

Fast Pipeline 128x128 Pixel Spiking Convolution
Core for Event-Driven Vision Processing in FPGAs

A. Yousefzadeh, T. Serrano Gotarredona, and B. Linares-Barranco
Instituto de Microelectrónica de Sevilla, IMSE-CNM (CSIC and Universidad de Sevilla), Sevilla, SPAIN

Email: bernabe@imse-cnm.csic.es

Abstract— This paper describes a digital implementation of a

parallel and pipelined spiking convolutional neural network (S-
ConvNet) core for processing spikes in an event-driven system.
Event-driven vision systems use typically as sensor some bio-
inspired spiking device, such as the popular Dynamic Vision
Sensor (DVS). DVS cameras generate spikes related to changes in
light intensity. In this paper we present a 2D convolution event-
driven processing core with 128×128 pixels. S-ConvNet is an
Event-Driven processing method to extract event features from
an input event flow. The nature of spiking systems is highly
parallel, in general. Therefore, S-ConvNet processors can benefit
from the parallelism offered by Field Programmable Gate Arrays
(FPGAs) to accelerate the operation. Using 3 stages of pipeline
and a parallel structure, results in updating the state of a 128
neuron row in just 12ns. This improves with respect to previously
reported approaches.

Keywords—Spiking Convolutional Neural Networks, DVS,
Artificial Retina, FPGA, Parallel Processing

I. INTRODUCTION

In conventional artificial vision systems, cameras capture
frames at a given frame rate. In these systems, independent of
the changes in the frames, the processing will be done for every
single frame. Therefore, for detecting fast moving objects, a
high frame rate is required, resulting in a need for very
powerful processors. However, in biological brains, the
procedure is quite different. Our eyes contain many neurons
that are sensitive to light and each neuron will generate a spike
as soon as it detects a change in light. The processing neurons
in the cortex operate with time responses of several
milliseconds, but there are many millions of them operating in
parallel and with a very efficient spike based information
encoding scheme.

Address Event Representation (AER) [2] is a way to
represent spikes and synapses with artificial electronic systems.
In this way, every pixel of an artificial retina chip can generate
events that contain the address of the originating pixel. From
the point of view of artificial AER neural networks, these
events play the role of spikes in biology. For example in a
128×128 pixel retina, 14 bits are required to encode the (x, y)
position. The information is mainly hidden in the timing of the
generated spikes. The artificial retina that has been used in this
work [1], also appends one extra bit to the AER events which
shows the sign (increasing or decreasing) of the relative light
intensity change of the corresponding pixel.

After generating and sending spikes in a retina chip, the
next step is to process the spikes and extract the desired
features. Work on AER systems started around twenty years
ago [2], but AER processing with generic feature extraction
hardware is more recent [3], [8], [11], [13], [15], [18].

The main difference between frame-based and frame-free
event-driven systems is hidden in the asynchronous nature of
spikes. In frame based systems, waiting for new frames to
detect an object is unavoidable. For example, a normal
commercial camera generates around 25 frames per second, so
that the time difference between frames is 40ms. For detecting
an object, the system at least needs to wait 40ms to receive a
new frame. On the other hand, in frame-free event-driven
vision processing, the object could be recognized as soon as
enough relevant spikes are provided by the retina. Retina pixels
physically need a few microseconds to detect changes in light
and generate spikes. So the time for detecting an object can be
as small as one millisecond [9]. Another interesting advantage
of using frame-free event-driven systems is power
consumption. The number of spikes generated by a spiking
DVS retina is directly related to the environment visual
activity. If there is no changing activity, the DVS will not
generate any spike and the processing system also consumes
less power during those moments. For a more detailed
comparison between conventional frame-based and spiking
event-driven frame-free vision processing refer to [4]. Some
simple event-driven processing can be implemented in
software [5]-[6]. However, software implementations suffer
from high latencies due to processor resource sharing between
all neurons. For event-driven processing some mixed analog-
digital chips [14] have been designed that achieved good
results but they suffered from high mismatch in the analog
circuitry, which required expensive in-pixel calibration. Fully
digital ASICs were also designed [3],[8], but only one
ConvNet Feature Map could be implemented in one low cost
chip.

