
 

Fast Pipeline 128x128 Pixel Spiking Convolution 
Core for Event-Driven Vision Processing in FPGAs 

A. Yousefzadeh, T. Serrano Gotarredona, and B. Linares-Barranco 
Instituto de Microelectrónica de Sevilla, IMSE-CNM (CSIC and Universidad de Sevilla), Sevilla, SPAIN 

Email: bernabe@imse-cnm.csic.es

 
Abstract— This paper describes a digital implementation of a 

parallel and pipelined spiking convolutional neural network (S-
ConvNet) core for processing spikes in an event-driven system. 
Event-driven vision systems use typically as sensor some bio-
inspired spiking device, such as the popular Dynamic Vision 
Sensor (DVS). DVS cameras generate spikes related to changes in 
light intensity. In this paper we present a 2D convolution event-
driven processing core with 128×128 pixels. S-ConvNet is an 
Event-Driven processing method to extract event features from 
an input event flow. The nature of spiking systems is highly 
parallel, in general. Therefore, S-ConvNet processors can benefit 
from the parallelism offered by Field Programmable Gate Arrays 
(FPGAs) to accelerate the operation. Using 3 stages of pipeline 
and a parallel structure, results in updating the state of a 128 
neuron row in just 12ns. This improves with respect to previously 
reported approaches. 

Keywords—Spiking Convolutional Neural Networks, DVS, 
Artificial Retina, FPGA, Parallel Processing 

I.  INTRODUCTION  

In conventional artificial vision systems, cameras capture 
frames at a given frame rate. In these systems, independent of 
the changes in the frames, the processing will be done for every 
single frame. Therefore, for detecting fast moving objects, a 
high frame rate is required, resulting in a need for very 
powerful processors. However, in biological brains, the 
procedure is quite different. Our eyes contain many neurons 
that are sensitive to light and each neuron will generate a spike 
as soon as it detects a change in light. The processing neurons 
in the cortex operate with time responses of several 
milliseconds, but there are many millions of them operating in 
parallel and with a very efficient spike based information 
encoding scheme.  

Address Event Representation (AER) [2] is a way to 
represent spikes and synapses with artificial electronic systems. 
In this way, every pixel of an artificial retina chip can generate 
events that contain the address of the originating pixel. From 
the point of view of artificial AER neural networks, these 
events play the role of spikes in biology. For example in a 
128×128 pixel retina, 14 bits are required to encode the (x, y) 
position. The information is mainly hidden in the timing of the 
generated spikes. The artificial retina that has been used in this 
work [1], also appends one extra bit to the AER events which 
shows the sign (increasing or decreasing) of the relative light 
intensity change of the corresponding pixel.  

After generating and sending spikes in a retina chip, the 
next step is to process the spikes and extract the desired 
features. Work on AER systems started around twenty years 
ago [2], but AER processing with generic feature extraction 
hardware is more recent [3], [8], [11], [13], [15], [18]. 

The main difference between frame-based and frame-free 
event-driven systems is hidden in the asynchronous nature of 
spikes. In frame based systems, waiting for new frames to 
detect an object is unavoidable. For example, a normal 
commercial camera generates around 25 frames per second, so 
that the time difference between frames is 40ms. For detecting 
an object, the system at least needs to wait 40ms to receive a 
new frame. On the other hand, in frame-free event-driven 
vision processing, the object could be recognized as soon as 
enough relevant spikes are provided by the retina. Retina pixels 
physically need a few microseconds to detect changes in light 
and generate spikes. So the time for detecting an object can be 
as small as one millisecond [9]. Another interesting advantage 
of using frame-free event-driven systems is power 
consumption. The number of spikes generated by a spiking 
DVS retina is directly related to the environment visual 
activity. If there is no changing activity, the DVS will not 
generate any spike and the processing system also consumes 
less power during those moments. For a more detailed 
comparison between conventional frame-based and spiking 
event-driven frame-free vision processing refer to [4]. Some 
simple event-driven processing can be implemented in 
software [5]-[6]. However, software implementations suffer 
from high latencies due to processor resource sharing between 
all neurons. For event-driven processing some mixed analog-
digital chips [14] have been designed that achieved good 
results but they suffered from high mismatch in the analog 
circuitry, which required expensive in-pixel calibration. Fully 
digital ASICs were also designed [3],[8], but only one 
ConvNet Feature Map could be implemented in one low cost 
chip.  

