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Resumen en Castellano

Para hacer méas accesibles sus contenidos, se incluye en esta memoria de
investigacién el presente capitulo en castellano. En este capitulo se da cuenta
de los principales resultados, enuncidndolos en el orden en que aparecen y

respetando su numeracién original.

Capitulo 1: Introduccién

Los objetos principales que trata esta memoria son los operadores de com-
posicién. Dada una funcién ¢ holomorfa que transforma el disco unidad
D = {z € C: |z| < 1} en s mismo, se define el operador de composicién C,,
como aquél que a cada funcién f le asigna C,f = f o ¢. Como consecuencia
del Teorema del Grafo Cerrado, los operadores de composicién son acotados
cuando actlan en el espacio de las funciones holomorfas en el disco unidad
(D).

Puesto que la composicién de funciones es una operacién fundamental
en Matematicas, los origenes de los operadores de composicién se remon-
tan, de forma implicita, a los origenes del Anélisis Complejo. En concreto,
a finales del siglo XIX, en trabajos de Schroder [48] y Konigs [29] se estu-
dian soluciones de ecuaciones que definen los autovectores de operadores de
composicién. Ya en 1925, el Principio de Subordinacién de Littlewood [30]
implica la acotacién de operadores de composicién en un gran nimero de
espacios de funciones analiticas. Sin embargo, no fueron estudiados desde el
punto de vista de la Teoria de Operadores hasta la aparicién de dos trabajos
a finales de la década de los sesenta del siglo pasado. En la tesis de Schwartz
[49] aparecen resultados fundamentales y teoremas acerca de la compacidad
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de operadores de composicién. Por su parte, Nordgren [35] encontré los es-
pectros de operadores de composicién inducidos por automorfismos del disco
unidad.

Probablemente, uno de los problemas abiertos mas antiguos e interesantes
de la Teorfa de Operadores es el conocido como Problema del Subespacio

Invariante:

; Tiene todo operador acotado en un espacio de Hilbert separable

de dimension infinita un espacio invariante no trivial?

El problema se remonta a la década de los 30 del siglo pasado cuando John
von Neumann encuentra una prueba no publicada de que todo operador com-
pacto actuando en un espacio de Banach tiene un subespacio invariante no
trivial. Esto estimulo la biisqueda de un resultado que afirmase la existencia
de espacios invariantes para operadores generales actuando en espacios de
Banach. Desafortunadamente, P. Enflo [14] resolvié el problema negativa-
mente construyendo un operador sin espacios invariantes.

Sin embargo, el problema sigue abierto en el 4mbito de los espacios de
Hilbert separables de dimensién infinita. Aunque hay una serie de resultados
positivos bajo diferentes hipétesis, se cree que la razén por la que el problema
sigue abierto es la falta de ejemplos de operadores cuyos reticulos de espacios
invariantes sean conocidos. De hecho, el nimero de operadores cuyo reticulo
de espacios invariantes conocidos es bastante escaso.

En lo que respecta a los operadores de composicién, hasta la fecha no se
ha caracterizado el reticulo de espacios invariantes de ninguno de ellos. Este
es uno de los motivos por los que se iniciaron los trabajos de investigacién que
resultaron en la presente memoria. En esta memoria abordamos el estudio
de los espacios invariantes de ciertos operadores de composicién inducidos
por aplicaciones bilineales, caracterizando el reticulo de espacios invariantes
en un par de casos. Los resultados presentados en la memoria contribuirdn a
una mejor comprensién de los reticulos de espacios invariantes de operadores
en general v de operadores de composicién en particular. Se espera que estos
resultados abran el camino para resultados acerca de espacios invariantes
para operadores de composicién mds generales tanto en el espacio de Hardy

como en otros espacios de Hilbert de funciones analiticas.
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En un principio puede parecer un objetivo poco ambicioso, pero hay que
recordar que debido al gran nimero de aplicaciones holomorfas ¢ tales que
¢(D) C D es inabordable una caracterizacién general del reticulo de espacios
invariantes de un operador de composicién. Maés atn, un resultado de Nord-
gren, Rosenthal y Wintrobe [37] implica que conocer los espacios invariantes
de los operadores de composicién inducidos por ciertas transformaciones bi-
lineales implica resolver el Problema del Subespacio Invariante. En concreto,

2z+1 . .
5 Entonces caracterizar Lat »:C, implica re-

Sea ¢(z) = ~
solver el Problema del Subespacio Invariante.

Capitulo 2: Preliminares

En este capitulo se introducen los objetos principales sobre los que versa esta
memoria asi como las propiedades bésicas de éstos que se necesitaran mas
adelante. En concreto se comienza recordando la definicién y propiedades del
espacio de Hardy del disco unidad 5#? y de los operadores de composicién
Co.

Maés adelante, se estudian las aplicaciones bilineales definidas en el plano

complejo como
) az+b
o(z) = .
cz+d
Aquellas que transforman el disco unidad en si mismo, que son las que in-

ducen operadores de composicién en el espacio de Hardy, se clasifican en
cuatro grupos. El siguiente resultado aporta informacién sobre las aplica-
ciones que pertenecen a cada uno de estos grupos.

Teorema 2.3.2 (Clasificacién de aplicaciones bilineales (D) C D). Supong-
amos que o es una aplicacion bilineal tal que o(D) C D. Entonces:

e Si 0 es parabdlica, entonces tiene un punto fijo en OD. FEquivalente-
mente, o es parabdlica si es conjugada a una traslacion en el semiplano

SUPETIOT.

e Si o es hiperbdlica, tiene un punto fijo atractivo en D y el otro punto
fijo fuera de . Ambos puntos fijos estdn en 0D st y sélo si o es un
automorfismo de .



e Si o loxodrémica o eliptica, un punto fijo estd en D y el otro punto
fijo estd fuera de D. Las aplicaciones elipticas son aquellas que son
automorfismos de D con esta configuracion de puntos fijos.

Posteriormente se introducen los conceptos bésicos relacionados con la
teorfa de espacios invariantes. Por subespacio de un espacio de Hilbert se
entiende un subespacio vectorial cerrado bajo la topologia inducida en el
espacio de Hilbert por su producto escalar. Un subespacio M es invariante
por el operador T siempre y cuando TM C M.

Se concluye el capitulo recordando los elementos mas destacados de la
literatura en los que se estudian espacios invariantes de operadores de com-
posicién. El nimero de referencias es escaso y hemos de destacar que en
ninguna de ellas se caracteriza completamente el reticulo de espacios inva-

riantes de un operador de composicién.

Capitulo 3: El Operador de Composicién Elip-
tico

En este capitulo se caracterizan los reticulos de espacios invariantes de los o-
peradores de composicién inducidos por una aplicacién bilineal eliptica. Toda
transformacion bilineal eliptica es conjugada a una rotacién del plano com-
plejo centrada en 0. Por tanto, para todo operador de composicién C,, in-
ducido por una aplicacién bilineal eliptica existe 0 < 6 < 27 tal que C,, es
similar a Cgs,. Puesto que los reticulos de espacios invariantes de dos oper-
adores similares tienen la misma estructura, el trabajo se centra en el estudio
de los operadores Cli,.

Los operadores C.u, se dividen en dos grupos en funcién del valor de ®.
El primer grupo estd formado por aquellos tales que e es una rafz de la
unidad o, equivalentemente, aquellos tales que § es un mdltiplo irracional de
27. El segundo grupo lo forman los operadores para los que ¥ es una rafz de
la unidad, en cuyo caso es una raiz primitiva p-ésima de la unidad para cierto
numero natural p; o, equivalentemente, aquellos operadores para los que 6
es un multiplo racional de 2. Esto genera comportamientos y propiedades

radicalmente distintos para cada grupo. Mientras que en el primer grupo
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todos los operadores son ciclicos, en el segundo son fuertemente no ciclicos
ya que el nimero de elementos en la 6rbita de toda funcién bajo el operador
es finito.

En primer lugar se caracterizan los autovalores de estos operadores. La

caracterizacién refleja los distintos comportamientos mencionados anterior-
mente.

Proposicién 3.1.1. Sie? no es una raiz de la unidad, entonces los auto-

valores de Cyio, son e™. Cada €™ tiene como tnico autovector a 2", para
todon=20,1,2,...

Proposicién 3.1.2. Si € es una raiz primitiva p-ésima de la unidad,
entonces el nimero complejo A es un autovalor de C.i, si y solo si A = e*?
para algun k € {0,1,...,p—1}. Ademds, [ es un autovector correspondiente

a e siy solo si

f= Z a2tk para algin {a,}n>o € £2\{0}.
n=0

Una vez caracterizados los autovectores, se prueba que en ambos casos el
espacio invariante generado por la érbita de cualquier funcién de S#2 bajo el
operador Clu, estd generado por autofunciones del operador. Asf se obtienen

sendas caracterizaciones de los subespacios invariantes de Cygis, en funcién de

0

sl € es o no raiz de la unidad.

Teorema 3.2.2. Si e no es raiz de la unidad, entonces

Lat Cgi0, = {Span{z": n € N}: N € P(N)}.

Teorema 3.2.4. Sie? # 1 es raiz de la unidad, entonces

Lat Ceo, = {span{f: f € N}: N es un conjunto de autovalores} .

Como consecuencia, se obtiene la siguiente descripcién del reticulo un

operador de composicién inducido por una transformacién bilineal eliptica,
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debido a que cada uno de estos operadores es similar a uno de los operadores

anteriores.

Corolario 3.2.5. Sea ¢ una transformacion bilineal eliptica. Entonces
Lat C, estd formado por todos los subespacios de #°% generados por autovec-
tores de Cl,.

Capitulo 4: El Parabdlico No Automorfismo

En este capitulo se caracteriza completamente el reticulo de espacios in-
variantes de un operador de composicién inducido por una transformacion
bilineal parabdlica que no es automorfismo del disco unidad. El espectro de
estos operadores fue caracterizado por C. Cowen.

Teorema 4.2.2 (Cowen, 1983). Sea p, un parabdlico no automorfismo que

transforma el disco unidad en s? mismo. Entonces

o(Cy,) ={e ®: t €[0,+00)} U {0}.

Las autofunciones del operador C,, son una familia de funciones bien

conocidas:
—at . z+ 1
Cy.er = e ey, siendo e(z) = exp t————i para cada t > 0.
- —
Entre las propiedades de las autofunciones de C,, cabe destacar que son un

conjunto generador del espacio de Hardy.

Proposicién 4.2.4. El conjunto de autofunciones de C,,, genera el espacio
s?. FEs decir,
span {e;: t > 0} = 2

Gracias a un resultado de Halmos [19, Problema 85] sabemos que cuando
las autofunciones de un operador generan el espacio en el que actia el ope-

rador, el adjunto de éste es similar a un operador de multiplicacién en un
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cierto espacio de Hilbert funcional. El problema radica en que encontrar ese
espacio de Hilbert funcional no siempre es una tarea sencilla.

En este caso, se identifica este espacio como un espacio de Sobolev. Recor-
damos que el espacio de Sobolev W12[0, c0) est4 formado por todas aquellas
funciones f en L?[0,00) absolutamente continuas en cada subintervalo de
[0, 00) cuyas derivadas también pertenecen a L2[0, c0). El espacio W2[0, c0)
es un espacio de Hilbert cuando se le dota del producto escalar

(f,9)12= %/Ooo(f(t)m+ f'(t)g'(t)) dt.

El espacio de Sobolev W2(R) se define de forma andloga. Consideremos el
operador definido en L?(T) como

(L)) = (f, ec)r2m, teR.

Usando el Teorema de Plancherel se prueba el siguiente

Teorema 4.3.1. El operador ¥ es un isomorfismo isométrico de L*(T) en
WL2(R).

Como consecuencia, tenemos el isomorfismo deseado entre el espacio de
Hardy y el espacio de Sobolev W'2[0,c0). Se define ® como aquel que a
cada funcién de S#? le asigna

(@)E) = (freowr, £ 20,

Corolario 4.3.2. FEl operador ® define un isomorfismo de 5#° con valores
en W'2[0,00). De hecho, |f[f 5 = [ /1342 — |/ (0)[?/2.

De la definicién de @ se obtiene inmediatamente la siguiente

Proposicién 4.3.4. Sea p,, con Ra > 0, un no automorfismo del disco
unidad parabdlico. Entonces el adjunto de C,, actuando en #° es similar
bajo el isomorfismo @ al operador de multiplicacion My, siendo ¥(t) = e
actuando en W3[0, 00).

