overtime and 

subcontracting) but at the network level. Below, these two metrics are summarized. 



 

 

- Order Rate Variance Ratio of a node i (𝛷𝑖): computed as the ratio of the order variance 

in a generic node (𝜎𝑂𝑖

2 , estimated by 𝑠𝑂𝑖

2 ) to the order variance of the end customer 

demand (𝜎𝑑
2, estimated by 𝑠𝑑

2). 

𝛷𝑖 =
𝑠𝑂𝑖

2

𝑠𝑑
2

 
(5) 

- 𝐵𝑤𝑆𝑙: computed as the slope of the linear regression of the Φ curve. 

𝐵𝑤𝑆𝑙 =
𝐾 ∑ 𝑝𝑖𝛷𝑖 −𝐾

𝑖=1 ∑ 𝑝𝑖
𝐾
𝑖=1 ∑ 𝛷𝑖

𝐾
𝑖=1

𝐾 ∑ 𝑝𝑖
2𝐾

𝑖=1 − (∑ 𝑝𝑖
𝐾
𝑖=1 )

2
 

(6) 

Being 𝐾 the total number of echelons and 𝑝𝑖 the position of the ith echelon. 

The above mentioned metrics are easy to apply to a serial SCN, but there is one important 

difference when applying them to a divergent SCN, as each stage contains, in general, more 

than one node. In the serial SCN, the parameter required to compute the different metrics on 

each stage (i.e. the order variance) is taken from the only node in the stage. In the divergent 

SCN, it is necessary to find an aggregate measure for the whole stage. To obtain this measure, 

the orders of every node j in stage i (𝑂𝑖𝑗) are considered at the same time and added, resulting 

in an aggregate order pattern for the stage i: 𝐴𝑂𝑖 = ∑ 𝑂𝑖𝑗
𝑛𝑖
𝑗=1 , being 𝑛𝑖 the number of nodes in 

the stage i. Following the same procedure, the aggregate end customer demand pattern can be 

obtained as 𝐴𝑑 = ∑ 𝑂𝐶𝑗
𝑛𝐶
𝑗=1 , being 𝑛𝐶  the number of customers. Then, the aggregate variance 

of each stage (𝜎𝐴𝑂𝑖

2 , 𝜎𝐴𝑑
2 ) can be estimated (𝑠𝐴𝑂𝑖

2 , 𝑠𝐴𝑑
2 ), and 𝛷𝑖 is: 

𝛷𝑖 =
𝑠𝐴𝑂𝑖

2

𝑠𝐴𝑑
2

 
(7) 

In view of the fact that all the customer demands are assumed to be independent and that each 

node places orders independently, the aggregate variance in each stage i is the sum of the 

variances of orders of each node j in the stage i (𝜎𝑂𝑖𝑗

2 , 𝜎𝑂𝐶𝑗

2 ), estimated by (𝑠𝑂𝑖𝑗

2 , 𝑠𝑂𝐶𝑗

2 ), and 

thus, the calculation of 𝛷𝑖: 

𝛷𝑖 =
∑ 𝑠𝑂𝑖𝑗

2𝑛𝑖

𝑗=1

∑ 𝑠𝑂𝐶𝑗

2𝑛𝐶

𝑗=1

 
(8) 



 

 

Chatfield et al. (2004) analyze the impact of stochastic lead times, information quality and 

information sharing on the performance of SCNs, carrying out a factorial experiment utilizing 

these three indicators. For the comparison between the serial and the divergent SCNs, we 

have taken the following values of these factors from their factorial experiment: lead time 

coefficient of variation 𝑐. 𝑣. = 0.50; no information sharing; quality of information utilized 

for updating the S level shown in equations (3) and (4) (named IQL1 by Chatfield et al., 

2004). These factors remain fixed in our experiments. 