 In this paper we introduce a fully digital implementation of
a spiking convolutional event-driven core that can be
implemented in commercial FPGAs. We present a pipelined
scheme capable of updating 128 synaptic connections in 12ns.
This improves with respect to previously reported FPGA
convolutional event-driven cores where 121 event synaptic
updates where performed in 3s [11], or 84 event synaptic
updates in 10ns [15]. In the next Section, we will describe
briefly the spiking convolutional neural network concept. Then
the proposed core will be presented and finally we will provide
the implementation results.

(a) (b)

Fig. 1. (a) Illustration of event-driven convolutional computation concept.
(b) Generic ConvNet with several layers, each with several Feature Maps.

II. CONVOLUTIONAL NEURAL NETWORK CONCEPT

In conventional frame-based image processing, one typical
strategy is using kernel convolutions to extract image features,
combine them progressively and perform object recognition.
To exploit this concept in neural networks, the Convolutional
Neural Network (ConvNet) paradigm was developed to define
how to learn kernel weights (synaptic weights) [16]. If we use a
kernel size of M×N, each neuron in a layer connects to the next
layer through M×N synapses. The distribution of synaptic
weights is the same for all neurons in a previous layers. This is
also known as “weight sharing”. Fig. 1(a) shows a generic
ConvNet structure with multiple layers, each layer with several
“Feature Maps” (FM). Each Feature computes several
convolutions, depending on the origins of the events. Each FM
is a 2D grid arrangement of neurons receiving spike events
from neurons of the previous layer FMs. A neuron in a FM
sends its spikes to a “projection field” of neurons in a receiving
FM in the next layer. This is done by assigning kernel weights
to synapses is illustrated in Fig. 1(b). Assume that the 10×10
grid is a FM of a that received a spike from a source neuron in
the coordinate in the red position. If the kernel size is 3×3, the
incoming spike will convey to a 3×3 square through synapses.
This square is the “projection field” of the source neuron. The
weights of the synapses are extracted from the kernel weights.
For more details refer to [3],[8],[14].

As an illustration of this event-driven convolutional
processing, let us consider the case illustrated in Fig. 2. Fig.
2(a) shows a 124ms histogram obtained by collecting the
events from a DVS retina while observing a person juggling
with three balls. The DVS retina has 128x128 pixel resolution.
Each ball has a diameter of about 16 pixels in Fig. 2(a). The
retina can generate events at a rate of up to 10Meps (million
events per seconds). In this particular recording, the event rate
generated by the retina is 322keps (thousand events per
second). If every event generated by a retina pixel is sent to our
128x128 pixel convolution processing core programmed with
the 23x23 pixel convolution kernel in Fig. 2(c), as illustrated in
Fig. 1, the convolution core output is as shown in Fig. 2(b).
This is because the convolution kernel in Fig. 2(c) is tuned to
detect circles of 16 pixel diameter: pixels on the diameter
contribute positively to the center of the circle, while pixels in
the center region or slightly beyond the 16 pixel diameter
contribute negatively to the center. This way, the output of the
event-driven convolution processing, as shown in Fig. 2(b),
highlights the centers of the 16-pixel diameter balls.

(a)

(b)

(c)

Fig. 2. Event-Driven 2D Convolution Processing. (a) 124ms histogram from a
DVS output. (b) Ouput of reported 2D convolution processing core programmed
with the kernel shown in (c).

Fig. 3. Event-Driven 2D Convolution Processing when observing moving
balls. Left: ball moving in reality. Center: output provided by a DVS retina,
where the pixels on the periphery of the ball generate events, as those are the
pixels detecting changes in light. Pixels 1, 2, 3, and 4 on this periphery project
the convolution kernel on a 128x128 pixel array inside the convolution
processing core. Each retina pixel contributes positively on the projecting 16
pixel diameter circumference. The positive contributions of all pixels at the
retina plane add up at the center of the circumference in the convolution core
plane, signaling the presence of a 16 pixel diameter circle.

Fig. 3 helps to better understand the intuition behind this
event-driven convolutional processing. The left side in Fig. 3
shows a solid ball moving in the real world. The central plane
in Fig. 3 represents the pixels of a DVS sensor, which detect
illumination changes. Thus, only the pixels on the peripheral
circumference will become active and send one or more spikes.