Asi pues, gracias a esta dltima proposicién somos capaces de cambiar la
naturaleza de nuestro problema. Los espacios invariantes de C,, se corre-

sponden con los de su adjunto Cy y éstos, a su vez, se corresponden con
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los del operador de multiplicacién M, actuando en el espacio de Sobolev.
Para encontrar los espacios invariantes de este operador de multiplicacién

recurrimos a la siguiente proposicion.

Proposicién 4.1.2. Sea &/ una dlgebra de Banach. Entonces los subespa-
cios wmvariantes de un operador de multiplicacion por un elemento ciclico son

justamente los ideales cerrados de o .

Recuérdese que un operador es ciclico cuando existe un elemento f del espacio
tal que el subespacio generado por todas las potencias del operador aplicadas
a f es denso en el espacio total. En ese caso, se dice que f es un vector ciclico
del operador. Se tiene que M, es ciclico.

Proposicién 4.3.5. El operador My, donde ¢(t) = e~ yRa > 0, actuando
en W20, 00) es ciclico con vector ciclico igual a 1.

El hecho de que el espacio W12[0,00) es un algebra de Banach es algo
conocido por los expertos. En esta memoria se incluye una prueba de esto.
La novedad radica en que en la prueba que sélo se hace uso del isomorfismo
¢ construido y que, al parecer, no era conocido previamente. Por tanto My
verifica las condiciones de la Proposicion 4.1.2 y asi sus espacios invariantes
coinciden con los ideales cerrados del dlgebra de Banach W12[0, co).

Para caracterizar los ideales cerrados de W12[0, 0o) hemos de recurrir a
ciertos resultados clasicos de la teorfa de dlgebras de Banach. En el caso del
espacio de Sobolev resulta que cada ideal cerrado es interseccién de ideales
maximales. Asi, tras caracterizar los funcionales lineales multiplicativos de
W12[0, c0) se obtiene que cada ideal maximal estd formado por el conjunto
de funciones que se anulan en un determinado punto. De esto se infiere
el siguiente resultado donde 3¢ denota un funcional lineal multiplicativo de
W12[0,00) y F[0, 00) denota el conjunto de subconjuntos cerrados de [0, co).

Proposicién 4.4.5. El dlgebra de Banach W20, 00) es semisimple y re-

gular. Ademds, la correspondencia F — [ ker ¢ es una biyeccion entre

weF
F[0,00) y el conjunto de ideales cerrados de W2[0, 00).

Asi cada ideal cerrado estd formado por todas las funciones que se anulan

en un determinado subconjunto cerrado de [0, 00). Los subespacios invari-



antes de M, quedan caracterizados como sigue.

Corolario 4.5.3. Sea M,-a: el operador de multiplicacién por e™® actuando
sobre el espacio de Sobolev W12[0), 00). Entonces

Lat My-a = {{f € Wh2[0,00): f se anulaen F}: F € F[O,oo)}.

Volviendo atrés al espacio de Hardy con el isomorfismo ® se obtienen los
espacios invariantes del operador adjunto Cs.-

Corolario 4.5.2. Sea ¢ un no automorfismo del disco unidad parabdlico.
Entonces

Lat C; = {{fejfz; (f,et) w2 =0 parat € F}: FG]F[0,00)}.

Es bien conocido que un subespacio es invariante por un operador si y
solo si el ortogonal de ese espacio es invariante por el adjunto de ese operador.

Asi, del corolario anterior se deduce el teorema principal de este capitulo.

Teorema 4.1.1. Sea ¢ un no automorfismo del disco unidad parabdlico.
Entonces

LatC, = {spﬁ{et teEF}:F eIF[O,oo)}.

Tres resultados que aportan informacién del operador C,,, y de su adjunto

se siguen de la caracterizacién de sus espacios invariantes.

Corolario 4.5.1. Todos los operadores de composicion inducidos por no au-
tomorfismos del disco unidad parabdlicos poseen el mismo reticulo de espacios

mvariantes y comparten sus vectores ciclicos.

Teorema 4.5.4. Sea ¢ un no automorfismo del disco unidad parabdlico.
Entonces C, no posee ningin espacio reductor no trivial.

Corolario 4.5.5. Sea ¢ un no automorfismo del disco unidad parabdlico.
Entonces una funcién f en 3% es un vector ciclico de Cy, sty sdlo si

(f,et) w2 #0 para todo t > 0.
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Capitulo 5: El Reticulo en Otros Espacios

En este capitulo se estudian los espacios invariantes del operador de com-
posicién inducido por un no automorfismo parabdlico del disco unidad en
otros espacios de funciones analiticas distintos al espacio de Hardy. Puesto
que en el espacio de Hardy la caracterizacién del reticulo del operador de-
pendia fuertemente de su espectro y del hecho de que las autofunciones
generan el espacio, cabe preguntarse qué sucede en un espacio en el que
el espectro del operador siga siendo el mismo pero que no contenga a las
autofunciones e,. Un espacio que retine estas caracteristicas es el espacio de
Dirichlet 2.

Resulta que en el espacio de Dirichlet médulo las constantes 2, todos los
subespacios invariantes son reductores, lo cual supone un claro contraste con
lo que sucedia en el espacio de Hardy donde ningiin subespacio invariante
era reductor.

Corolario 5.1.4. Sea ¢ un no automorfismo del disco unidad parabélico.
Entonces Latg, C, es la imagen inversa bajo FC, de

{{f € L*(R",tdt) : f se anula en A} : A € A(0,00)}.

Siendo la aplicacién FC, la isometria entre %y y L?((0, 00), tdt) definida
para toda funcién f en 2 como

-

z+
et:v—l

FCaf(t)\/—lzzﬂ / @) =gz o

La caracterizacién de los espacios invariantes en %, junto con un estudio
de las érbitas del operador permite caracterizar los espacios invariantes del
operador en el espacio de Dirichlet. Si denotamos por (‘:p a la compresién
del operador C,, al subespacio %, se tiene el siguiente

Teorema 5.1.6. Sea ¢ un no automorfismo del disco unidad parabélico.
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Considerando C, actuando en el espacio de Dirichlet D, se tiene que

LatC, = {0} U {[1]® M: M € Lat C,}.

Una vez caracterizados los espacios invariante en el espacio de Dirichlet
y obtenido, como era de esperar, que no son los mismos que en el espacio
de Hardy, cabe plantearse otra pregunta natural. Puesto que la densidad de
las combinaciones lineales de las autofunciones e; era una pieza fundamental
en la construccién del isomorfismo ® que llevé a la caracterizacién de los
espacios invariantes en el espacio de Hardy, ;qué ocurre en otro espacio de
funciones analfticas que si contenga las autofunciones e; y que a su vez éstas
generen el espacio?. Esta es la situacién en los espacios de Bergman con
pesos A2 para todo @ > —1. En este caso, al igual que en el espacio de
Hardy, cabria esperar que el reticulo de subespacios invariantes estuviese
compuesto Unicamente por subespacios generados por autofunciones. Pero,
sorprendentemente, no es el caso. A medida que « crece, aparecen nuevos
espacios invariantes que no se corresponden con subespacios invariantes en
el espacio de Hardy y que por tanto no estdn generados por autofunciones.

Empezamos construyendo una aplicacién andloga a ¢ definida como

(®af) (1) = (fre0) 2

para toda funcién f en A2 y todo @ > —1. Para determinados valores de «

podemos determinar el espacio de llegada como un espacio de Sobolev.

Teorema 5.3.2. Para cada entero no negativo k, la aplicacion O es un

isomorfismo sobreyectivo entre AZ(D) y W,f:f’z[o, 00).

Es més, gracias a la definicién de ®,, el adjunto del operador de com-

posicién es similar a un operador de multiplicacién.

Proposicién 5.3.3. Sea ¢, un no automorfismo del disco unidad parabdlico.
Entonces, para todo entero no negativo, el adjunto de C,,, actuando en A% es
similar a través de @, al operador de multiplicacion My, siendo ¥(t) = e,

k+2,2
actuando en W, 770, 00).

Cuando k& es un nimero par se puede probar que el espacio de Sobolev es
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un dlgebra de Banach y que las derivadas de sus funciones hasta cierto orden
estan acotadas.

Proposicién 5.4.1. Para cada entero par k > 0, el espacio W,f+1’2[0, 00)

es un dlgebra de Banach conmutativa sin elemento unidad. Ademds, la con-
vergencia en este espacio implica la convergencia uniforme de las derivadas
de orden | < (k+1)/2.

Puesto que M, es ciclico en cada uno de los nuevos espacios de Sobolev,
la Proposicién 4.1.2 implica que los subespacios invariantes del operador My,
son exactamente los ideales cerrados del dlgebra W,f *12[0, 00). Aqui es donde
radica la diferencia con el espacio de Hardy. La convergencia uniforme de la
derivada en W,f *1210), 00) hace que aparezcan nuevos ideales distintos al ideal

formado por todas las funciones que se anulan en un punto. En concreto,

Proposicién 5.4.4. Para cada entero par k > 2, el conjunto
Ir={fe€e W,f“’z[O, 00): fUO(t) = 0 para todo t € F, 0 <1<}

es un ideal cerrado para cade F € F[0,00) y cada 0 < j < (k+1)/2. Mds
atn, en caso de que F tenga puntos aislados y j > 1,

Ip # {f € W20, 00): f(t) =0 para todo t € F}.

Esto genera subespacios invariantes del operador de composicién C,,, ac-

tuando en A% que son distintos a subespacios generados por sus autofun-
ciones. En particular,

Teorema 5.4.5. Para cada entero par k > 2, consideremos C,,, actuando

en AZ_,. Entonces, para cada F € F[0,00) y cada 0 < j < (k+1)/2, el
subespacio

z—1

l
Mp:span{<Z+1> et(z):tEFy()SlSj}

pertenece a LatC,,. En particular, si F' tiene puntos aislados, el subespacio
Mg no estd generado por autofunciones.

xiv



Capitulo 6: El Automorfismo Parabdlico

El caso de un operador de composicién inducido por un automorfismo para-
bélico es mucho més complejo. En primer lugar hemos de resaltar que en este
caso el operador es hiperciclico, ver [6], por tanto aunque también sea con-
jugado a una traslacién del semiplano superior su comportamiento es mucho
més cadtico que el de una aplicacién bilineal parabdlica no automorfismo.
Comenzamos con un resultado que caracteriza los autovectores del operador.

Proposicién 6.1.1. Seaa # 0 tal que Ra =0 y A = e donde 0 <ty <
2r/|al. Entonces €* es isomorfo a ker(C,, — M) a través del operador que

asigna a cada sucesion {a,} la funcion f =37 ) aneyt2mn/|al-

Este resultado arroja cierta luz sobre el reticulo de espacios invariantes
de este operador. En principio, aparece una cantidad enorme de espacios
invariantes que no son invariantes para el operador de composicién inducido
por un no automorfismo parabdlico. Es el caso de los espacios vectoriales
M = le; + exr /la)] Para todo nimero ¢ no negativo.

Estos espacios invariantes M; también muestran otra diferencia con el
caso anterior. Los operadores de composicién inducidos por automorfismos
parabdlicos no comparten sus reticulos de espacios invariantes. Debido a la
gran cantidad de autovectores nuevos que aparecen en este caso, cabria es-
perar que al menos compartiese con el caso no automorfismo parabdlico el
hecho de que todo espacio invariante estd generado por autovectores. De-
safortunadamente, no es el caso como muestra la siguiente proposicién.

Proposicién 6.2.1. Sea ¢, un automorfismo parabdlico del disco unidad.
Entonces C,, tiene un espacio invariante no trivial de dimension infinita que

contiene unicamente a la autofuncidn 1.

Por tanto, ain queda mucho camino por recorrer para encontrar una
caracterizacién del reticulo de espacios invariantes de un operador de com-

posicion inducido por un automorfismo parabdlico del disco unidad.

XV



Chapter 1

Introduction

Probably one of the most natural algebraic operations that can be defined
between functions is composition. Given two functions, in case the range
of one of them is included in the domain of the other one we can always
compose them. Given a collection S of analytic functions on some domain
and a holomorphic map ¢ from that domain onto itself, we can define the
composition operator C, on S as C,f = f o for each f in S. In principle,
there is no reason that C, f should even belong to S.