For the bullwhip analysis, we adopt the framework proposed by Towill et al. (2007) (see 

Section 1). Attending to the variance lens perspective, the demand pattern is the same as in 

Chatfield et al. (2004), i.e. demands follows a 𝑁(50, 202) distribution. Attending to the shock 

lens perspective, we use a 𝑁(50, 202) distribution, which suffer an average increment of 

100%  in the middle of the simulation time (not considering the warm-up period, see below), 

turning into a 𝑁(100, 202). These demand patterns are applied to the only customer in the 

serial SCN, and to every customer in the divergent SCN. 

We design two sets of experiments: the stationary response set and the dynamic response set. 

In the stationary response set, in order to compare the performance of the serial and the 

divergent SCNs under both lenses, a global measure of Φ and BwSl are obtained for both 

demand patterns. In the dynamic set, the temporal evolution of Φ is obtained under the shock 

lens in order to analyze the impulse response of both SCNs in detail.  

In the first set of experiments, a simulation experiment has been carried out for each SCN and 

for each demand pattern. Following the simulation procedure indicated in Chatfield et al. 

(2004), each experiment consists in 30 replications of 700 periods, with the first 200 periods 

of each replication removed as a warm-up used to set up the system. The results obtained 

from the replications are averaged for each experiment. To be able to compare the 

experiments under both lenses, metrics are calculated in the same simulation period, after the 

impulse time (t=450). The first set of experiments is summarized in Table 3. 

[Table 3 near here] 

In the second set of experiments, in order to obtain the temporal response, each SCN is 

evaluated in different simulation periods. In the first observation, named T0, SCNs are 

simulated until the simulation time is just before the demand impulse occurs, obtaining the 

initial Φ. Then, Φ is measured in a sequence of experiments where the simulation time starts 

at the demand impulse instant and the simulation time is increasing in intervals of 25 or 50 



 

 

periods until the end of the original simulation time is reached (t=700), resulting in the 

experiments T1-T6. As for the first set, each experiment consists in 30 replicates, and the 

results obtained are averaged. This set of experiments is summarized in Table 4. 

[Table 4 near here] 

6. Numerical Results 

6.1. Stationary response set 

Under the variance lens, results obtained for Φ are very similar for both SCNs (see Figure 3), 

being slightly higher for the divergent SCN at the upper stages. However, under the shock 

lens there is an important difference between both SCNs, as Φ is considerably higher for the 

divergent SCN (see Figure 4). The average results for Φ and BwSl, as well as the differences 

between both SCNs (∆(%) =
𝛷 𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑡−𝛷 𝑆𝑒𝑟𝑖𝑎𝑙

𝛷 𝑆𝑒𝑟𝑖𝑎𝑙
∗ 100%) are shown in Table 5, together with 

the corresponding 99%-confidence intervals. 

Under the variance lens, it can be seen that the values of the measures are not statistically 

different, which indicates a rather similar performance for both SCNS. At the lower stages, 

the increase of Φ is below 1%, while at the upper stages the differences are slightly higher (Φ 

is 5.39% higher for the divergent SCN at the distributor stage and 6.08% at the factory stage). 

BwSl helps to easily compare both SCNs. The propagation of the bullwhip effect is very 

similar for both SCNs, being slightly higher (6.20 %) for the divergent SCN. 

[Figure 3 near here] 

[Figure 4 near here] 

Under the shock lens, the Φ curve is clearly stepped for the divergent SCN, with the 

minimum increase at the retailer stage (1.32% over the serial SCN) and the maximum 

increase at the factory stage (95.86% over the serial SCN). The bad performance of the 

divergent SCN in this case is well summarized by the value of BwSl, being 94.62% higher 

than in the serial SCN. Note that the differences in the indicators for both SCNs are 

statistically different, thus confirming that the divergent SCN performs worse than the serial 

SCN in this scenario. 

[Table 5 near here] 

6.2. Dynamic response set 

Figure 5 shows the evolution of Φ over time for each stage after the demand impulse 

(rhomboids dots for the serial SCN and square dots for the divergent SCN). The differences 



 

 

for Φ observed between both SCNs in Figure 5 are plotted in Figure 6, showing the temporal 

evolution of ∆(%) for each stage. Under an unexpected impulse in demand average: 

- Both SCNs react by: 1) immediately incrementing their order variances in all stages, 

and 2) decreasing their order variances over time. 