When a retina pixel sends a spike to the convolution core
on the right of Fig. 3, it will send spikes to the projection field
defined by the convolution kernel in Fig. 2(c). This projection
field sends a positive contribution to the pixels at
circumference of diameter equal to 16 pixels, while the
contribution is negative inside and slightly outside that
circumference. When adding up the contributions of all
projection fields of the retina active pixels, there will be a net
positive contribution in the center of the original circumference
on the convolution core plane, signaling the center of the

circumference of the expected size. This is what is shown in
Fig. 2(b).

III. PROPOSED EVENT-DRIVEN CONVOLUTIONAL CORE

The implementation of the convolutional core presented in
this work contains a fast parallel and pipelined hardware
structure for event processing. The retina provides completely
asynchronous events. In the FPGA, a complete asynchronous
design is not efficient. In this paper, a Globally Asynchronous
Locally Synchronous (GALS) structure is designed to share
some resources and take advantage from pipeline and parallel
design principles. With this approach, we obtained a high rate
of event processing, while using an optimum number of cells in
the FPGA. In this paper a simple leaky integrated and fire
neuron model with instant synapses [9] has been used.

Fig. 4 illustrates the connections between the convolutional
core and the AER modules for receiving and transmitting
events through asynchronous parallel AER interfacing. The
core contains 3 main modules “Convolution Core”, “AER
RX”, and “AER TX”. The AER receiver and AER transmitter
are designed to communicate with asynchronous AER protocol
PCBs [10] and change the event flow into a fast synchronous
protocol to communicate with the convolution core. Both
asynchronous and synchronous protocols include flow control.
The synchronous protocol can send one event per clock cycle,
while the asynchronous protocol within the FPGA is slower.

The convolution core itself, has 3 major blocks that work in
parallel. The first block manages input events and updates the
neurons states by doing event-driven convolutions. The second
block is in charge of applying a forgetting rate (leakage) to the
neurons, and the last block is the block for managing generated
events and make them ready to be sent out of the core.

A. Input event processing block

Fig. 5 illustrates schematically the data flow diagram of the
input event processing part. The convolutional core uses a
pipelined parallel scheme to convolve one row of a kernel to
one row of pixels (128 pixels in our case) in one clock cycle.

AER
RX

Convolutional
Core

AER
TX

14 bit AER

Request

Acknowledge

Asynchronous
AER

Interface

Asynchronous
AER

Interface

14 bit AER

Data Valid

Stop

Synchronous
AER

Interface

Synchronous
AER

Interface

14 bit AER

Data Valid

Stop

14 bit AER

Request

Acknowledge

Fig. 4. Convolutional core interfaces.

Pixel arrays hold their neuron state in dual-port block
RAMs of the FPGA. Fig. 5 illustrates the use of one of the
ports. The second port is used for the forgetting logic part and
will be explained in subsection B, next. The membrane voltage
of the neurons is saved in pixel arrays with 10 bits per pixel.
The 2’s complement scheme has been used to save signed
numbers. In this work, we use a 128×128 pixel arrangement for
the convolutional core. Each pixel state is 10-bit and the core
reads one line of pixels at the same time. Therefore, we need to
use a 1280-bit bus. We used Xilinx Block RAMs that are fully
synchronous. This means they need one clock cycle for reading
and providing data. That is the reason for locating the first
stage of the pipeline inside the pixel arrays.

The process of updating one row of pixels consists of 3
steps: reading a row of pixels from the block RAM, adding the
proper row of the kernel and comparing the results against a
threshold. Finally, the corresponding row of pixels, should be
updated in the block RAM, which also needs an additional
clock cycle for writing. For this purpose, it needs at least 2
clock cycles for reading and writing. To reach the speed of 1
row per clock cycle, 2 independent pixel arrays are used in
parallel, each one containing half of the pixels. The even rows
of pixels are in pixel array 1 and the odd rows are in pixel array
2. The 2 modules of block RAMs let the core read a row when
it is writing in the previous row of the other RAM. Fig. 4
illustrates the sequence of reading from pixel arrays in a
normal operation.

Fig. 6 shows the time sequence for reading and writing
from the pixel arrays. The first, second and third clock cycles
are spent for reading from pixel array 1 to fill up the 3 pipeline
stages. In the fourth clock cycle, the first row of pixel array 2
will be read and the first row of pixel array 1 will be written. In

the following clock cycles, one read and one write operation
will be done in one clock cycle until doing the whole
convolution.

The address calculator in Fig. 5 is a logic block that defines
the addresses of the rows which should be read and written in
the pixel arrays and kernel ROM. It calculates the proper
addresses based on the input event address and its current state.