In spite of being composition a natural operation when working with
functions, it took a long time to study it as an operator between spaces of
functions. The idea of studying the general properties of composition opera-
tors seems to go back to 1968 in Eric Nordgren’s work [35], where the author
characterized the spectra of composition operators induced by automorphism
of the unit disk. Almost at the same time, H. J. Schwartz presented his doc-
toral dissertation [49] in 1969 containing fundamental results and theorems
about compactness of composition operators.

Nevertheless, many basic aspects of composition operators implicity date
back to the beginnings of complex analysis. For instance, in the late nine-
teenth century, two different works of Schroder [48] and Konigs [29] were pub-
lished studying solutions of equations that define the eigenvectors of compo-
sition operators. Another instance is Littlewood’s Subordination Theorem of
harmonic functions, see [30], appeared in 1925 that implies the boundedness

of composition operators in a great number of spaces of analytic functions.



Since their introduction, composition operators have attracted much at-
tention, possibly due to its naive definition. Many works have appeared
relating operator theoretic properties of C, with geometrical or functional
properties of its inducing symbol ¢. Among others, boundedness, compact-
ness and spectral properties have been studied in different spaces of analytic
functions. Although most of the research on composition operators has been
carried out in spaces of analytic functions, they can also be defined in other
spaces such as Lebesgue spaces as done by Sarason in [46].

Probably the oldest and one of the most interesting open problems in
Operator Theory is the so called Invariant Subspace Problem:

Does each bounded operator acting on the separable infinite-
dimensional Hilbert space have a nontrivial closed invariant sub-
space?

The history of this problem goes back at least to John von Neumann. In the
early 1930’s he found a proof of the existence of non-trivial invariant sub-
spaces for compact operators in Hilbert spaces; the proof was never published.
Later, von Neumann’s proof was rediscovered by Aronszajn and extended to
compact operators acting on Banach spaces in [4]. The Invariant Subspace
Problem was solved in the negative by Enflo who announced his result in
1975 in [13]. However, its Acta Mathematica paper [14] solving the problem
did not appear until 1987 since due to its difficulty it remained unrefereed
for years. In the meanwhile, C. J. Read simplified Enflo’s counterexample in
[41] and was able to publish it 1984, before the publication of Enflo’s paper.
One year later Read [42] published another proof where he constructed an
operator in the sequence space ¢! without non-trivial invariant subspaces.
See the survey paper [51] for an account of the history and the present state
of the Invariant Subspace Problem.

However, for infinite-dimensional separable Hilbert space the question re-
mains open. Nevertheless, there are a number of affirmative results under
various hypothesis. It is believed that the Invariant Subspace Problem re-
mains unsolved due to the lack of examples of operators whose lattice of
invariant subspaces has been characterized.

Although intensively studied during last decades, the works researching



invariant subspaces for composition operators are scarce. Specially interest-
ing is [37] where the authors prove that the composition operator induced
by a hyperbolic disk automorphism is universal. Thus every operator acting
on a Hilbert space is similar to the restriction of that composition operator
to one of its invariant subspaces. In particular, showing that all minimal in-
variant subspaces of the composition operator induced by a hyperbolic disk
automorphism are one-dimensional implies answering the Invariant Subspace
Problem in the affirmative. Although there are a number of similar results,
this one is striking because of the simplicity of the operator and since it acts
in the well understood Hardy space.

This is the starting point for this work. To provide characterization of
lattices of invariant subspaces of composition operators. This will furnish
new examples to the literature that will lead to a better understanding of
the structure of lattices of invariant subspaces of general operators and in
particular of composition operators. It is hoped that the results presented
here will point the way toward results about more general composition op-
erators, both on the Hardy space and on related Hilbert spaces of analytic
functions.

The contents of this work are structured as follows. In the first chapter
we introduce the main characters in which the work is done in the following
chapters: Hardy spaces, composition operators and invariant subspaces. The
basic properties of these objects that will be needed in the future are also
introduced. In the second chapter, the lattices of invariant subspaces of
composition operators induced by elliptic fractional maps are studied. Two
different kinds of lattices appear, according wether the operator is similar to
a rotation through a rational multiple of 27 or not.

In the next two chapters composition operators induced by parabolic
non-automorphisms are studied. First we focus in studying their lattices of
invariant subspaces when acting in the Hardy space. To achieve the char-
acterization of their lattices, the key point is to establish an isomorphism
between the Hardy space and a Sobolev space. Although it is known that all
infinite dimensional separable Hilbert spaces are isomorphic, it is not always
easy to give an explicit expression for the isomorphism. This isomorphism

makes the adjoint of the composition operator similar to a multiplication



operator acting on the Sobolev space W20, 00). The invariant subspaces
of that multiplication operator are identified using some elements of Gelfand
Theory and Banach algebras techniques. Hence the lattice of invariant sub-
spaces of the composition operator turns out to be formed exclusively by all
its eigenspaces, that is, the subspaces spanned by its eigenvectors.

Latter on we continue the study in other spaces of analytic functions.
Since the characterization of invariant subspaces in the Hardy space relies
heavily in the spectra and eigenfunctions of these operators, first we ex-
plore what happens if the spaces does not contain the eigenfunctions but
the operator still has the same spectrum that in the Hardy space: either
the interval [0,1] or a downward spiral that starts at the point 1 and con-
verges to the origin winding infinitely many times around it. In the Dirichlet
space the lattice of invariant subspaces of the operator are not eigenspaces
anymore. It turns out that in the Dirichlet space modulo the constants, all
the invariant subspaces are reducing in opposite contrast to the Hardy space
case where no invariant subspace was reducing. Next we consider certain
weighted Bergman spaces. These spaces contain the eigenfunctions and they
span the whole space, thus the conditions are exactly the same as in the
Hardy spaces. We are able to prove that still the adjoint of the operator is
similar to a multiplication operator acting in certain Sobolev space, different
to the one appearing in the Hardy space case. Now the structure of the ideals
in this new Sobolev spaces is more complex than in the Hardy space case.
Strikingly, new subspaces arise different to those spanned by eigenfunctions.

We end the work studying the composition operator induced by a parabolic
automorphism. The characterization of the invariant subspaces of the compo-
sition operator induced by a parabolic disk automorphism in the Hardy space
is far from being completed. It is shown that the situation is harder since
the lattice is extremely rich. In this case a huge amount of new eigenspaces
appear. In addition to the eigenspaces, it is shown that the lattice contains

infinite-dimensional invariant subspaces with just one eigenfunction.



Chapter 2

Preliminaries

Throughout this work we will mainly deal with operators acting on complex
Hilbert spaces of analytic functions. Recall that a complex Hilbert space is
a vector space over the field of complex numbers which is endowed with an
inner product compatible with the linear structure of the vector space and
such that generates a metric that makes the vector space complete. By an
operator we will always mean a linear map acting between Hilbert spaces. In
other words, an operator will be a homomorphism of vector spaces, that is,
a mapping that preserves the linear structure of the Hilbert space where it is
acting. An operator acting on a Hilbert space will be said bounded whenever
it is continuous with respect to the topology generated by the metric of the
Hilbert space.

Although there is only one separable infinite dimensional Hilbert space, it
can be represented in many different forms. Those forms of the Hilbert space
we are going to work with are known as functional Hilbert spaces. Recall
that a functional Hilbert space S is a non-trivial (i.e.: S # 0) Hilbert space
of complex valued functions defined on a set X such that for each z € X the
point evaluation functional, z — f(z), is bounded.

Our results are set exclusively in Hilbert spaces of functions defined in the
unit disk of the complex plane, D = {z € C: |z| < 1}. We can define anal-
ogous of these spaces consisting of functions defined in a simply connected
plane domain G. If o is a univalent holomorphic mapping of D onto G, the

main results in this work can be transferred to the space of functions defined



on (G with the aid of the composition operator C,,.

Recall that all complex Hilbert spaces are particular cases of complex Ba-
nach spaces, that are complex vector spaces, where instead an inner product,
each of them possesses a norm that induces a metric in the Banach space
that makes it complete. Most of the objects and properties defined in this
work can be carried out on the Banach space setting. However, we will stay
into the friendly confines of the Hilbert space setting when defining them,

since there is where the essential ideas occur.

2.1 Hardy Spaces

In this section we will introduce the Hardy space of the unit disk #2. It
is a particular instance of a family of spaces: the Hardy spaces of the unit
disk. The name of these spaces is in honor of G. H. Hardy, contributor to
the fundamentals of the subject. For this reason these spaces are denoted
by ##P(D) or simply by S#?, where p satisfies 1 < p < co. The historical
starting point for the subject of the J#7 spaces is Hardy’s paper [20] appeared
in 1915. Most of the work will be carried out in the Hardy space S#2 which
is the only one in this family of spaces that is a Hilbert space. All definitions
and properties presented here are elementary facts in the theory of Hardy
spaces that can be found, for instance, in [45, Chapter 17] or [11].

The Hardy space ¢ is formed by all functions f(z) = 3.2 a,2™ ana-
lytic on the unit disk D such that the norm

1£152 = > lanl?
n=0

is finite. The inner product that induces the norm above in J#2 is

[ee]
<f7 g)#z = Z ana7
n=0
for two arbitrary functions f(z) = "> jan2™ and g(z) = >, bp2™ in J2.

Associated to each point « of the unit disk there is a function of particular
interest called the reproducing kernel at o and defined as

o

ko = Z(az)" S

__—'Z.
= 1-%&




The function belongs to £ and its norm equals 1/1/1 — |a|?. The name of

the functions k, comes from the property,
f(a) = (fika) w2, forall fes?,

that makes them to be closely related with the structure of s#2. This prop-
erty is a direct consequence of the definition of both k, and inner product in
J€?2. Therefore, all point evaluation functionals are bounded and thus J#2
is a functional Hilbert space.

An equivalent norm can be defined in this space. All functions f in the
Hardy space have radial limits

() = lm f(re")

for almost every e in T = {z € C: |z| = 1}. The boundary function f* is
the limit in L?(T) = L*(T, df/2x) of the dilated functions f(re®) asr — 1~.
Therefore f* belongs to the Lebesgue space L*(T) and if f(z) = Y oo, a,2"
then its boundary function is

f*(Z) — i anema.
n=0

Thus, the orthogonality of {ei"e}n 7 implies that the norm in the Hardy

space previously defined coincides with the norm in L?(T) of the limit func-

tion, that is,

2 L[ oy

e =5 [ 1) o

Thus the mapping f — f* is an isometry from ##2 onto the subspace of L*(T)

generated by the functions {eme }n>0. We will keep in mind this identification

between J#? and the latter subspace of L?(T) and from now on we will drop

the notation f* for the boundary function and simply write f. According

to the context, it will be clear wether we are dealing with a holomorphic

function on the unit disk or with a measurable function in the unit circle.
We have also an equivalent formulation for the inner product in 5#2,

2m
(9= 5= [ Fe ) ab
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for any two functions f and g in J#2.
The analyticity of functions in the Hardy space leads to a uniqueness
theorem for their boundary functions.

Theorem 2.1.1 ([45, Theorem 17.18]). If function f in 5#? is not identically
0, then f(€*) # 0 almost everywhere in T.

It is well known that the zeroes of an analytic function cannot cluster
inside its domain of analyticity. If the function belongs to the Hardy space,

it can be said more about its zeroes.

Theorem 2.1.2 ([11, Theorem 2.3]). If {zn}n>0 is the set of zeros of a
function in 3#? repeated according to their multiplicity, then

o0

D (1= |za]) < 0. (2.1)

n=0
A sequence satisfying condition (2.1) is called a Blaschke sequence.
One more property of functions belonging to Hardy spaces has to be

highlighted. The finiteness of their Hardy norms implies that the growth of
the functions is controlled.

Theorem 2.1.3 ([11, p. 36)). If f belongs to 2, then

I ( )’2 <2”f”%2

1—1r"

for every point z in the circle {r = |2|}.

In particular, convergence in the Hardy spaces implies uniform converge
in compacta of the unit disk.

2.1.1 Hardy Space of the Upper Half-Plane
Let II denote the upper half-plane of the complex plane, that is,
O={z+iyeC:y>0}

We define the Hardy space of the upper half-plane 5#%(I1) as those functions
F holomorphic in II for which the norm

1PV =sup [ 1P+ )P o
y¥>0 J -0

8



is finite. As well as in the Hardy space of the unit disk, the boundary function
F*(z) = liII(l) F(z + iy)
y—)

exists for almost every z in R. Once again, the norm in #?(II) can be
computed in the boundary,

~+o00
1 F | agy = / () de,

and #2(I1) becomes a Hilbert space if we define an inner product in the
obvious way. We will denote the boundary function simply by F, identifying
a function in J#%(I1) with its boundary values.