- The highest increase in Φ takes place just after the demand impulse (T1). The 

difference between both SCNs is maximal at this point, being higher as we move 

upstream (see Figure 6). 

- The shock recovery is similar for both SCNs at the lower stages (retailers and 

wholesalers), whereas ∆(%) is near to zero after T3 (see Figure 6). However, at the 

upper stages (distributors and factory), shock recovery is slower for the divergent 

SCN, obtaining high values of ∆(%) until the end of the simulation time (T6). 

[Figure 5 near here] 

[Figure 6 near here] 

In Figure 7, the order pattern at the factory stage is plotted against the customer order pattern 

for both SCNs under the shock lens. It is easy to see the high overreaction of the divergent 

SCN when the demand impulse occurs. 

[Figure 7 near here] 

Finally, a sensitivity analysis has been performed by systematically increasing the level of end 

customer standard deviation in the shock lens part of the simulation. The results show that as 

the impulse in customer demand variability increases, standard deviation of the orders placed 

in the lower echelons does not increase at the same rate. For example, 47.49% increase in 

customer demand standard deviation in the shock lens, resulted a 25.96% increase in the 

standard deviation of the factory orders. In other words, the increase in the shock was 

transmitted in lower proportions towards the upstream levels of the supply chain. 

 

7. Findings and managerial implications 

The results obtained in the previous section give new insights on the bullwhip effect research 

topic, considering two different lenses for the comparison of two different SCN structures. 

Under the variance lens, the following comments can be done: 

- The bullwhip effect found in the serial and the divergent SCNs are very similar. When 

the demand is predictable and the nodes can adequately adjust their inventory levels to 



 

 

fulfill the demand with a high customer service level, both SCNs are quasi-

equivalents. A node at the stage i of the divergent SCN causes the same amplification 

of orders that a node in the same stage i of the serial SCN, because they have the same 

order-up-to and forecast policies. The orders received by each node are proportional to 

the end customer demand, and hence, to the amplification of orders caused by them. 

As the variance of orders in each stage is rated to the end customer demand variance, 

each stage produces similar values of Φ for both SCNs. 

- The small increase observed in Φ for the divergent SCN in Figure 3 is caused by 

eventual excess of stock or by eventual stock-outs. Due to the uncertainties in the end 

customer demand and lead times, sometimes either the demand received may be 

different than the demand forecasted in the previous period, or the orders arrive earlier 

or later than expected, causing this phenomenon. In these cases, where the inventory 

level is far from the desired order-up-to level, a node reacts by ordering a big quantity 

of products (a positive order in case of stock-out and a negative order in case of excess 

of inventory). These exceptionally high orders are amplified upstream, increasing the 

variance ratio mainly in the upper stages. In view of the fact that for each node there is 

a certain probability that this phenomenon occurs, and that the divergent SCN has a 

higher number of nodes in each stage (higher vertical complexity), it happens more 

frequently in the divergent SCN, causing the little increment in the values of Φ at the 

upper stages (distributor and factory). As a summary, we can conclude that the 

divergent SCN has almost the same performance in terms of bullwhip effect than the 

serial SCN when the end customer demand does not suffer important changes. 

Using the shock lens, the following comments can be done: 

- Under the shock lens both SCNs are stress tested. The end customer demand impulse 

causes a massive stock-out situation at the retailer stage, which is then propagated and 

amplified along the SCN, causing stock-outs in all the stages of the SCNs. While the 

factory in the serial SCN has to manage the instability caused by the stock-out of one 

retailer, the same factory in the divergent SCN has to manage it with the stock-outs of 

eight retailers. The disproportional orders of the factory and distributors in the 

divergent SCN can be observed in Figure 7, and are the cause of: the excess of 

variance observed in Figure 4, the high peaks of variances, and the slow recovery 

observed in Figure 5. 