Another part in Fig. 5 is the “kernel ROM”. For the kernel,
the number of bits allocated to each weight is 6 bits including
sign, based on the 2’s complement scheme. Normally, the
kernel size is smaller than the pixel array size. Therefore, a
logic is designed to find out the columns of pixels that should
be added with the kernel. For this purpose, the “Kernel size
matching” logic, puts the kernel row in the proper columns of
an empty 128 cell register, while the other cells stay at zero.
Each cell contains 6 bits. Fig. 7 illustrates the output of this
module. The adder simply contains 128 10-bit adder blocks
that add the 128 pixels to the kernel weights which are put in
proper columns.

After adding the kernel to the pixels values, the threshold
logic block compares the values of each pixel to a positive and
a negative threshold. This block has 2 outputs, the new pixels
values and the event vector register.

New pixels values are the result of adding the kernel to the
previous pixels values and the threshold logic puts the reset
value for the pixels that exceed the threshold. In neural network
terminology, it means that the neuron fires and generates a new
spike and its state goes back to reset. The new pixel value is
written in the same row of the pixel array to update the row.

Pixel Array 1
(Dual Port Block

RAM)
1st stage Pipeline

Pixel Array 2
(Dual Port Block

RAM)
1st stage Pipeline

Kernel ROM

128 Pixel
Read
Port 1

128 Pixel
Read
Port 1

1
28 M

u
ltip

le
xe
r 2

x1
10

 b
it

128 Pixel

Kernel Size
matching

128
kernel
weights

2nd
 stage
Pipeline
Register

2nd
 stage
Pipeline
Register

3rd
stage

Pipeline
Register

3rd
stage

Pipeline
Register 128

 1
0
‐B
it A

d
de
r

D
ual

T
hre

sh
old

C
om

para
to
r

New 128 Pixel State

AER Input Events

Pixel array 2 Address

Kernel row Address

P
ix
el
 a
rr
a
y
1

A
d
d
re
ss

Address Calculator

Control FSM

Control
FSM

Control
FSM

Kernel column Address

Event Vector
(128 bit register for New Events)

Fig. 5. Data flow diagram of the input event processing block

Another output of the threshold logic block is the event
vector. In this version of the core, negative events are not
saved. So, if a pixel value goes below its negative threshold, it
is reset to zero but no new events are generated. However, if
the pixel value goes above its positive threshold, it is reset to
zero and in the 128 bit event vector register, a flag related to
the place of this pixel will be set to ON. Another logic block
that manages and sends generated events, uses this vector as
input.

Read
In 2
‐‐‐‐‐‐
Write
In 5

Read
In 3
‐‐‐‐‐‐
Write
In 6

Read
In 7
‐‐‐‐‐‐
Write
In 10

Read
In 5
‐‐‐‐‐‐
Write
In 8

Read
In 6
‐‐‐‐‐‐
Write
In 9

Read
In 10
‐‐‐‐‐‐
Write
In 13

Read
In 11
‐‐‐‐‐‐
Write
In 14

Read
In 8
‐‐‐‐‐‐
Write
In 11

Read
In 9
‐‐‐‐‐‐
Write
In 12

Read
In 12
‐‐‐‐‐‐
Write
In 15

Read
In 4
‐‐‐‐‐‐
Write
In 7

Read
In 1
‐‐‐‐‐‐
Write
In 4

...

...

Pixel A
rray 1

Pixel A
rray 2

Row 1Row 2Row 3Row 4Row 5Row 6

Row 1Row 2Row 3Row 4Row 5Row 6

Fig. 6. Time sequence for reading and writing from the pixel arrays. It starts
by reading the first row of pixel array 1 in the first clock cycle and

shows the operations until the 15th clock cycl

ZEROKernel rowZERO

Selected Row of Kernel

Kernel
size

matching

Output Register (128 Cell)

Fig. 7. Input and output of kernel size matching logic block

The number of pixel rows that should be added with kernel
rows depends on the size of the kernel and the address of the
incoming event. There is a control finite state machine in this
part of the core that controls the flow of data and asserts the
control signals (such as read and write in the pixel arrays) and
selects the proper input for the multiplexer. It also controls the
“address calculator” logic block and the stop signal for the
synchronous interface to manage flow control. This logic block
should be aware of parameters like kernel size, negative and
positive thresholds and reset value of the pixels.