This shows that the Hardy space of the upper half-plane can be identi-
fied with a subspace of the Lebesgue space L?(R) formed by all measurable
functions square-integrable over the real line. This subspace is completely
characterized via the Fourier transform by a classical theorem of Paley and
Wiener [38]. The Fourier transform of a function f in L'(R), the space of
Lebesgue measurable functions with integrable modulus over R, is defined as

(FHR) = /_ ” f(z)e ™™ dz, teR. (2.2)

The Fourier transform is an intensively studied operator that possesses many
useful properties. Among them is Plancherel Theorem, see [45, Theorem 9.13]
or [7, Theorem X.6.16] for instance.

Theorem 2.1.4 (Plancherel Theorem). The Fourier transform can be ex-
tended from L*(R) N L*(R) to L?(R) in such a way that

| F Fllzewy = 27|\ | 2wy for all f € L*(R)

It has to be remarked at this point that the Fourier transform is sometimes
defined multiplying the integral in (2.2) by the factor 1/v/27. In that case
Plancherel Theorem asserts that the Fourier transform can be extended to
an isometric isomorphism on L2(R).

Fourier transform can be used to give a description of those functions
in L*(R) that belong to s#2(I1). Recall that ##2 can be identified with the



subspace of those functions in L?(T) such that its negative Fourier coefficients
vanish. Paley-Wiener theorem provides a similar characterization for the
Hardy space of the upper half-plane: s#2(I) is the subspace of L*(T) form
by all functions whose Fourier transforms vanish on (—o0, 0], see [45, Chapter
19] or {18, p. 88.

Theorem 2.1.5 (Paley-Wiener, 1934). To each function F € 5#*(I1) corre-
sponds a function f € L*(0,00) such that

F(z) = /Ooo fedt, zell

and -
nm%@=%4|mWw

Moreover, Plancherel’s theorem asserts that (FF)(t) = f(t) for almost every
t in R. In particular, (FF)(t) vanishes for almost every t < 0.

In other words, this theorem shows that F(J#%(I1)) = L?(0,+oc0) and
that F is an isomorphism between s#2(II) and L2(0,+o00). This is a very
useful result as it enables one pass to the Fourier transform of a function
in the Hardy space and perform calculations in the easily understood space
L0, 4+00).

To end this section we will show up an isometric isomorphism between
the Hardy space of the unit disk and the Hardy space of the upper half-plane.
The isomorphism is, see [26, p. 106],

T: #? — °(N)

1 w1 1
o= Tf(w):ﬁ <w+i>w+i

Observe that the Cayley transform o(w) = (w—1)/(w+¢) maps conformally

the upper half-plane onto the unit disk and in particular, it maps R U {oo}
onto T. Thus, an obvious change of variables shows that

1 [ —i
I e = [ |7 (%)
_ 1 i0y (2
— 5 [lrenpas

= [£1Z-

S |

1+w2dw
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2.2 Composition Operators

Given a holomorphic self-map of the unit disk into itself, ¢ : D — D, we can
define the composition operator C, as

wa=f0<p

for every holomorphic function f. The class of composition operators has
been intensively studied in the second half of last century. Part of the in-
terest in studying composition operators comes from the fact that they are
a transversal class inside the class of bounded operators acting on a Hilbert
space. That is, given a concrete operator theoretic property, not all composi-
tion operators satisfy it. This fact, together with its naive definition, makes
the study of composition operators as a testing set to generalize results to
all bounded operators. The books [10] and [47] are well known introductions
to the subject.

Note that composition preserves linearity and composition of holomor-
phic maps is a holomorphic map as well. Hence, it is a consequence of the
Closed Graph Theorem that for every holomorphic self-map ¢ of I, the op-
erator C, is bounded on s#(D), the space of holomorphic functions on I
endowed with the topology of uniform convergence on compacta. If we study
the composition operator acting on spaces smaller than 52 (D), it is not at all
obvious that the composition operator is still bounded. In fact, the bound-
edness, together with compactness, in different spaces of analytic functions
have attracted most of the research devoted to composition operators. As for
the Hardy space, the boundedness can be deduced from a classical theorem

of J. E. Littlewood [30]. We state here a weaker version enough for our aims.

Theorem 2.2.1 (Littlewood’s Subordination Theorem, 1925). Let ¢
be a holomorphic self-map of D such that ¢(0) = 0. Then for each f € 2,
the function f o ¢ belongs to €% and ||f o |z < || f]le2-

Littlewood’s Theorem implies the boundedness of composition operators
induced by holomorphic self-maps of D fixing the origin. For general holo-
morphic self-maps of I, the boundedness is a consequence of Littlewood’s

~ Theorem and two basic properties of composition operators.

11



Proposition 2.2.2. Let ¢ and ¢ be holomorphic self-maps of the unit disk.
Then C,Cy s also a composition operator C,Cy = Cyoy,.

Proposition 2.2.3 ([10, Theorem 1.6]). Let ¢ be a holomorphic self-map
of the unit disk. The composition operator C, acting on the Hardy space is
invertible if and only if ¢ is a conformal mapping of D onto itself. In this

case, C;t = Cym1.

Therefore all composition operators are bounded in the Hardy space and
their norms can be estimated as follows.

Theorem 2.2.4 ([10, Corollary 3.7]). Let ¢ be a holomorphic self-map of
the unit disk. Then the composition operator C,, is bounded in 7% and

(rom) <10 < (FHe)

2.3 Linear Fractional Transformations

Due to the vast diversity of behaviors found among the class of composition
operators, we have to restrict our study to a particular subclass of those
operators. We will focus on the composition operators induced by linear
fractional transformations taking the unit disk into itself.

Recall that a linear fractional transformation, also known as Mobius

transformation, is a mapping of the form

_a,z-i—b
ez +d

o(2) (2.3)

where a,b, ¢ and d are complex numbers such that ad — bc # 0, condition
which is necessary and sufficient to guarantee that o is not constant. With
the usual conventions for the arithmetic with oo, every linear fractional
transformation is a bijective conformal self-map of the Riemann Sphere,
C=Cu {o0}, and they form a group under composition. In fact, they
are the automorphism group of the Riemann Sphere. We will denote the set
of all linear fractional transformations as Aut(C). Each of the linear frac-
tional maps transforms a circle in (E, that is a circle or a line in the complex

plane, to another circle in C.

12



Each linear fractional map can be represented as a square two dimensional
matrix with complex coefficients. To the linear fractional transformation
described in (2.3) corresponds the matrix

(02)

Note that the restriction ad — bc # 0 is equivalent to the condition that the
determinant of the above matrix be nonzero. Observe that this representa-
tion is not unique, since matrices that differ by a non-zero scalar multiple

represent the same linear fractional map. However, we can define a mapping

o~

m: GL(2,C) — Aut(C),
a b az+b

—
c d cz+d’

where GL(2,C) is the general linear group of degree 2, that is, the set of

two dimensional invertible matrices with complex coefficients together with
the operation of ordinary matrix multiplication. The utility of the matrix
representation relies on the fact that the map = is a surjective group ho-
momorphism. Thus the composition of two linear fractional transformations
corresponds precisely to matrix multiplication of the corresponding matrices:

7w(A) ow(B) = n(AB).

The mapping 7 is not an isomorphism since 7(A) = 7(AA) for every matrix
A in GL(2,C) and every non-zero complex number A.

Two linear fractional transformations, o and 7, are said conjugate if there
exists a third linear fractional map ¢ such that

c=¢oTod .

Thus, because of the homomorphism 7, conjugate linear fractional transfor-
mations correspond to similar matrices. This concept of conjugation leads
to a classification of linear fractional maps according to an invariant under

conjugation, the trace.
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The trace of a linear fractional transformation x(o) is the square of the
trace, that is, the sum of the elements in the main diagonal, of a matrix A
such that det A =1 and 7n(A) = 0. That is, if

<(20)

has det A = 1 and 7(A) = o, then x(0) = (a+d)?. Note that in the definition
the square of the trace of the matrix A is used in such a way that A and
—A have both the determinant equal to one but tr(—A) = —tr(A4). Four
different types of linear fractional transformations arise: parabolic, elliptic,
hyperbolic and loxodromic.

Theorem 2.3.1 (Classification by trace). Let o be a linear fractional trans-
formation that is not the identity. Then o is loxodromic if and only if its
trace x(o) is not a positive number. In case x(o) is a positive number, then

o 18:
o hyperbolic if and only if x(o) > 4,
e parabolic if and only if x(o) =4,
e clliptic if and only if 0 < x(o) < 4.

It turns out that the concept of trace of a linear fractional transformation
o is intimately related with the fixed points that ¢ has in C. It can be
shown that every linear fractional transformation, except the identity, has
one or two fixed points in the Riemann sphere. The number of fixed points is
invariant under conjugation. Therefore, each linear fractional transformation
is conjugate to a normal form ¢ that has a single point at co or two fixed
points at 0 and oc. The parabolic maps are the ones with just one fixed
point, the others have two fixed points. In the former case o is a translation,
o(z) = z + a for some complex number a, and in the latter case it is a
complex dilation o(z) = Az for some complex number A. According to the
values of A, the transformation is elliptic, if |A| = 1, hyperbolic, if A > 0, or
loxodromic for the rest of values of A\. Thus, parabolic maps conjugate to
translations, elliptic maps to rotations, hyperbolic ones to positive dilations

14



and loxodromic maps to complex dilations. In fact, the hyperbolic maps can
be seen as a particular case of loxodromic maps.

Since we will work with composition operators induced by linear fractional
maps, our interest will be focused in the subgroup of Aut(@) consisting of
self-maps of the unit disk. The previous classification for linear fractional

transformations leads to a classification for linear fractional self-maps of .

Theorem 2.3.2 (Classification of linear fractional self-maps of D). Suppose
that o is a linear fractional self-map of D. Then:

o Ifo 1s parabolic, then it fized point is on OD. Equivalently, o is parabolic
if it is conjugated to a translation in the upper half-plane.

e If o is hyperbolic, it has an attractive fized point in D and the other
fized point outside of D. Both fixed points are on 0D if and only if o is
an automorphism of D.

o [f o is loxodromic or elliptic, one fized point is in D and the other fized
point is outside of D. The elliptic ones are precisely the automorphism
of D with this fized point configuration.

We close this section with a drawing reflecting the dynamics of the dif-
ferent linear fractional self-maps of the unit disk.

()1 = 0 val ()] )

Parabolic Hyperbolic Elliptic

2.4 Invariant Subspaces

Once we have introduced Hardy spaces and composition operators, it remains

to introduce the third main character in this work, invariant subspaces. All
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definitions and properties are taken from Radjavi and Rosenthal’s book [39].

By a subspace of a Hilbert space, we will always mean a subset of the
space that is closed in the norm topology and which is also closed under the
vector space operations. Given S a nonempty set of a Hilbert space, the
span of S is the linear subspace formed by all finite linear combinations of
elements of S. We will denote it by

span S.

The span of the empty set is the subspace {0}. The closure of the span of

S is a subspace that will be denoted by span.S. Note that span S coincides
with the intersection of all linear subspaces containing S.

If T is a bounded operator acting on a Hilbert space H and M a subspace
of H, we say that M is an invariant subspace of T —or M is invariant under
T—-if TM C M. The trivial subspaces, {0} and S, are always invariant
under every operator bounded in 7. If M is invariant under T, then it
makes sense to consider the restriction of the operator T to the subspace M.
We will denote this restriction by T',,.

The set of all invariant subspaces of an operator 7" : & — € is a lattice
that will be denoted by Lats7T. When there is no risk of confusion, we
will drop the subindex ¢ and simply write Lat 7. Recall that a lattice is a
partially ordered set in which every pair of elements has a least upper bound
and a greatest lower bound. A lattice is said complete if every nonempty
subset of the lattice has a least upper bound and a greatest lower bound.

It can be proved that the collection of invariant subspaces of a bounded
operator T is a complete lattice under inclusion as an order operation. The
least upper bound of a subset of Lat T is the closure of the span of the union
of the elements of the subset. The greatest lower bound of a subset of Lat 7’
is the intersection of its elements.

The lattice of invariant subspaces of an operator is isomorphic to the
lattice of invariant subspaces of its adjoint, as the following proposition il-

lustrates.

Proposition 2.4.1 (|39, Proposition 0.1)). Let 5 be a Hilbert space and
T be a bounded operator acting on €. Then M € Lat T if and only if
ML ¢ Lat T*.