 In this paper we introduce a fully digital implementation of 
a spiking convolutional event-driven core that can be 
implemented in commercial FPGAs. We present a pipelined 
scheme capable of updating 128 synaptic connections in 12ns. 
This improves with respect to previously reported FPGA 
convolutional event-driven cores where 121 event synaptic 
updates where performed in 3s [11], or 84 event synaptic 
updates in 10ns [15]. In the next Section, we will describe 
briefly the spiking convolutional neural network concept. Then 
the proposed core will be presented and finally we will provide 
the implementation results. 



 

(a) (b)  

Fig. 1. (a) Illustration of event-driven convolutional computation concept. 
(b) Generic ConvNet with several layers, each with several Feature Maps. 

II. CONVOLUTIONAL NEURAL NETWORK CONCEPT   

In conventional frame-based image processing, one typical 
strategy is using kernel convolutions to extract image features, 
combine them progressively and perform object recognition. 
To exploit this concept in neural networks, the Convolutional 
Neural Network (ConvNet) paradigm was developed to define 
how to learn kernel weights (synaptic weights) [16]. If we use a 
kernel size of M×N, each neuron in a layer connects to the next 
layer through M×N synapses. The distribution of synaptic 
weights is the same for all neurons in a previous layers. This is 
also known as “weight sharing”. Fig. 1(a) shows a generic 
ConvNet structure with multiple layers, each layer with several 
“Feature Maps” (FM). Each Feature computes several 
convolutions, depending on the origins of the events. Each FM 
is a 2D grid arrangement of neurons receiving spike events 
from neurons of the previous layer FMs. A neuron in a FM 
sends its spikes to a “projection field” of neurons in a receiving 
FM in the next layer. This is done by assigning kernel weights 
to synapses is illustrated in Fig. 1(b). Assume that the 10×10 
grid is a FM of a that received a spike from a source neuron in 
the coordinate in the red position. If the kernel size is 3×3, the 
incoming spike will convey to a 3×3 square through synapses. 
This square is the “projection field” of the source neuron. The 
weights of the synapses are extracted from the kernel weights. 
For more details refer to [3],[8],[14].  

As an illustration of this event-driven convolutional 
processing, let us consider the case illustrated in Fig. 2. Fig. 
2(a) shows a 124ms histogram obtained by collecting the 
events from a DVS retina while observing a person juggling 
with three balls. The DVS retina has 128x128 pixel resolution. 
Each ball has a diameter of about 16 pixels in Fig. 2(a). The 
retina can generate events at a rate of up to 10Meps (million 
events per seconds). In this particular recording, the event rate 
generated by the retina is 322keps (thousand events per 
second). If every event generated by a retina pixel is sent to our 
128x128 pixel convolution processing core programmed with 
the 23x23 pixel convolution kernel in Fig. 2(c), as illustrated in 
Fig. 1, the convolution core output is as shown in Fig. 2(b). 
This is because the convolution kernel in Fig. 2(c) is tuned to 
detect circles of 16 pixel diameter: pixels on the diameter 
contribute positively to the center of the circle, while pixels in 
the center region or slightly beyond the 16 pixel diameter 
contribute negatively to the center. This way, the output of the 
event-driven convolution processing, as shown in Fig. 2(b), 
highlights the centers of the 16-pixel diameter balls. 

(a)  

(b)  

(c)  

Fig. 2. Event-Driven 2D Convolution Processing. (a) 124ms histogram from a 
DVS output. (b) Ouput of reported 2D convolution processing core programmed 
with the kernel shown in (c). 

 



 

 

Fig. 3. Event-Driven 2D Convolution Processing when observing moving 
balls. Left: ball moving in reality. Center: output provided by a DVS retina, 
where the pixels on the periphery of the ball generate events, as those are the 
pixels detecting changes in light. Pixels 1, 2, 3, and 4 on this periphery project 
the convolution kernel on a 128x128 pixel array inside the convolution 
processing core. Each retina pixel contributes positively on the projecting 16 
pixel diameter circumference. The positive contributions of all pixels at the 
retina plane add up at the center of the circumference in the convolution core 
plane, signaling the presence of a 16 pixel diameter circle. 