Pixel Array 1
(Dual Port Block

RAM)
1st stage Pipeline

Pixel Array 2
(Dual Port Block

RAM)
1st stage Pipeline

Forgetting
Counter

Fo
rg
et

Si
gn
a
l

128 Pixel
Read
Port 2

128 Pixel
Write
Port 2

128 Pixel
Write
Port 2

Forgetting
Accumulator

Forget
Done

Forgetting
Reg

128 Multiplexer 2x1
10 bit

3rd stage Pipeline Register

C
o
n
tr
o
l F
S
M

2nd stage Pipeline
Register

2nd stage Pipeline
Register

128
Pixel

New Pixel State

Collision
Detector

Pixel Arrays’
Port 1
Address

Address
Calculator

Control
FSM

Control FSM
Leakage
Logic

Fig. 8. Data Flow diagram for the forgetting logic block

Event RAM 1
(Dual‐Port Block RAM)

1st pipeline stage

2nd stage Pipeline Register

128

OR

3rd stage Pipeline Register

Event Vector
(128 bit register for New Events)

128 bit

128 bit

Event RAM 2
(Dual‐Port Block RAM)

1st pipeline stage

2nd stage Pipeline Register

128

OR

3rd stage Pipeline Register

128 bit

128 bit

1st stage Pipeline Register

128 bit

2nd stage Pipeline
Register

128 bit 128 bit

128 bit
Port 1
Write

Address
Calculator

Pixel Arrays’
Port 1
Address

128
Bit
Row
Flag
1

128
Bit
Row
Flag
2

Row
Marker

Row
Marker

128 bit

Fig. 9. Process of writing events in the event RAM

B. Forgetting logic block

Another important part of the convolution core is the logic
block in charge of applying leakage to the neurons. Fig. 8
illustrates schematically the data flow diagram for this block.

In this block, the core uses the second port of the pixel
arrays RAM. The pipeline stages, multiplexer and address
calculator are almost the same as in the previous part. When
the forgetting logic and convolution logic blocks want to write
in the same row of the pixel arrays, there is a conflict. For
addressing this situation, a collision detector logic block is
designed to detect this situation and notify the control logic.
After detecting a collision, the pipeline stage should become
empty and the forgetting logic has to start from the previous 3
rows. To minimize the number of collisions, a “forgetting

process” starts from the end of the pixel array and proceeds
towards the first row, while the convolution logic reads and
writes in the reverse direction. Using this strategy minimizes
collisions, as the maximum collision happening for 1
convolution process is just once, preventing bursts of
collisions.

A complete cycle of forgetting needs 128 + 3 clock cycles
if no collision happened. For each collision occurrence the
forgetting logic waits for 3 clock cycles and 3 additional clock
cycles are added to fill up the pipeline again.

There is a forgetting counter in Fig. 8 that generates
forgetting signals based on the forgetting rate defined by the
user. The “forgetting accumulator” block takes care to not lose
any forgetting signal within the huge traffic of input events.
Whenever a forgetting signal comes, the accumulator adds ‘1’
to the forgetting register and whenever a “forgetting done”
signal activates (that means a complete cycle of forgetting has
concluded), the logic will decrease by ‘1’ the forgetting
register. The forgetting register contains the number of
forgetting cycles that should be performed.

The “leakage logic” block adds or subtracts ‘1’ to the pixel
value based on the sign bit. For positive values it will decrease
the number and for negative values it will add ‘1’ to the value
to set them closer to the reset value. For the value equal to
reset, the “leakage logic” will do nothing.

C. Output event generator block

Whenever an event is generated by the “threshold logic”
block of the convolution block, another part of the core takes
care of these new events. This part includes 2 parallel
processes. The first one writes the new events into the event
RAM, and the second one reads them and send them out of the
core. Event RAM is a dual-port block RAM that contains
128x128 bits of data. It means that for every pixel, there is 1 bit
of data in the event RAM that indicates the corresponding pixel
has generated a new event or not.

Fig. 9 illustrates the process of writing events in the event
RAM. This part also uses the same pipeline and parallel
techniques and 2 dual port RAMs to speed up the process.
Whenever a new event vector comes, the corresponding row of
the event RAM will be read. The content of the event RAM
row and the new event will enter into the 128 OR gates and the
result is the updated row of event RAM. The “Address
calculator” logic block for this process uses the address of the
pixel arrays and manipulates it to fit the new pipeline stages.
The control FSM that is not shown in Fig. 9, will control the
write enable signals of the RAMs.