16



Proof. The proposition follows from the definition of adjoint, since for f € M
and g € M*, then

(Tf,g)or = ([, T*g)sr.

The above identity shows that if M is invariant under T, then T*g € M*
for each g € M+ and vice versa. O

Given a subspace M of a Hilbert space 5#, every element f of 5# can be
written in a unique way in the form f = g + h, where g € M and h € M*.
If M is a subspace of a Hilbert space, the projection onto M is the operator
defined by Pyf = g, where f = g+ h with ¢ € M and h € M*. From
basic properties of the Hilbert space, it can be deduced that every projection
is a bounded operator with norm equal one, unless the projection onto the
trivial subspace {0}. Even more, every projection is self-adjoint, Py = P}y,
and idempotent, P2, = Py.

Theorem 2.4.2 ([39, Theorem 0.1]). Let S be a Hilbert space. If T is a
bounded operator and Ppq 1s the projection onto M, then M € Lat T if and
only if T Py = PyT P

Proof. If M is invariant under T, then for each x € # we have T Pyx € M.
Thus PyTPmxz = TPyzx. Conversely, if TPy = PmT Py then for all
z € M, Te = Py Tx since Pyyx = z. Therefore Tz belongs to M, since
Pyt =M,and M€ Lat T. O

The decomposition M ® M+ of 52 induces a block matrix representation
of every bounded operator T acting on J# as

p_ [ PuTPm PuTPu
"\ PyuTPy PyuTPue |

If the subspace M belongs to Lat T, then Py TPy = 0 and we can write
the operator as

p_ [ PMTPm PuTPye
B 0 PuyrTPuye |-

There is a particularly relevant class of invariant subspaces. The subspace

M is a reducing subspace if M and M+~ are invariant under 7.
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Theorem 2.4.3 ([39, Theorem 0.2]). Let T be a bounded operator acting on
the Hilbert space 72 and M a subspace of €. Then the following assertions

are equivalent:
1. The subspace M is reducing for T
2. The projection Pry commutes with T, that is, PyT = T Pp.
8. The subspace M is invariant under both T and T*.

Proof. For the equivalence between assertions I and 2, let M be a reducing
subspace for T'. It is easily checked that Py = I — Py, being I the identity
operator. Since M is invariant under 7', Theorem 2.4.2 implies that

(I = Py)T = (I — Py)T(I — Ppy).

The above equation is equivalent to PyTPary = PpI. Since M is also
invariant under 7', Theorem 2.4.2 implies that T Pyy = PpT Ppry. Therefore,
TPy = PyT.

For the converse, assume TPy = PyT. For each function f € M, we
have Py f = f and thus Tf = PyTf what is equivalent to say that f is
in M. Thus M is invariant under T. Note that T Pyy = PyT implies that
T also commutes with Py, since T(I — Pp) = (I — Py)T. An analogous
argument shows that M is invariant under 7.

The equivalence of assertions I and 3 is a direct consequence of Proposi-
tion 2.4.1. Ol

From equivalence 2 in above theorem, it can be seen that the subspace
M reduces T if and only if the decomposition of T' with respect to M & M+
has the following diagonal form

o [ PuTPu 0
B 0 PurTPus |-

To end this section, we introduce a notion closely related to that of in-
variant subspace. An operator T acting on a Hilbert space ¢ is said to be
cyclic if there is a vector x in the space whose orbit,

Orb(T,z) ={T"z: n=0,1,2,...},
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has dense linear span. In this case, z is called a cyclic vector for T. The
connection with invariant subspaces comes from the following fact. For each
vector z in S, the closed linear span of Orb (T, z) is the smallest invariant
subspace that contains x.

In addition, we can characterize the cyclic vectors of an operator in term
of its invariant subspaces. Note that in case z is not cyclic for T, then
span Orb (T, z) is an invariant subspace of T. Conversely, if z belongs to a
non-trivial subspace M and M belongs to Lat T, then Orb (7', z) lies com-
pletely in M and thus z cannot be cyclic. Thus, a vector z is cyclic for T if

and only if it does not belong to U M.

MeLatT
Finally, a cyclic subspace M of the Hilbert space ¢ is a subspace that

contains at least one vector whose orbit has dense linear span in M.

2.5 Invariant Subspaces and Composition Op-

erators so Far

In next chapters we will study invariant subspaces of composition operators
induced by linear fractional self-maps of the unit disk. This may seems a
narrow goal since the set of linear fractional maps is insignificant when it
is related to the class of holomorphic self-maps of D. However, in spite of
their apparent simplicity, composition operators induced by linear fractional
self-maps of I exhibit a wide diversity of behaviours. This diversity can be
seen in their spectra. See [9] where some examples show that linear fractional
transformations give rise to most of the major spectral types.

Other instance of this diversity appears in the study of cyclic properties
of composition operators. At first glance, the study of cyclic phenomena its
simpler than characterizing the lattice of invariant subspaces. This is due to
the fact that once characterized the lattice of an operator, its cyclic vectors
are those that do not belong to the union of invariant subspaces. Among
the papers studying cyclic composition operators acting on the Hardy space,
stands out the thorough study done in [6]. The authors study composition
operators induced by linear fractional self-maps of D characterizing its cyclic-
ity and hypercyclicity, a stronger form of cyclicity where the orbit itself of a
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vector is dense without the aid of its linear span. This work was improved
and generalized in [17] where cyclicity and hypercyclicity where studied in
different weighted Hardy spaces. In this work the authors restrict their study
to linear fractional self-maps of D as well. They also covered the study of
the concept of supercyclicity, a notion half way between cyclicity and hyper-
cyclicity. Next are collected the cyclic properties of composition operators
induced by linear fractional maps acting on the Hardy space.

TYPE OF ¢ TCyclicity of Cy, rExample 1
ELLIPTIC RATIONAL ROTATION Non-cyclic 23,
ELLIPTIC IRRATIONAL ROTATION Cyclic e2i/3,
1
PARABOLIC NON-AUTOMORPHISM Cyclic
2—z
14+4i)z—-1
PARABOLIC AUTOMORPHISM Hypercyclic (——%)Z——l—
z 71—
. 142
HYPERBOLIC NON-AUTOMORPHISM Hypercyclic 5
) 2z+1
HYPERBOLIC AUTOMORPHISM Hypercyclic 12
z

This seems to confirm the need of restrict our study to composition oper-
ators induced by linear fractional self-maps of D in order to obtain concrete
results. As far as we know, no complete characterization of the lattice of
invariant subspaces of any of such operators has been given. In fact, the
number of works exploring invariant subspaces of composition operators is
short. Probably the first attempt to describe the properties of lattices of
invariant subspaces of composition operators is [31]. In this work, the author
studies the consequences of the lattice of one composition operator being
contained into another. Also, some results concerning the structure of an
invariant subspace shared by two composition operators are given.

A particularly interesting result about invariant subspaces of composition
operators is included in [37]. In this work it is carried out a deep study of the
invariant subspaces of algebras generated by invertible compositions opera-
tors. One of the most striking results included in the work is a corollary that
relates the invariant subspace problem with the lattice of invariant subspaces
induced by a hyperbolic automorphism. The result states that in case ¢ is
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a hyperbolic automorphism of D acting on the Hardy space, then solving
the invariant subspace problem is equivalent to showing that each minimal
invariant subspace for C,, is one-dimensional.

_ 2z+1

Set ¢(z)

variant Subspace Problem.

. Then characterizing Lat »:C, solves the In-

This striking result shows how chaotic can be the behaviour of C, when ¢
is the apparently innocent linear fractional transformation (2z + 1)/(z + 2).
Characterizing its invariant subspace lattice is a problem as difficult as the
invariant subspace problem. Consequently, some authors paid attention to
the study of minimal invariant subspaces of the composition operator induced
by a hyperbolic automorphism.

Some works have appeared exploring the nature of the minimal invariant
subspaces of the hyperbolic automorphism case. This is the case of R. Mor-
tini’s paper [34] or the works of V. Matache [32] and [33]. The authors study
the eigenfunctions of the operator and certain cyclic subspaces with the aim
of characterizing its minimal invariant subspaces. However, the understand-
ing of the structure of the invariant subspaces of this operator is far to be
achieved.
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Chapter 3

An Appetizer: The Elliptic

Composition Operator

Recall from the classification of linear fractional transformations in Section
2.3 that every elliptic transformation ¢, is an automorphism of D with a
fixed point @ in the unit disk. Every elliptic transformation is conjugated to
a rotation (centered at 0) of the complex plane by an angle 6. Let

a—=z

Ya(2) =

1-az
be the automorphism of D that interchanges the origin and the point a. Since
1, is involutive, we have

Pa =¢a°00%7 (31)

where o(z2) = ez for all z € D.

Equation (3.1) induces a similarity between the composition operator
induced by ¢, and the one induced by o. Recall that given two Hilbert spaces,
A and 4, and two bounded operators, T : /4 — J4 and Ty : 74 — 56,
the operators T7 and T are said similar if there exists an invertible operator
S . 3, — I such that Ty = S~'T5S. Thus, from Propositions 2.2.2 and
2.2.3, we obtain

Cyo = Cy,CsCy, . (3.2)

Most of the “good” operator theoretic properties remain unchanged under

similarity. In particular, similar operators share the same spectrum. In
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addition, if one characterizes the invariant subspaces of an operator, then
also characterizes the invariant subspaces of every operator in its similarity

orbit. For this reasons, we will focus our study on the composition operators
Clo,.

3.1 Spectra and Eigenvectors

Given an operator T' acting on a Hilbert space J#, its spectrum is a subset
of the complex plane defined as

o(T) = {\ € C: T — X is not invertible in S},

where, as usual, I denotes the identity operator in #. As said before, similar
operators have the same spectrum. This can be proved as follows. Suppose
T = V1SV and fix a number A\ € C. Then, T — A is invertible if and
only if VYT — M)V is invertible, what is equivalent to say that S — Al is
invertible. Therefore, o(T') = o(S). Thus the spectra of elliptic composition
operators will be totally determined by the spectra of composition operators
induced by rotations centered at 0.

It is noteworthy to distinguish a subset of special points in the spectrum,
the eigenvalues. A complex number A in ¢(7') is said an eigenvalue of the op-
erator T if there exists a vector f € S different from 0 such that Tf = Af.
In that case, f is said to be an eigenvector of A\. When the elements of the
Hilbert space are functions, eigenvectors are also referred to as eigenfunc-
tions. Since all elements of the Hilbert or Banach spaces considered in this
work are functions, both terms, eigenvector and eigenfunction, will be used
indistinctively.

The spectra of the operators Cis, were characterized by E. A. Nordgren
in his seminal work [35] as

o(Crio,) = (™. &k =0,1,2,.. .

Thus we have two different spectral pictures for an operator C.i,. Recall
that a point € in T is called a p-th root of unity if there exists a natural
number p different from 0 such that e’ = 1. A p-th root of unity is called
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primitive if e*® #£ 1 for k =1,2,...,p — 1. Observe that for an arbitrary e
in T there are two options: either the number is not a root of unity, in that
case e*? #£ 1 for all k = 1,2,..., or the number is a root of unity, in that
case there is a number p such that ¥ is a primitive p-th root of unity. Note
also that it can be decided wether € is a root of unity or not just by looking
at 6. The number ¥ is a root of unity if and only if 4 is a rational multiple
of 27. Conversely, ¢ is not a root of unity if and only if 4 is an irrational
multiple of 2.

Hence the spectra of these operators is as follows. If € is not a root of
unity, then the powers of € are dense in the unit circle and therefore the
spectrum of C,is, equals T. On the contrary, if €? is a primitive p-th root of
unity, then the spectrum of C., is formed by p isolated points, all the p-th
roots of unity. This difference of spectra will be reflected on the structure of
the lattices of invariant subspaces of the operators.

This dichotomy can also be seen in the matrix representation of the oper-
ator Cgw,. The standard orthonormal basis of #2 is the set {z"},>0. Every

element of this set is an eigenvector of C.s, since
Ciio,2" = ™2™, for all n € N.

This shows that the infinite matrix associated to Ceis, with respect to the
basis {z"},>¢ is diagonal,

1 0 0 0

0 ¢ 0 0

0 0 &% 0
Cos, = :

0 0O 0 gin?

Therefore in case e is not a root of unity then all the entries in the main

diagonal are different. In case e

is a primitive p-th root of unity, then the
diagonal has only p different entries. This representation of C,«, as a diagonal
operator will be in the backstage of the characterization of its eigenvectors.