 

Fig. 3 helps to better understand the intuition behind this 
event-driven convolutional processing. The left side in Fig. 3 
shows a solid ball moving in the real world. The central plane 
in Fig. 3 represents the pixels of a DVS sensor, which detect 
illumination changes. Thus, only the pixels on the peripheral 
circumference will become active and send one or more spikes. 

When a retina pixel sends a spike to the convolution core 
on the right of Fig. 3, it will send spikes to the projection field 
defined by the convolution kernel in Fig. 2(c). This projection 
field sends a positive contribution to the pixels at 
circumference of diameter equal to 16 pixels, while the 
contribution is negative inside and slightly outside that 
circumference. When adding up the contributions of all 
projection fields of the retina active pixels, there will be a net 
positive contribution in the center of the original circumference 
on the convolution core plane, signaling the center of the 

circumference of the expected size. This is what is shown in 
Fig. 2(b). 

III. PROPOSED EVENT-DRIVEN CONVOLUTIONAL CORE 

The implementation of the convolutional core presented in 
this work contains a fast parallel and pipelined hardware 
structure for event processing. The retina provides completely 
asynchronous events. In the FPGA, a complete asynchronous 
design is not efficient. In this paper, a Globally Asynchronous 
Locally Synchronous (GALS) structure is designed to share 
some resources and take advantage from pipeline and parallel 
design principles. With this approach, we obtained a high rate 
of event processing, while using an optimum number of cells in 
the FPGA. In this paper a simple leaky integrated and fire 
neuron model with instant synapses [9] has been used.  

Fig. 4 illustrates the connections between the convolutional 
core and the AER modules for receiving and transmitting 
events through asynchronous parallel AER interfacing. The 
core contains 3 main modules “Convolution Core”, “AER 
RX”, and “AER TX”. The AER receiver and AER transmitter 
are designed to communicate with asynchronous AER protocol 
PCBs [10] and change the event flow into a fast synchronous 
protocol to communicate with the convolution core. Both 
asynchronous and synchronous protocols include flow control. 
The synchronous protocol can send one event per clock cycle, 
while the asynchronous protocol within the FPGA is slower. 

The convolution core itself, has 3 major blocks that work in 
parallel. The first block manages input events and updates the 
neurons states by doing event-driven convolutions. The second 
block is in charge of applying a forgetting rate (leakage) to the 
neurons, and the last block is the block for managing generated 
events and make them ready to be sent out of the core. 

A. Input event processing block 

Fig. 5 illustrates schematically the data flow diagram of the 
input event processing part. The convolutional core uses a 
pipelined parallel scheme to convolve one row of a kernel to 
one row of pixels (128 pixels in our case) in one clock cycle.  
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Fig. 4. Convolutional core interfaces. 



 

Pixel arrays hold their neuron state in dual-port block 
RAMs of the FPGA. Fig. 5 illustrates the use of one of the 
ports. The second port is used for the forgetting logic part and 
will be explained in subsection B, next. The membrane voltage 
of the neurons is saved in pixel arrays with 10 bits per pixel. 
The 2’s complement scheme has been used to save signed 
numbers. In this work, we use a 128×128 pixel arrangement for 
the convolutional core. Each pixel state is 10-bit and the core 
reads one line of pixels at the same time. Therefore, we need to 
use a 1280-bit bus. We used Xilinx Block RAMs that are fully 
synchronous. This means they need one clock cycle for reading 
and providing data. That is the reason for locating the first 
stage of the pipeline inside the pixel arrays. 

The process of updating one row of pixels consists of 3 
steps: reading a row of pixels from the block RAM, adding the 
proper row of the kernel and comparing the results against a 
threshold. Finally, the corresponding row of pixels, should be 
updated in the block RAM, which also needs an additional 
clock cycle for writing. For this purpose, it needs at least 2 
clock cycles for reading and writing. To reach the speed of 1 
row per clock cycle, 2 independent pixel arrays are used in 
parallel, each one containing half of the pixels. The even rows 
of pixels are in pixel array 1 and the odd rows are in pixel array 
2.  The 2 modules of block RAMs let the core read a row when 
it is writing in the previous row of the other RAM. Fig. 4 
illustrates the sequence of reading from pixel arrays in a 
normal operation. 