The “Row Marker” block is designed to help another
process for output event management, which increases the
speed of finding events in the RAMs. Finding an event in the
whole memory by scanning each line of memory one by one is
not efficient. “Row marker” calculates the OR between the
128 bits of the updated event vector and puts it in the proper
column of the 128 bit row flag register. This way, each flag
indicates that in the corresponding row of the event RAM,
there is one or more new events waiting to be sent.

Event RAM 1
(Dual‐Port Block RAM)

1st pipeline stage

Event RAM 1
(Dual‐Port Block RAM)

1st pipeline stage

128 bit
Port 2
Write

128 bit
Port 2
Write

ZERO ZERO

Row
Flag
1

Row
Flag
2

Row
Detector

1

Row
Detector

2

2nd Stage Pipeline 2nd Stage Pipeline

128 bit
Port 2
Read

128 bit
Port 2
Read

Multiplexer 128 bit

128 128

3rd Stage Pipeline

128

Event Cell
Detector

128

Collision Detector

Event RAMs’
Port 1 Address

Control
FSM

Control
FSM

Control
FSM

128

Control FSM

Control
FSM

Make new
events

Fig. 10. Process of reading events from the event RAM and sending events
out

Another process to manage the generated events is the
process of reading from Event RAM and send the events out of
the core. Fig. 10 illustrates this process.

Based on the information in the Row flag registers, the row
address of event RAMs will be defined through a “Row
detector” logic block. Another logic block that operates in the
same way is the “Event cell detector”, which works on the
content of the event RAM to find the events. With these 2 logic
blocks, the “new event maker” logic block can find out the X
and Y of the new event to make an AER event package.

The “collision detector” is in charge of finding the write
cycles with the same address in both ports of the event RAMs.
In case of collision, the process of reading and sending events
will always wait for the process of writing new events in the
RAMs. The control logic block is responsible for asserting the
write enable signals for the block RAM and taking care in
collision situations. It also should handle stop signals from the
output synchronous interface and propagate them back to the
input synchronous interface.

Another important role of the control FSM is sending
events one by one. Whenever an event is sent, its place in the
3rd stage pipeline register should become 0 to start sending
another event. The control logic does this process by changing
the 3rd stage pipeline register through the multiplexer. When
all of the events in the 3rd stage pipeline register have been
sent, the control register will assert the event RAM write
enable signal to write zero in the selected row of the event
RAM and the row flag register.

Fig. 11. Experimental Setup

IV. IMPLEMENTATION RESULTS

Fig. 11 shows the setup used in this work which contains a
retina camera [1], a node-board [17] (containing one Spartan6
and other necessary interfaces) and 2 USBAERmini2 boards
[10] that send AER spikes (before and after processing)
through USB to a computer. These boards are used to monitor
DVS events, as well as convolution output events, as was
shown in Fig. 2.

In this paper, we used Xilinx XST to synthesize and
implement Verilog codes. With Spartan-6 we obtained a
critical path of 12ns for the pipeline stages, which allowed us
to use 80MHz of clock frequency.

Using block RAM in this project is unavoidable because of
the huge amount of memory that is needed for saving pixel
states. Although it is not a very expensive memory with
respect to distributed RAM, it is slower and it cannot be used in
a fully costum manner. This means it is normally offered in a
special size of memory. For example, in Spartan-6 the
minimum size of block RAM is 9kb [12] and the widest port
for dual-port RAM contains 18 bits of data. Therefore the
block RAM will be 512×18 bits. The core uses these block
RAMs to make a pixel array of 64×1280 bits (each pixel array
contains half of pixels), so that from each 512 rows of block
RAM, just 64 rows have been used and there is a waste of
memory happening here.

In Spartan-6 XC6SLX150T-3, the number of occupied
slices is around 3.3k out of 23k, and the number of 8kb block
RAMs used is 160 out of 536. Also, for comparison purposes,
the core has been also synthesized for Virtex-6 and Virtex-7
technologies. TABLE I. shows the percentage of resources that
are needed, the critical path delays and maximum frequencies
in the different FPGAs.