Let’s start the study of the case when e is not a root of unity. Suppose

that the complex number X is an eigenvalue of Cge,, then there exist a
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function f =Yo7 an2™ in S different from 0 and such that Coo, f = Af,

that is,
oo oo
Z ane™ " = Z Aa,z".
n=0 n=0

Since f is analytic, it turns out that

e™a, = Aa, foralln=0,1,....

Since € is not a root of unity, all ¢ are different and the above display

implies that all the Taylor coefficients a,, are zero, but one. Therefore,
a, = 0,for all n # k and A= e,
We have proved

Proposition 3.1.1. If e is not a root of unity, then all the eigenvalues of

C.uo, are €™ with corresponding eigenvector 2" for alln =0,1,2, ...

Now suppose that e is a primitive p-th root of unity. Let X be an
eigenvector of Cyis, with corresponding eigenvector f = > o0 ja,2" in 2.
Then equation Clie, f = Af becomes

o0 o0
g ane™ " = E Aa,z".
n=0 n=0

The above equality is equivalent to
(1ag, €’ay, .. ., ei(”_l)gap_l, la,, ewap+1, ...) = (Aag, Aay, Aag, . . .).
From where we obtain p equalities:
e (ag, Qpikr -+ s Qnprksy + - ) = M@k, Qpiks + o3 Gnpis ---), kK=0,1,...,p—1.
This can only be possible if there exists a natural number kg € {0,1,...,p—1}
such that
a, =0, for all n # ko (modp).

In this case, A = e*°? and the function f is

o<
— np+k
f = E Anptkg 2 °

n=0
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and since f belongs to J#2, the sequence {a,} must be square-summable.
Since each function as the one in the above display is obviously an eigenvector
for Cgis,, we have proved

Proposition 3.1.2. If ¥ is a primitive p-th root of unity, then the complex
number X is an eigenvalue of Ces, if and only if A = e*? for some k €

{0,1,...,p — 1}. Furthermore, f is an eigenvector corresponding to e*? if
and only if

f= Z anz"™PrE for some {an}ns0 € £2\{0}.

n=0

Now the similarity (3.2) allows us to identify all the eigenfunctions of an
arbitrary elliptic composition operator.

Corollary 3.1.3. Let ¢, be an elliptic fractional transformation that fizes a
point a in D conjugated to o(z) = ¥z via 1, = 1a ~ 2 Then

—az’

1. Ife¥ is not a oot of unity, then €™ is an eigenvalue with corresponding
eigenvector Y for alln =0,1,...

2. If €% is a primitive p-th root of unity, then e*? is an eigenvalue of
infinite multiplicity for all k = 0,1,...,p — 1. A function f in 2 is
an eigenvector with eigenvalue e if and only if

o0
f= Z an Pt for some {an }n>0 € €.

n=0

3.2 The Lattice of Invariant Subspaces

As mentioned, given two similar operators their lattices of invariant subspaces
are isomorphic. If T and T3 are two operators similar under the invertible
operator S, then S induces a lattice isomorphism between Lat T and Lat T5.
This is due to the fact that a subspace M belongs to Lat Ty if and only if
SM belongs to Lat Ts. Also, since S is invertible, it preserves the inclusions
and the least upper bound and the greatest lower bound.

We will therefore study the invariant subspaces of Cgi,. To characterize

the lattice we have to distinguish once again wether e is a root of unit or not.
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However, in both cases every invariant subspace is generated by eigenvectors,
that is, every invariant subspace is an eigenspace.

Let us suppose that € is not a root of unity. We will show

Proposition 3.2.1. If f =" a,2" is in #? and N; = {n € N: a, # 0},
then
span {C¥,f: k=0,1,2,...} =span{z": n € Ny}

In particular, f is cyclic for Cue, if and only if all its Taylor coefficients are
different from zero.

Proof. Set My = span{z": n € Ns}. Since C%, f = 5>  a,e*"2", the
span of orbit of f under C.u, is included in M;. To prove its density in My,
let g be in M; and suppose that

(Chs f, )2 =0,  fork=0,1,2,...

The proof will be finished once we have shown that g = 0. If the Taylor

series of g is Zne N b,2", then above display becomes

0= Z ane*p,, = Z anby ()", for k=0,1,2,... (3.3)
TLENf ’nGNf
Now we define the function A = >~ . N anb,2". Observe that its Taylor
coeflicients verify
1/2 1/2

D anba] < | D laal? STl = 1 lleellglloe,

neENy neEN; neNg

where Cauchy-Schwarz inequality has been used in the inequality above.
Thus the function A belongs to H> and it is continuous in D [11, Theorem
6.1]. Hence, (3.3) implies that A is identically zero on T and therefore, by
Theorem 2.1.1, A itself has to be the zero function. Therefore, a,b, = 0 for
every n € Ny. This implies that b, = 0 and therefore ¢ = 0. The proof is

finished. O

Since each monomial z™ is an eigenvector of Cge,, then every subspace
spanned by monomials belongs to Lat Cgs,. It turns out that these are all
the invariant subspaces. If we denote by P(N) the power set of N, we can

prove
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Theorem 3.2.2. If ¥ is not a root of unity, then
Lat Cu0, = {Span{z": n € N}: N € P(N)}.

Proof. Let M be asubspace in Lat C,i0,. We denote by [2"] the one-dimensional
subspace of J#? spanned by the function z”. Observe that the projection
onto this subspace, Pjn, is given by Pin)f = (f, 2") 422" for every [ in 2.
If we define

N = {n € N: PuM # {0}},
then M C span{z": n € N}. The former inclusion is in fact an equality.
Indeed, for all n in IV, there is a function f in M such that its n-th Taylor
coeflicient is different from zero. By Proposition 3.2.1, we have that

2" espan{C¥, f: k=0,1,2,...} C M,

where the inclusion holds for being M an invariant subspace of C,i0,. Hence,
M Cspan{z": n € N} and the proof is finished. O

Next corollary follows immediately from above proof and Proposition
3.2.1.

Corollary 3.2.3. If e is not a root of unity then all its invariant subspaces

are cyclic and reducing.

Now suppose that e¥ is a primitive p-th root of unity. In this case the
situation is different since the operator C,w, is not cyclic. In fact, the orbit
of each function under C,uw, is finite dimensional as it has at most p elements.
For this reason the lattice is richer in this case. Of course if ¢ = 1, then the

invariant subspaces of C,is, consists of all subspaces of J#2.
Theorem 3.2.4. If ¢ # 1 is a root of unity, then
Lat Coe, = {span{f: f € N}: N is a set of eigenvalues} .

Proof. By definition of eigenvector, every eigenspace belongs to Lat Ces,.
To prove the converse, let M be a subspace of J#? invariant under C,s,.
Assume that €* is a p primitive root of the unit. We can decompose any
function f =Y o a,z" in H#? as

f=fo+t i+ ...+ [,
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where f; = 3% a,,.;2"1 is an eigenvector for every j = 0,1,...,p — 1.

n=0

The iterates of C,i, acting on f are

Cho,f=1fo+e*fi+ .. +eke-Dp \ k=0,1,...,p—1
We claim that

span{C%, f:k=0,1,...,p—1} =span{f;: j=0,1,...,p—1}.

Observe that above display is equivalent to say that the matrix

1 1 1
ot £i20 iPd
M = 20 o140 1200
1 =10 ilp-1)20  i(p—1)%

can be triangularized with all its entries in the main diagonal different from
zero. This can always be done. Indeed, observe that M is an example of
what is known as Vandermonde Matrix [27, p. 29]. Then its determinant is
given by formula

det(M)y= [ (%" —€%") #0.
0<j<k<p-1
Since its determinant is not zero, all the eigenvalues of M are different from
zero. Schur decomposition, see [27, p. 79], states that M can be triangu-
larized via a unitary matrix as M = U*TU where T is a upper triangular
matrix whose entries in the main diagonal are the eigenvalues of M. This
finishes the proof. a

Hence we have completed the characterization of invariant subspaces of
an arbitrary composition operator induced by an elliptic transformation.

Corollary 3.2.5. Let ¢ be an elliptic fractional transformation. Then LatCl,
consists in all the subspaces of F* spanned by eigenvectors of Cl,.
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Chapter 4

The Parabolic

Non-Automorphism

This chapter will be devoted to the study of composition operators induced
by mappings ¢ that are parabolic non-automorphisms taking the unit disk
into itself. Recall that in Section 2.3 we had characterized this mappings as
those that are conjugated with a translation in the upper half plane. Set

14z
a(z)—zl_z,

the conformal automorphism that takes the unit disk onto the upper half
plane, IT = {z + ¢y € C: y > 0}, and whose inverse mapping,

zZ—1
241

o7 (2)

is known as the Cayley transform. Therefore,

copoot=r,
where 7(z) = z + ia is translation by ¢a in II. Thus from the above display
we obtain

p=0ltoro0 =00 +ia), (4.1)
and after some simple calculations we can express ¢ as

(2—a)z+a

, (4.2)
—az+24a

p(2) = pa(2) =
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for certain complex number a such that ®a > 0. Let us see where does the
condition Ra > 0 comes from. Since z + 7a is a translation that maps II into
itself, then Ra > 0. But indeed, Ra > 0 since ¢ is not an automorphism and
the translation z + ia is an automorphism of IT if and only if ®a = 0. Note
that the above formula is valid for a parabolic automorphism as well, but in
this case a is a complex number such that Ra = 0.

The goal of this chapter will be to characterize the lattice of invariant
subspaces of the composition operator C,,, where ¢, is a parabolic non-
automorphism that takes the unit disk into itself. Let {e;};>0 be the family

of functions defined as
e(z) = ex t2 +1
i = €Xp Z 1
and let [0, 0o) denote the family of closed subsets of [0, 00). We will prove
the following

Theorem 4.1.1. Let ¢ be a parabolic non-automorphism that takes the unit
disk into itself. Then

LatC, = {m{et teF}. Fe IF[0,00)},

To prove this theorem we will need some tools from Gelfand Theory in
Banach algebras. These tools will be introduced in next section, where will
also study the structure of closed ideals in some particular Banach algebras
and the invariant subspaces of the operator of multiplication by a cyclic
element in a Banach algebra. After that we will study the spectra of the
operator C,,, since it will be the key point to establish an isomorphism
between s#2 and a Sobolev space that will transform the adjoint of C,, into

a multiplication operator.

4.1 Banach Algebras Techniques

Recall that an algebra over the complex numbers is a vector space &/ with
a binary operation defined on it, (a,b) — ab, that makes & into a ring and
such that if A € C and a,b € o7, then

A(ab) = (Ma)b = a(Ab).
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The binary operation defined on the algebra is usually referred to as multipli-
cation. A Banach algebra is a complex vector space & endowed with a norm
|| - || under which (&, | - ||) is a Banach space and with a binary operation,
(a,b) — ab, which turns & into an algebra over the complex numbers. Both
structures are linked by the inequality

labl| < cllall|l®|l, for all a,b € &,

for some positive constant ¢. Although it is not required that ¢ = 1, this can
always be achieved by replacing the initial norm of o/ by an equivalent one,
see [7] or [22] for instance. Observe that it is not required that the algebra 2/
has identity. If there is an element 1 € o7 such that ||1|| =1and la=al =a
for all @ € 7, then the Banach algebra & is said to have an identity. The
Banach algebra & is said commutative whenever ab = ba for all a,b € .
We would like to stress here that all Banach algebras we are going to deal
with will be commutative, hence in what follows whenever we talk about a
Banach algebra we will mean a commutative Banach algebra.

4.1.1 Banach Algebras with a Cyclic Element

Recall that an ideal Z of a Banach algebra o is a subalgebra of .2/ such that
abeZ  whenever a € & and b € .
An element a in o is called cyclic if the subalgebra generated by a,
span{a™: n > 1},

is dense in &/. Note that if the Banach algebra &/ contains a cyclic element,
then it is clearly separable and commutative. If a € &7, we define the operator
of multiplication by a acting on o as

M,z = ax, re .

The continuity of the multiplication in the Banach algebra 2 implies that
this operator is bounded. The proof of Theorem 4.1.1 will rely heavily on
the following
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Proposition 4.1.2. Let o/ be a Banach algebra. Then the invariant sub-
spaces of multiplication by a cyclic element are exactly the closed ideals of

.