 

 

- The divergent SCN has a bad performance as compared to the serial SCN under 

important unpredicted changes in demand tendencies. We can thus conclude that 

divergent SCNs are less robust than serial SCNs.  

It is worth mentioning the relevance of the framework for the analysis of the bullwhip effect 

proposed by Towill et al. (2007). The authors stated that “the detection of bullwhip effect 

depends on which lens is used”, and they proposed three different lenses for bullwhip analysis 

(variance, shock and filter lens). Our experiments have shown different behaviors depending 

on the lens used: while for the classical variance lens analysis (stationary stochastic demand 

input) the bullwhip effect is similar for both SCNs, the shock lens analysis (step demand 

input) reveals that the divergent SCN performs worse than the serial SCN. 

With respect to the managerial implications of the study, to face up with the less robustness of 

divergent SCNs, managers may find useful to consider the following: 

- Under a shock in end customer demand, the bullwhip effect increases when the SCN 

structure becomes more complex as the number of echelons increases, or as the 

number of successors at each echelon increases. Thus, to mitigate this incremental 

bullwhip effect, a firm could consider simplifying the SCN structure by reducing the 

number of echelons or by reducing the number of successors (Sodhi and Tang, 2011). 

This is particularly important for SCNs characterized by high variations in the end 

customer demand. On the contrary, traditional arborescent SCNs operaing in markets 

characterized by a stable consumer demand are less prone to the detrimental 

consequences of the demand amplification phenomenon. 

- An adequate forecast method adjusted to the end customer demand would prevent the 

firm from eventual excess of stock or from stock-outs. Therefore, it is important to 

make an effort to implement techniques in order to better understand the end customer 

demand tendencies (i.e. surveys) and to anticipate important changes. 

- The implementation of well-known techniques for reducing the bullwhip effect (i.e. 

information sharing) is highly desirable. These techniques may help managers to have 

a better control of the bullwhip effect in case of important changes in the end customer 

demand that cannot be anticipated by the above techniques. However, it has yet to be 

proved how these techniques (usually tested in serial SCNs) perform in non-serial 

SCNs. 



 

 

8. Conclusions 

The literature review has revealed a lack of research on the bullwhip effect topic when the 

structure of the SCN is different than a serial SCN. However, real SCNs rarely adopt a 

traditional serial structure, often following a more complex topology. The present work is a 

first attempt to cover this research gap by analyzing the bullwhip effect in a divergent SCN 

and by comparing its performance with those of a serial SCN already analyzed in the 

literature by several authors. This analysis has been carried out using the variance lens and the 

shock lens proposed by Towill et al., (2007). The bullwhip effect has been observed both 

from a static and a dynamic perspective, being measured at the node level by the Order Rate 

Variance Ratio (which has been adapted to the divergent SCN), and at the network level by 

the Bullwhip Slope.  

The main result obtained show that divergent SCNs are more sensitive to unexpected violent 

changes in demand signal than serial SCNs. Two situations have been considered: 

- Variance lens, i.e. stationary demand signal. In this case the performance of both 

SCNs is very similar, being just a little worse for divergent SCNs. 

- Shock lens, i.e. demand signal suffers an unexpected violent change. In this case the 

performance of the divergent SCN is much worse than that of the serial SCN, showing 

higher variance of orders and taking more time for recovery, incurring in higher costs. 

Bhattacharya and Bandyopadhyay (2011) indicated that there are operational and behavioral 

causes of the bullwhip effect, and that the root of all the causes is the lack of coordination 

among the SCN members. Our paper shows that there are also structural factors that amplify 

the bullwhip effect caused by those operational and behavioral factors. 

Our study is of an exploratory nature since this topic that has not been previously addressed. 

Therefore we have tried to not add excessive complexity that may obscure the interpretation 

of the results. This comes at the price of a number of limitations that have been identified and 

that constitute future research lines. Some of these are: 

- The present work is limited by fixed operational factors (order-up-to policy, 

forecasting, etc.) and by the SCN structure itself. As underlined by Dejonckheere et al. 