If the kernel has L lines, the presented core needs L+3
clock cycles for calculating a convolution. As a comparison,
Camuñas [3] produced a 0.35um CMOS chip for 32×32 pixels,
which for a kernel size of 23×23 the processing needed 50
clock cycles or 417ns with 120MHz clock frequency. In the
same situation, the presented core needs 26 clock cycles for
this kernel which in Spartan-6 needs about 312ns, in Virtex-6
about 195ns and in Virtex-7 about 156ns.

Regarding other FPGA implementations of Event-Driven
ConvNets, to our knowledge there are two other cases reported.
Zamarreño et al. [11] used a convolution core adapted from
[17], where neuron states are updated pixel by pixel, instead of
row by row. This allowed for very compact convolution cores,
so that many of them could be put on one signle FPGA: a total
of 64 cores, each of 64x64 pixels could be put on a Virtex6,
each core together with a programmable router for configuring
arbitrary ConvNets. However, as synaptic update was pixel by
pixel, it required about 3us to update one event of 11x11
convolution kernel. This is equivalent to requiring 3.17us to
update a row of 128 pixels, as we are doing in this work.

Another recently reported example of event-driven
ConvNets [15], reports a core update speed of 84 synaptic
updates in 10ns, implemented on a Spartan6, thus achieving a
performance which approaches the one reported in the present
work.

V. CONCLUSIONS

In this paper, we present a 128×128 pixel convolutional
core for event processing that can process each kernel row in
one clock cycle using a parallel and pipelined structure. In
spiking ConvNet designs, using this core can speed up event
processing and it can be used to make a layer for neural
networks. For convolving a kernel that contains L lines, the
core needs L+3 clock cycles. We implemented the core in
different FPGAs. For the FPGA in our Node-Board

(XC6SLX150-3), 12ns are needed to update the state of a 128
neuron row. The core also contains a leakage logic that works
independently and does not interfere with the main process.

TABLE I. RESOURCES NEEDED IN DIFFERENT FPGAS AND MAXIMUM
CLOCK FREQUENCY

FPGA Chip
Resource Utilization

Occupied
Slices

Occupied
Block RAM

Critical
Path

Spartan-6
(XC6SLX45-3)

3,298
(48%)

80 x 16kb
(68%)

12ns
(83MHz)

Spartan-6
(XC6SLX75-3)

3,285
(28%)

80 x 16kb
(46%)

12ns
(83MHz)

Spartan-6
(XC6SLX150-3)

3,317
(14%)

80 x 16kb
(29%)

12ns
(83MHz)

Virtex-6
(XC6VLX75T-3)

4,549
(39%)

80 x 32kb
(51%)

7.5ns
(133MHz)

Virtex-7
(XC7VX330T-3)

4,067
(7%)

80 x 32kb
(10%)

6ns
(166MHz)

ACKNOWLEDGMENT

This work has been supported by EU grants 604102 HBP
(the Human Brain Project) and 644096 ECOMODE, Spanish
grant (with support from the European Regional Development
Fund), BIOSENSE (TEC2012-37868-C04-02/01), Andalusian
grant NANO-NEURO (TIC-6091) and EU CHIST-ERA grant
PNEUMA (PRI-PIMCHI-2011-0768). A.Y. was supported by
an FPI grant from the Spanish Ministry of Economy and
Competitivity.

REFERENCES
[1] T. Serrano-Gotarredona and B. Linares-Barranco, “A 128×128 1.5%

Contrast Sensitivity 0.9% FPN 3 μs Latency 4 mW Asynchronous
Frame-Free Dynamic Vision Sensor Using Transimpedance
Preamplifiers”, IEEE J. Solid-State Circuits, vol. 48, no. 3, Mar. 2013.

[2] M. A. Mahowald, “VLSI analogs of neuronal visual processing: A
synthesis of form and function,” Ph.D. dissertation, Comput. Neural
Syst., California Inst. Technol., Pasadena, CA, 1992.

[3] L. Camuñas-Mesa, A. Acosta-Jiménez, C. Zamarreño-Ramos, T.
Serrano-Gotarredona, and B. Linares-Barranco, “A 32x32 Pixel
Convolution Processor Chip for Address Event Vision Sensors with
155ns Event Latency and 20Meps Throughput,” IEEE Trans. Circuits
and Systems, vol. 58, no. 4, pp. 777-790, Apr. 2011.