Fig. 6 shows the time sequence for reading and writing 
from the pixel arrays. The first, second and third clock cycles 
are spent for reading from pixel array 1 to fill up the 3 pipeline 
stages. In the fourth clock cycle, the first row of pixel array 2 
will be read and the first row of pixel array 1 will be written. In 

the following clock cycles, one read and one write operation 
will be done in one clock cycle until doing the whole 
convolution. 

The address calculator in Fig. 5 is a logic block that defines 
the addresses of the rows which should be read and written in 
the pixel arrays and kernel ROM. It calculates the proper 
addresses based on the input event address and its current state. 

Another part in Fig. 5 is the “kernel ROM”. For the kernel, 
the number of bits allocated to each weight is 6 bits including 
sign, based on the 2’s complement scheme. Normally, the 
kernel size is smaller than the pixel array size. Therefore, a 
logic is designed to find out the columns of pixels that should 
be added with the kernel. For this purpose, the “Kernel size 
matching” logic, puts the kernel row in the proper columns of 
an empty 128 cell register, while the other cells stay at zero. 
Each cell contains 6 bits.  Fig. 7 illustrates the output of this 
module. The adder simply contains 128 10-bit adder blocks 
that add the 128 pixels to the kernel weights which are put in 
proper columns.  

After adding the kernel to the pixels values, the threshold 
logic block compares the values of each pixel to a positive and 
a negative threshold. This block has 2 outputs, the new pixels 
values and the event vector register. 

New pixels values are the result of adding the kernel to the 
previous pixels values and the threshold logic puts the reset 
value for the pixels that exceed the threshold. In neural network 
terminology, it means that the neuron fires and generates a new 
spike and its state goes back to reset. The new pixel value is 
written in the same row of the pixel array to update the row.  
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Fig. 5. Data flow diagram of the input event processing block 



 

Another output of the threshold logic block is the event 
vector. In this version of the core, negative events are not 
saved. So, if a pixel value goes below its negative threshold, it 
is reset to zero but no new events are generated. However, if 
the pixel value goes above its positive threshold, it is reset to 
zero and in the 128 bit event vector register, a flag related to 
the place of this pixel will be set to ON. Another logic block 
that manages and sends generated events, uses this vector as 
input.  
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Fig. 6. Time sequence for reading and writing from the pixel arrays. It starts 
by reading the first row of pixel array 1 in the first clock cycle and 

shows the operations until the 15th clock cycl 
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The number of pixel rows that should be added with kernel 
rows depends on the size of the kernel and the address of the 
incoming event. There is a control finite state machine in this 
part of the core that controls the flow of data and asserts the 
control signals (such as read and write in the pixel arrays) and 
selects the proper input for the multiplexer. It also controls the 
“address calculator” logic block and the stop signal for the 
synchronous interface to manage flow control. This logic block 
should be aware of parameters like kernel size, negative and 
positive thresholds and reset value of the pixels. 
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Fig. 8. Data Flow diagram for the forgetting logic block 
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Fig. 9. Process of writing events in the event RAM 

 

B. Forgetting logic block 

Another important part of the convolution core is the logic 
block in charge of applying leakage to the neurons. Fig. 8 
illustrates schematically the data flow diagram for this block. 

In this block, the core uses the second port of the pixel 
arrays RAM. The pipeline stages, multiplexer and address 
calculator are almost the same as in the previous part. When 
the forgetting logic and convolution logic blocks want to write 
in the same row of the pixel arrays, there is a conflict. For 
addressing this situation, a collision detector logic block is 
designed to detect this situation and notify the control logic. 
After detecting a collision, the pipeline stage should become 
empty and the forgetting logic has to start from the previous 3 
rows. To minimize the number of collisions, a “forgetting 



 

process” starts from the end of  the pixel array and proceeds 
towards the first row, while the convolution logic reads and 
writes in the reverse direction. Using this strategy minimizes 
collisions, as the maximum collision happening for 1 
convolution process is just once, preventing bursts of 
collisions.  

A complete cycle of forgetting needs 128 + 3 clock cycles 
if no collision happened. For each collision occurrence the 
forgetting logic waits for 3 clock cycles and 3 additional clock 
cycles are added to fill up the pipeline again.  