(2004), more or less bullwhip could be obtained by selecting other vectors of 

parameters. A deeper analysis must be done to better understand this type of SCNs, 



 

 

considering different operational factors and structural factors (horizontal and vertical 

complexity). 

- The less robust structure of the divergent SCN might be compensated by a good 

information system, in order to share end customer demand (information sharing) and 

current inventory levels (synchronized supply, see Cannella and Ciancimino, 2010; 

Ciancimino et al., 2012), allowing a faster and proportional response to violent 

changes in the end customer demand. Such information system can be adapted to 

divergent SCNs and its efficiency tested. 

- It has been shown that, in addition to the number of stages, other structural factors 

may influence the bullwhip effect. An identification of these factors and a 

quantification of their effects could be done. 
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Figure 1: Multi-Agent Framework of SCOPE. 
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 Figure 2. Serial vs Divergent SCNs. 

 

 



 

 

 

 

 

 

Figure 3. Φ under the Variance Lens. 

 

 

 

 

 

 

 

 

 

 

Figure 4. Φ under the Shock Lens. 
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Figure 5. Evolution of Φ over time under the Shock Lens. 

 

 

 

 

 

Figure 6. Divergent SCN Φ increments over the serial SCN. 
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Figure 7. Factory vs end customer demand order patterns under the shock lens. 
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Table 1. An overview of relevant contributions published during the Bullwhip Avoidance Phase. 
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Table 2: Validation of SCOPE 

Echelon Chen et al. (2000) Chatfield et al. (2004)  

SISCO 

Cañizares and Framinan (2012) 

SCOPE 

Retailer 1.89 1.90 1.90 

Wholesaler 3.57 3.59 3.53 

Distributor 6.74 6.70 6.66 

Factory 12.73 12.84 12.58 

 



 

 

Table 3. Stationary response set of experiments. 

Bullwhip Effect Lens Demand Pattern Structure of the SCN Metrics 

Variance Lens 

 

 

𝑁(50, 202) 

𝑡 ∈ [0-700] 

Serial SCN 

Φ 

BwSl 

𝑡 ∈ [450-700] 

Divergent SCN 

Shock Lens 

 

𝑁(50, 202) 𝑡 ∈ [0-449] 

𝑁(100, 202) 𝑡 ∈ [450-700] 

Serial SCN 

Divergent SCN 

 

 

 

 

 

 

 

 

 

Table 4. Dynamic response set of experiments. 

Bullwhip Effect Lens Demand Pattern Simulation Periods Structure of the SCN Metrics 

 

 

Shock Lens 

 

 

 

 

𝑁(50, 202) 

𝑡 ∈ [0-449] 

 

𝑁(100, 202) 

𝑡 ∈ [450-700] 

T0: [200-449] Serial/Divergent   

 

 

 

Φ 

 

 

T1: [450-475] Serial/Divergent 

T2: [450-500] Serial/Divergent 

T3: [450-550] Serial/Divergent 

T4: [450-600] Serial/Divergent 

T5: [450-650] Serial/Divergent 

T6: [450-700] Serial/Divergent 
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Table 5. Numeric results for Φ and BwSl. 

Lens 
SCN 

structure 

Φ 

BwSl 

Retailer Wholesaler Distributor Factory 

Variance Lens 

 

Serial 2.253±0.0308 6.329±0.1766 19.153±0.7367 57.766±2.6669 13.043±0.603 

Divergent 2.258±0.0289 6.331±0.1695 20.186±7626 61.276±2.6517 13.852±0.603 

∆(%) 0.222 0.032 5.393 6.076 6.203 

Shock Lens 

 

Serial 2.655±0.0126 7.732±0.1203 23.453±0.4962 69.539±1.7386 15.790±0.394 

Divergent 2.690±0.0119 8.923±0.1188 39.595±0.8211 136.196±2.8934 30.730±0.654 

∆(%) 1.318 15.404 68.827 95.856 94.617 
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