[4] C. Farabet , R. Paz, J. Pérez-Carrasco, C. Zamarreño-Ramos, A. Linares-
Barranco,Y. LeCun,“Comparison between frame-constrained fix-pixel-

value and frame-free spiking-dynamic-pixel ConvNets for visual
processing”, Frontiers in neuroscience, April, 2012.

[5] [Online]. Available: http://jaer.wiki.sourceforge.net

[6] T. Delbrück, “Frame-free dynamic digital vision,” in Proc. Int.
Symp.Secure-Life Electron., Adv. Electron. Quality Life Soc.,Mar. 6–7,
2008, pp. 21–26.

[7] T. Serrano-Gotarredona, A. G. Andreou, and B. Linares-Barranco,
“AER image filtering architecture for vision processing systems,” IEEE
Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 46, no. 9, pp. 1064–
1071, Sep. 1999.

[8] L. Camuñas-Mesa, C. Zamarreño-Ramos, A. Linares-Barranco, A.
Acosta-Jiménez, T. Serrano-Gotarredona,“An Event-Driven Multi-
Kernel Convolution Processor Module for Event-Driven Vision
Sensors,” IEEE J. Solid-State Circuits, vol. 47, no. 2, pp. 504-517, 2012.

[9] J. Pérez-Carrasco, B. Zhao, C. Serrano, B. Acha, T. Serrano-
Gotarredona, “Mapping from Frame-Driven to Frame-Free Event-
Driven Vision Systems by Low-Rate Rate Coding and Coincidence
Processing Application to Feedforward ConvNets”, IEEE Trans. Pattern
analysis and Machine inteligence, vol. 35, no. 11, November 2013.

[10] R. Berner, T. Delbruck, A. Civit-Balcells, and A. Linares-Barranco, “A
5 Meps $100 USB2.0 address-event monitor-sequencer interface,” in
Proc. IEEE Int. Symp. Circuits Syst., 2007, pp. 2451–2454.

[11] C. Zamarreo-Ramos, A. Linares-Barranco, T. Serrano-Gotarredona, and
B. Linares-Barranco, “Multicasting Mesh AER: A Scalable Assembly
Approach for Reconfigurable Neuromorphic Structured AER Systems.
Application to ConvNets”, IEEE Trans. Biomedical Circuits and
Systems, vol. 7, no. 1, Feb 2013.

[12] Xilinx’s documents, “Spartan-6 FPGA Block RAM Resources”, UG383

[13] R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Barranco
R. Paz-Vicente, “CAVIAR: A 45k-Neuron, 5MSynapse, 12G-
Connects/Sec AER Hardware Sensory-Processing-Learning-Actuating
System for High Speed Visual Object Recognition and Tracking,” IEEE
Trans. Neural Networks, vol. 20, no. 9, pp. 1417-1438, Sept. 2009.

[14] R. Serrano-Gotarredona, T. Serrano-Gotarredona, A. Acosta-Jiménez,
and B. Linares-Barranco, “A Neuromorphic Cortical-Layer Microchip
for Spike-Based Event Processing Vision Systems”, IEEE Trans.
Circuits Syst. vol. 53, no. 12, Dec. 2006.

[15] G. Orchard, C. Meyer, R. Etienne-Cummings, C. Posch, N. Thakor, R.
Benosman, “H-First: A Temporal Approach to Object Recognition,”
IEEE Trans. Pattern Analysis an dMachine Intelligence,
DOI: 10.1109/TPAMI.2015.2392947, 2015.

[16] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based
Learning Applied to Document Recognition,” Proc. IEEE, vol. 86, no.
11, pp. 2278-2324, Nov. 1998.

[17] T. Iakymchuk, A. Rosado, T. Serrano-Gotarredona, B. Linares-
Barranco, A. Jimenez-Fernandez, A. Linares-Barranco, and G. Jimenez-
Moreno, “An AER handshake-less modular infrastructure PCB with
x82.5Gbps LVDS serial links.” Proc. of the IEEE Int. Symp. Circ. and
Syst. (ISCAS), pp. 1556–1559, June 2014.

[18] A. Linares-Barranco, R. Paz-Vicente, F. Gómez-Rodriguez, A. Jiménez,
M. R. G. Jiménez, and A. Civit, “On the AER convolution Processors
for FPGA,” in Proc. IEEE Int. Symp. Circuits and Systems, pp. 4237–
4240, May 2010.

View publication statsView publication stats

https://www.researchgate.net/publication/308630414