There is a forgetting counter in Fig. 8 that generates 
forgetting signals based on the forgetting rate defined by the 
user. The “forgetting accumulator” block takes care to not lose 
any forgetting signal within the huge traffic of input events. 
Whenever a forgetting signal comes, the accumulator adds ‘1’ 
to the forgetting register and whenever a “forgetting done” 
signal activates (that means a complete cycle of forgetting has 
concluded), the logic will decrease by ‘1’ the forgetting 
register. The forgetting register contains the number of 
forgetting cycles that should be performed.  

The “leakage logic” block adds or subtracts ‘1’ to the pixel 
value based on the sign bit. For positive values it will decrease 
the number and for negative values it will add ‘1’ to the value 
to set them closer to the reset value. For the value equal to 
reset, the “leakage logic” will do nothing. 

C. Output event generator block 

Whenever an event is generated by the “threshold logic” 
block of the convolution block, another part of the core takes 
care of these new events. This part includes 2 parallel 
processes. The first one writes the new events into the event 
RAM, and the second one reads them and send them out of the 
core. Event RAM is a dual-port block RAM that contains 
128x128 bits of data. It means that for every pixel, there is 1 bit 
of data in the event RAM that indicates the corresponding pixel 
has generated a new event or not.  

Fig. 9 illustrates the process of writing events in the event 
RAM. This part also uses the same pipeline and parallel 
techniques and 2 dual port RAMs to speed up the process. 
Whenever a new event vector comes, the corresponding row of 
the event RAM will be read. The content of the event RAM 
row and the new event will enter into the 128 OR gates and the 
result is the updated row of event RAM. The “Address 
calculator” logic block for this process uses the address of the 
pixel arrays and manipulates it to fit the new pipeline stages. 
The control FSM that is not shown in Fig. 9, will control the 
write enable signals of the RAMs. 

The “Row Marker” block is designed to help another 
process for output event management, which increases the 
speed of finding events in the RAMs. Finding an event in the 
whole memory by scanning each line of memory one by one is 
not efficient.  “Row marker” calculates the OR between the 
128 bits of the updated event vector and puts it in the proper 
column of the 128 bit row flag register. This way, each flag 
indicates that in the corresponding row of the event RAM, 
there is one or more new events waiting to be sent.    
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Fig. 10. Process of reading events from the event RAM and sending events 
out 

Another process to manage the generated events is the 
process of reading from Event RAM and send the events out of 
the core. Fig. 10 illustrates this process. 

Based on the information in the Row flag registers, the row 
address of event RAMs will be defined through a “Row 
detector” logic block. Another logic block that operates in the 
same way is the “Event cell detector”, which works on the 
content of the event RAM to find the events. With these 2 logic 
blocks, the “new event maker” logic block can find out the X 
and Y of the new event to make an AER event package.  

The “collision detector” is in charge of finding the write 
cycles with the same address in both ports of the event RAMs. 
In case of collision, the process of reading and sending events 
will always wait for the process of writing new events in the 
RAMs. The control logic block is responsible for asserting the 
write enable signals for the block RAM and taking care in 
collision situations. It also should handle stop signals from the 
output synchronous interface and propagate them back to the 
input synchronous interface.  

Another important role of the control FSM is sending 
events one by one. Whenever an event is sent, its place in the 
3rd stage pipeline register should become 0 to start sending 
another event. The control logic does this process by changing 
the 3rd stage pipeline register through the multiplexer. When 
all of the events in the 3rd stage pipeline register have been 
sent, the control register will assert the event RAM write 
enable signal to write zero in the selected row of the event 
RAM and the row flag register. 

 



 

 

Fig. 11. Experimental Setup 

 

IV. IMPLEMENTATION RESULTS 

Fig. 11 shows the setup used in this work which contains a 
retina camera [1], a node-board [17] (containing one Spartan6 
and other necessary interfaces) and 2 USBAERmini2 boards 
[10] that send AER spikes (before and after processing) 
through USB to a computer. These boards are used to monitor 
DVS events, as well as convolution output events, as was 
shown in Fig. 2. 