Proof. First, since & has a cyclic element, it is commutative. Let a be a
cyclic element of & and let £ be an invariant subspace of M,. Clearly,

Me={bed:bxcLforallze L}

is a closed subalgebra of &/. Since £ is an invariant subspace of M,, we find
that « € M, and, therefore, M, contains the subalgebra generated by a
and, being M closed and a cyclic, it follows that M, = /. Hence, L is an
ideal of &. On the other hand, each ideal of & is invariant with respect to
M,, which finishes the proof. O

4.1.2 The Maximal Ideal Space and the Gelfand Trans-

form

As said before, the proposition just proved will be a cornerstone in the proof
of the main theorem of this chapter. As one may suppose, the lattice of
invariant subspaces of the composition operator C,,, will be related to that
of a multiplication operator in certain Banach algebra. For this reason we
need to go deeper in the theory of Banach algebras and develop certain
machinery that will lead to the identification of the closed ideals of certain
Banach algebras.

A multiplicative linear functional on a Banach algebra & is a non-trivial
linear functional s : &/ — C such that such that

s(ab) = 3(a)x(b) for each a,b € &7.
Equivalently, sr is an algebra homomorphism of &/ onto the complex numbers.

Lemma 4.1.3 (28, p. 201}). Every multiplicative linear functional on a
Banach algebra is continuous and has norm bounded by 1.

The spectrum of o/ will be denoted as (&) and is the set of multiplicative
linear functionals of &/. Note that the spectrum of &/ can be turn into a
topological space if we equip it with the weak-star topology.
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Theorem 4.1.4 (28, p. 206]). The spectrum of a Banach algebra with the
weak-star topology is a Hausdorff locally compact topological space. If the

algebra possesses an identity then its spectrum is compact.

An ideal Z of a Banach algebra & is called regular when the quotient
algebra 27 /T has identity. Let s be a multiplicative linear functional, then its
kernel ker s is an ideal of /. Even more, since s¢ # 0 then s(2/) = C. Thus,
the First Isomorphism Theorem implies that the quotient algebra &7/ ker s
is isomorphic to C, that is,

& [ ker »x = C.

Therefore, the quotient algebra o7/ ker s is a field. This implies that ker s
is a maximal ideal that in fact is regular since C has an identity. Thus the
kernel of every multiplicative linear functional of &7 is a maximal regular
ideal. If we denote by 90 the set of maximal regulars of the Banach algebra
&/, we have just constructed a mapping

»x € Q) — ker x € M.

Theorem 4.1.5 ([28, p. 202]). The mapping » — ker 3 defines a one-to-one
correspondence between the spectrum of &/ and the set of its mazimal reqular
ideals.

Given z € & we can define a mapping on 9t such that for every M € 9,
Z(M) = z mod M.

That is, Z(M) is the image of z under the multiplicative linear functional
corresponding to the regular maximal ideal M. The mapping z +— 7 is
usually referred to as Gelfand map and the function 7 is called the Gelfand
transform of x. Since M is endowed with the weak-star topology, ¥ is con-
tinuous in M for each x € &/, In case &/ does not have an identity, it can
be proved that the set

M € Mm: [5(M)| > ¢}
is compact for every € > 0 and all z € o/
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Proposition 4.1.6 ([28, p. 207]). Let & be a Banach algebra without an
identity. The mapping x — Z is a homomorphism from 27 into Co(9M).

The Jacobson radical of a Banach algebra is the intersection of all its
regular maximal ideals. A Banach algebra is said semisimple if its Jacobson
radical is zero. Thus a commutative Banach algebra & is semisimple if and
only if the elements of (/) separate points of &. Therefore the Jacobson
radical is the kernel of the Gelfand transform and we have the following
equivalence.

Proposition 4.1.7 ([28, p. 207]). The Gelfand transform is one-to-one if
and only if o7 is semisimple.

To end this subsection we introduce the concept of spectrum of an element
of a Banach algebra. If o7 is a Banach algebra with an identity 1, then the
spectrum of a € of is the set defined as

o(a) ={A € C: z — Al is not invertible in /}.

For every a € &7, its spectrum is a non-empty compact set of the complex
plane. The Gelfand map provides an effective procedure to compute the
spectrum of elements of Banach algebras.

Theorem 4.1.8 ([5, p. 16]). Let & be a commutative Banach algebra with
an identity. Then, for every a € &, we have

o(a) = {a(x): » € UL )}

The last theorem will be used in next section to compute the spectrum

of C,,.

4.1.3 Ideals of Semisimple Regular Algebras

Let & be a Banach algebra and Z be an ideal of &/. The hull of 7, denoted
by h(T), is the set of all maximal regular ideals M such that 7 is contained
in M. Equivalently, h(Z) is the set of all M € 9 such that Z(M) = 0 for
all z € 7.
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Let I/ be a subset of the maximal ideal space 9. The kernel of E, denoted
by k(E), is the ideal (\,p M. Equivalently, k(FE) is the set of all z € &
such that ¥ equals zero on E.

Thus, if we denote by P(91) the power set of 9, we have constructed
two mappings; the hull,

h: {Ideals of &} — P(M)
I — RI)y={MeM:ITC M}

and the kernel,
k: P(OM) — {Ideals of &/}
E — kEBE)= [ M.
MEE

Recall also that a Banach algebra & is said to be a reqular Banach algebra
when each point in & has a neighborhood U such that k(U) is a regular ideal.

For a closed set F' in 9, let J(F,00) be the union of all ideals k(U),
where U is an open set containing F' and having compact complement. Since
J(F,00) is the smallest ideal with hull equal to F, see [43, p. 91], for each
closed ideal Z the following holds

J(MT),00) C T C k(K(T)).

If &7 is a semisimple regular algebra, then the closed sets of 90t are exactly
the hulls of closed ideals and a closed ideal is an intersection of maximal
regular ideals if and only if it is equal to the kernel of its hull. Therefore, we
have

Lemma 4.1.9 ([43, p. 92]). Let &/ be a semisimple regular Banach algebra.

Then every closed ideal I of &/ is equal to an intersection of mazimal reqular
ideals if and only if J(h(T),00) = k(h(T)).

Using the definition of J(h(Z), 00), the equality in the preceding lemma
is equivalent to the fact that for each closed ideal Z and each z € k(h(Z)),
there exist open sets U, D h(Z) with compact complement and z,, € h(U,)
such that z, — z. If we define h(z) = {M € M: = € M}, then it is
easy to see that h(z) equals to the hull of the ideal generated by x. Thus
the equality in Lemma 4.1.9 is also equivalent to the fact that for each z
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in k(h(Z)), there is a sequence {z,} such that z, — z in & and 7, equals
zero in a neighborhood U, of h(x) with compact complement. Next corollary
follows immediately from Proposition 4.1.2 and Lemma 4.1.9.

Corollary 4.1.10. Let & be a semisimple reqular commutative Banach al-

gebra such that a is a cyclic element of o/. Then
Lat M, = { ﬂ ker sc . F' is closed in Q(szf)}
el

if and only if for each x € o, there exists a sequence {x,} tending to = in
& and z,, vanishes on a neighborhood U, of h(x) with compact complement.

4.2 The Spectrum

4.2.1 The Eigenfunctions of C,,

We will introduce at this point a family of functions that will play a prominent

role in the present chapter. The family in question is formed by the functions

z+1
z—1

ei(z) = exp (t > : for each ¢t > 0. (4.3)

Each of these functions is an inner function, that is, a holomorphic function
in D having radial limit of modulus 1 for almost every point in T. In fact,
they are a family of atomic singular inner functions (see [11, p. 24]). Thus
for every non-negative number ¢, the function e; is analytic in D and bounded
by 1. Therefore, it belongs to S#2.

We have introduced this family because they are the eigenvectors of Cl, .
Indeed, note that if we set o(z) = i(1 + z)/(1 — z) the conformal mapping

that takes D onto II, we can write e; as

1
e.(z) = exp (t—ZLl) = exp (ito) .
Z —

Thus,
(Coper)(2) = e(pa(2)) = exp (it(o 0 ¢a)) - (4.4)
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Now since ¢, is conjugated to a translation, equation (4.1) implies that
00 @Y, =0 +4a and thus

(Cooet)(z) = exp (it(o +ia)) = e"%e(2). (4.5)

Hence, e; is an eigenvector with corresponding eigenvalue e~%. We have
proved

Proposition 4.2.1. Let ¢, be a parabolic non-automorphism that takes the
unit disk into itself. For each numbert > 0, e, is an eigenvector of Cy,, with
corresponding eigenvalue e,

4.2.2 The Spectrum of C,,

Note that the spectrum of an operator T acting in a Hilbert space ¢ co-
incides with its spectrum in the Banach algebra of all bounded operators in
€. The computation of the spectrum of a composition operator induced
by a parabolic non-automorphism that takes I into itself was first made by
Carl Cowen in [8]. In fact, he did it for a wider class of composition op-
erators. We will reproduce here its proof with some minors simplifications.
To prove Cowen’s result, we will need some of the concepts and results of
Banach algebras theory introduced in last section.

Theorem 4.2.2 (Cowen, 1983). Let ¢, be a parabolic non-automorphism
that takes the unit disk into itself. Then

o(Cy,) ={e™™: t €[0,+00)} U {0}.

Proof. We consider the set {Cy,: Ra > 0}. We start showing that this set
is a holomorphic semigroup of operators, that is, it is a semigroup under
composition and the mapping

ar— Cy,

is continuous and holomorphic in the norm topology for a in {z € C: Rz >
0}. Proving that {C,,: Ra > 0} is a semigroup is immediate if we have in
mind that each C,, is conjugated to the operator of translation by a. To
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prove the holomorphy of the mapping a —— C,_, it is enough to prove that
for each f in 5#? and each « in D, the mapping

a+— (Cy, [, ko) 2

is holomorphicin {z € C: Rz > 0}. The last assertion is a standard reasoning
in semi-group theory that follows from the uniform boundedness principle
(see for instance Theorem 3.10.1 in the classical monograph [25]). Indeed,
from formula (4.2) for the parabolic non-automorphism, the above display
equals to

a'—>f(

which is a holomorphic function on {z € C: Rz > 0}, since the inequality

(2—a)a+a>’

—aax+24a

Ra > 0 implies that —aa + 2 + a does not vanish.
Now let & be the norm closed algebra of operators generated by the set

{I}U{C,,: Ra >0},

where I denotes the identity operator on 2. Since {C,,: Ra > 0} is a
semigroup and all operators commute with 7, the algebra &7 is a commutative
Banach algebra with identity. Then we can apply Theorem 4.1.8 and the
spectrum of C,, as an element of & is the set

05t (Coa) = {3(Cy.): 5 € A}

Let us identify all the elements in this set. For each multiplicative linear

functional s on &, we will write
K(a) = #(Cy,)

for every complex number a such that Ra > 0. Since the norm of s is
bounded by 1 (Lemma 4.1.3) and we already know that {C,,: Ra > 0} is a
norm holomorphic semigroup, the mapping (a) is holomorphic in the right
half plane. In addition,

k(ai + ag) = (C

Paytag

) = %(CWal CQ”az) = %(C‘Pal )%(C‘Pag)

= k(a1)k(ag).
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This means that either x(a) = 0 or k(a) = e~*4 for some complex number .
In fact, A has to be a non-negative real number since the norm continuity of
3 implies

le™] = lim |e™Y™ = lim |5(C%)|*™ < lim [|C2 ||Y" =1,
where last equality follows from Theorem 2.2.4 and formula (4.2) for ¢,.

Since |e7*?| = =% above display implies that R(\a) > 0 for every com-
plex number such that a > 0. Therefore, A > 0 and we obtain that

0(C) C {e: t € [0, +00)} U {0}. (4.6)

Now observe that if C,, — AI does not have an inverse in the algebra of
bounded operators on ##2, then the same is true in the smaller algebra <.
Hence

0(Cy.) C 0 (C)-

Therefore, (4.6) implies that

7(Cp,) C {e™: t € [0,400)} U {0}.
Since we already knew from Proposition 4.2.1 that

{e™*:t € [0,+00)} C o(Cy,)

and the spectrum is a closed subset of C, then

7(Ce.) ={e™: t € [0,+00)} U {0}.

O

The family of eigenfunctions of C,, possesses many interesting properties.
Here we will list two of them.

Proposition 4.2.3. The set {e;}1>0 is a semigroup with respect to pointwise
multiplication.

In addition, the mapping
U: [0,+00) — {ei}i>o
z+1
t — efz) =exp (tz — 1)

is a homeomorphism if we endow {e,}1>o0 with the relative topology.
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Figure 4.1: The spectrum of C,,

Proof. The semigroup structure is inherited from the semigroup structure of
[0, 00) since e;(2)es(2) = eyys(2).