In this paper, we used Xilinx XST to synthesize and 
implement Verilog codes. With Spartan-6 we obtained a 
critical path of 12ns for the pipeline stages, which allowed us 
to use 80MHz of clock frequency.  

Using block RAM in this project is unavoidable because of 
the huge amount of memory that is needed for saving pixel 
states.  Although it is not a very expensive memory with 
respect to distributed RAM, it is slower and it cannot be used in 
a fully costum manner. This means it is normally offered in a 
special size of memory. For example, in Spartan-6 the 
minimum size of block RAM is 9kb [12] and the widest port 
for dual-port RAM contains 18 bits of data. Therefore the 
block RAM will be 512×18 bits. The core uses these block 
RAMs to make a pixel array of 64×1280 bits (each pixel array 
contains half of pixels), so that from each 512 rows of block 
RAM, just 64 rows have been used and there is a waste of 
memory happening here.  

In Spartan-6 XC6SLX150T-3, the number of occupied 
slices is around 3.3k out of 23k, and the number of 8kb block 
RAMs used is 160 out of 536. Also, for comparison purposes, 
the core has been also synthesized for Virtex-6 and Virtex-7 
technologies. TABLE I. shows the percentage of resources that 
are needed, the critical path delays and maximum frequencies 
in the different FPGAs. 

If the kernel has L lines, the presented core needs L+3 
clock cycles for calculating a convolution. As a comparison, 
Camuñas [3] produced a 0.35um CMOS chip for 32×32 pixels, 
which for a kernel size of 23×23 the processing needed 50 
clock cycles or 417ns with 120MHz clock frequency. In the 
same situation, the presented core needs 26 clock cycles for 
this kernel which in Spartan-6 needs about 312ns, in Virtex-6 
about 195ns and in Virtex-7 about 156ns. 

Regarding other FPGA implementations of Event-Driven 
ConvNets, to our knowledge there are two other cases reported. 
Zamarreño et al. [11] used a convolution core adapted from 
[17], where neuron states are updated pixel by pixel, instead of 
row by row. This allowed for very compact convolution cores, 
so that many of them could be put on one signle FPGA: a total 
of 64 cores, each of 64x64 pixels could be put on a Virtex6, 
each core together with a programmable router for configuring 
arbitrary ConvNets. However, as synaptic update was pixel by 
pixel, it required about 3us to update one event of 11x11 
convolution kernel. This is equivalent to requiring 3.17us to 
update a row of 128 pixels, as we are doing in this work. 

Another recently reported example of event-driven 
ConvNets [15], reports a core update speed of 84 synaptic 
updates in 10ns, implemented on a Spartan6, thus achieving a 
performance which approaches the one reported in the present 
work.  

V. CONCLUSIONS 

In this paper, we present a 128×128 pixel convolutional 
core for event processing that can process each kernel row in 
one clock cycle using a parallel and pipelined structure. In 
spiking ConvNet designs, using this core can speed up event 
processing and it can be used to make a layer for neural 
networks. For convolving a kernel that contains L lines, the 
core needs L+3 clock cycles. We implemented the core in 
different FPGAs. For the FPGA in our Node-Board 



 

(XC6SLX150-3), 12ns are needed to update the state of a 128 
neuron row. The core also contains a leakage logic that works 
independently and does not interfere with the main process.  

TABLE I.  RESOURCES NEEDED IN DIFFERENT FPGAS AND MAXIMUM 
CLOCK FREQUENCY 

FPGA Chip 
Resource Utilization 

Occupied 
Slices 

Occupied 
Block RAM 

Critical 
Path 

Spartan-6 
(XC6SLX45-3) 

3,298 
(48%) 

80 x 16kb 
(68%)  

12ns 
(83MHz) 

Spartan-6 
(XC6SLX75-3) 

3,285 
(28%) 

80 x 16kb 
(46%) 

12ns 
(83MHz) 

Spartan-6 
(XC6SLX150-3) 

3,317 
(14%) 

80 x 16kb 
(29%) 

12ns 
(83MHz) 

Virtex-6 
(XC6VLX75T-3) 

4,549 
(39%) 

80 x 32kb 
(51%) 

7.5ns 
(133MHz) 

Virtex-7 
(XC7VX330T-3) 

4,067   
(7%) 

80 x 32kb 
(10%) 

6ns 
(166MHz) 
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