To prove the second assertion, let {¢,},>0 be a sequence of non-negative
numbers and ¢ > 0 fixed. Observe that

ller, — el = llecl2pe — 2R((er,, e) we2) + lles, |22 = 2 — 2e710 71

Therefore, e, — e, if and only if 2 — 2=~ — 0 if and only if e/~ — 1,

what is equivalent to say that ¢, — ¢, since {¢,} is a real sequence. O

Another interesting property is that the set of all finite linear combina-

tions of the e}s is dense in F#2.

Proposition 4.2.4. The set of eigenfunctions of C,, is a spanning set of
2. That is,
span {e;: t > 0} = 2
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This result is well known for specialists. Because of his simplicity, we
reproduce here the proof appearing in [16].

Proof. Under the standard isometry of T : 5#? — 5#2(Il), an eigenfunction

e; is mapped to
1 _ it
Te(w) = - e, (w Z) = ° -
w+1 w+1 w+1

The latter function is mapped under the Fourier transform to

6itw os} eitz . 1
FE (s):/ gy (F ) (s—1).
w1 o T+ w+1

Using the Residue Theorem, Fourier transform in the left hand side of above
display is computed as

1 P
(fm) (s) = —2mie™ X (0,00)(5),

being x(o,00) the characteristic function of the interval (0, c0). Thus the set of
eigenfunctions is mapped by the isomorphism FT : 5#? — L%(0, +00) onto
the set

{—27rie‘s+tx(t,oo)(s): t> 0} .

This set of functions is easily seen to span L%(0,00) and thus {e;: ¢t > 0}
spans J#2. O

The density in the Hardy space of the eigenfunctions of C,,, will be es-
sential in proving that its adjoint Cy, 1s similar to a multiplication operator.
This can be done thanks to the following theorem of Halmos.

Theorem 4.2.5 ([19, Problem 85]). A necessary and sufficient condition
that an operator T on a Hilbert space S be representable as a multiplication
on a functional Hilbert space is that the eigenvectors of T* span .

The way of proving this theorem is to construct an isomorphism between
€ and a functional Hilbert space. The idea to construct the isomorphism
is the following. Let X be an index set such that for each x € X there is an
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eigenvector K, of T with corresponding eigenvalue ¢(z) and such that the
K,.’s span J#. Then for each f in 5#, we define a mapping ® on S7 as

(@f)(x) = ([, Ka)w

The mapping ® is a bounded operator on 5 and

(T f)(x) = (TS, Ko) v
= ([, T"Kz) ¢

= ([, o(@)Kz)r
= p(z)(2f)(x).

Thus if we endow the image space with the inner product

then ® becomes an isometric isomorphism from J# onto ®(5#) and the
operator T is similar, via ®, to the operator of multiplication by ¢(z) in
®(s#), that can be proved to be a functional Hilbert space.

Since we already know from Proposition 4.2.4 that the eigenfunctions of
C,, span the whole space #2, following the procedure described above we
can construct an isomorphism such that C; is isomorphic to a multiplication
operator on certain functional Hilbert space. At the moment, there is only
one thing we can say about this functional Hilbert space: Proposition 4.2.3
implies that all functions in the space are continuous.

The main issue will be to identify the target space ®(5#) with a Sobolev
type space. This will be done in the next section.

This idea was previously used in [17, Chaps. IV and V]. However, the
norm on the space ®(#7?) is defined as ||®(f)|| = ||f||#=>. Since the space
(%) is not identified, it is more difficult to handle.

4.3 The Sobolev Space W20, o)

The Sobolev space W'2[0, 00) consists of those functions f in L2[0, co) abso-

lutely continuous on each bounded subinterval of [0, c0) and whose derivative
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belong to L?[0, 00). It is well-known, see [1], and easy to check that the space
W12[0, 00) becomes a Hilbert space endowed with the inner product

(f,9)12= % /D oo(f(t)g(t) + f'(t)g'(t)) dt.

The corresponding norm will be denoted by || - |12 The Sobolev space
W12(R) can be defined in a similar way just replacing [0, 00) by R. Sobolev
spaces are named after the Soviet mathematician S. L. Sobolev who made
major contributions to the subject in the late 1930’s.

4.3.1 An Isomorphism from 5#? onto W20, 00)

We will show up an isomorphism between the Hardy space #? and the
Sobolev space W*2[0, 00) that will be crucial to prove Theorem 4.1.1. The
inner functions e;(z), with ¢ > 0, allow us to consider a complex valued
function for each f in J#? defined by

(@1)(t) = ([, ec) w2, t>0.

The key point to prove that ® is an isomorphism from #2 onto W*2[0, 0o)
is to consider the operator ¥ that for each f in L?(T), defined as

(V)@ = (f e 2y, teR.

Let W, [0, 00) denote the subspace of functions in WY2(R) that vanish on
(—00,0]. The space W,**(—o0, 0] is defined similarly. We have

Theorem 4.3.1. The operator ¥ is an isometric isomorphism from L?(T)
onto WH(R). In addition, ¥(25¢2) = Wy*[0, 00) and ‘11(2-372) = Wy (—00,0].

Proof. For each f in L*(T), we have

1 27 ) 1_|_e’i9
Uf)(t)=— v t——)df, teR
N0 =g [ e (115 )
The change of variables z = (1 + ¢¥)/(1 — %) yields
(\pf)(t)—l/oof zoi) e . (eR (4.7)
Cr ) \x+i) 1+ 22 ' '
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Therefore, ¥ = FMT, where F denotes the Fourier transform defined as

_ /_ Z f(z)e* da,

and M and T are the bounded operators defined as

1 1 T —1

o)) = oAl (1)) = et (1),
Recall that the linear fractional map known as the Cayley transform, 7(z) =
(z —1)/(z +1), maps conformally IT onto D. Thus it takes R onto T and the
obvious change of variables shows that T is an isometric isomorphism from
L*(T) onto L*(R). The first statement of the proposition will be proved
once we have shown that FM is an isometric isomorphism from L?(R) onto
W2(R). For each function f in L?*(R), we have

- L (L) ) 1 ( <f_<>_)>
||~7:Mf||1,2 o H}-(m Lz(R)+27r g V1 -+ z? L2(1R)‘

The derivative of the Fourier transform of a function g is (Fg)’ = F(—izg(z)),
see [45, p. 179]. Hence, the above display becomes

2

| S > 1 (:M)
HJ:Mf“m o ‘}f(m L2(R) 2m V1422 L2(]R).

Upon applying Plancherel Theorem, Theorem 2.1.4, we obtain that

”—zxf
L2(R) V1+a?

| MR, — H

v1+ :1:2
= “f”L2(]R)'

L2(R)

Therefore the first part of the theorem is proved.
Now, let f be in z5#2, that is, f(2) = zg(z) with g in J#2. Using (4.7),
we obtain

(T = l/“g(x—zj) (e—ita‘v dz, for each t € R.

TJo \TH+1i/) (x+1)?

Since the map
1

r—1
h h
ANV EET <x+z)
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is an isometric isomorphism from 4#? onto S#%(Il), and multiplication by
(w+1)~t is bounded on S#%(I1), we find that ¥ f is the Fourier transform of a
function of s#2(II). Thus, the Paley-Wiener Theorem shows that U f, which
is continuous, must vanish on (—oo, 0] and, therefore, ¥(z.5#2) C W,72[0, 00).
A similar argument shows that \11(2:}‘72) C Wy?(=00,0]. The fact that
U(2562) = WE?0,00) and U(272) = Wr*(—o00,0] follows immediately
from the orthogonal decomposition

WH(R) = Wy (—o00,0] @ [e7!] @ Wy [0, 00),

which in turns follows, being ¥ an isometric isomorphism, from the orthog-
onal decomposition

LX(T) = 22" & [1] @ 24>

and the fact that U1 = el where [f] denotes the one-dimensional linear
space spanned by the vector f. The proof is complete. a

Corollary 4.3.2. The operator ® defines an isomorphism from 2 onto
W20, 00). Indeed, @ f|72 = I f[%= — 1£(0)[*/2.

Proof. Upon applying Theorem 4.3.1, we find that ® and ¥ coincide on
25¢2. Therefore, the map ® defines an isometric isomorphism from z.#2
onto Wy[0, 00). Since e~ is orthogonal to W, %[0, 00), 50 is e “Xo.0) and,
therefore,

W20, 00) = [e " X(0,00)] ® Wy'*[0,00) = (1) & B(27) = B(H#?),

which proves that ® is an isomorphism. The formula for the norm comes

from the fact that [le™*xpo,00)lI7 2 = 1/2. The proof is complete. O

An interesting consequence of Corollary 4.3.2 is a summability theorem
for the Laguerre polynomials. Set u,(z) = z". Then

Un(t) = (Qup)(t) = LSD(2t)e™, £>0

where Lﬁfl)(t) is the Laguerre polynomial of degree n and of index —1. In-
deed, U, = (2", €,(2)) 2 is the complex conjugate of the n-th coefficient of
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the Taylor series of e;(z). By definition of the Laguerre polynomials see [50,
p. 97], we have

2 (o e]
e(2) = e ‘exp (—1 izz) = Ze_tL,(fl) (2t)2". (4.8)
n=0

Since Laguerre polynomials are real valued, next corollary follows immedi-
ately.

Corollary 4.3.3. Let {a,}n>0 be a sequence of complex numbers. Then the

series f(t) = 32 a, LSV (2t)e™t converges in W2[0, 00) if and only if {a,}

n=0

is in the sequence space £2. Indeed,

1712, = =190 4 andunol?.

4.3.2 Similarity with a Multiplication Operator

Now, we can apply the argument described at the end of last section to
prove that the adjoint of a composition operator induced by a parabolic

non-automorphism can be seen as a multiplication operator on W2[0, c0).

Proposition 4.3.4. Let ¢,, with Ra > 0, be as in (4.2). Then the adjoint
of C,, acting on 2 is similar under ® to the multiplication operator My,
where Y(t) = ™%, acting on W2[0, c0).

Proof. Using the eigenvalue equation (4.5), for each f € J#2, we have

(2C3, () = (C, fet) e
= f7 Cwaet>3i”2
=e ([, er) >
=e (D f)(1),
for each ¢t > 0. Thus M,, = @C;aq)_l. The result is proved. O

Proposition 4.3.5. The operator My, where (t) = e~® and Ra > 0, acting
on W2[0, 00) is cyclic with cyclic vector 1.
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Proof. Given a point w in D, recall the notation k&, for the reproducing kernel
for #? at the point w. That is, ky(2) = (1 — Wz) ™" and (f, ky) 2 = f(w).
Observe also that 0(z) = (Z—1)/(Z + 1) maps bijectively the right half plane
onto the unit disc. Therefore, given a with Ra > 0 we set a = o(a) € D.
An easy computation shows that ®k,(t) = (ka,e) 2 = e . Thus, by
Proposition 4.3.4, it is enough to show that the function k,(z) is cyclic for
Cs.-

Suppose that f in J#? is orthogonal to the orbit of k, under Cy, Then,
for each n > 0, we have

0= (C’;’:ka, )2
= (ka’ C:af>3i”2
= <kou Ccpmf>%”2

= <ka7 f © @na)%z

= f(¢na(a)).
Since {¢ne(@)} is not a Blaschke sequence, we find that f is the null function
and the result follows. U

Observe that the same argument can be used to prove that each repro-
ducing kernel is a cyclic vector for the adjoint operator C;;_. We will devote
here a few lines to the automorphism case. Suppose that C,, is induced by
a parabolic automorphism that takes the unit disk into itself. Since Ra = 0,
Proposition 4.3.4 is valid in this case and the adjoint operator C7  is simi-
lar to M,-a:. In this case we can reproduce the argument made in the above
proof to show that C7_is cyclic as well, being each reproducing kernel a cyclic
vector for C:,a. Thus, since cyclicity is preserved under similarity, M,-a: is
also cyclic. The key issue here is that e is not a cyclic vector for M,-a: and
we cannot apply Proposition 4.1.2. Indeed, the vector e™® is not cyclic for
M, because condition Ra = 0 implies that e~ is not bounded and thus,
as next proposition will show, e does not belong to W12[0, co).
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4.4 The Lattice of the Operator C,,

In this section, we will prove Theorem 4.1.1 stated at the beginning of this
chapter. To this end, we have to show that W12[0, c0) is a semisimple regular
Banach algebra with respect to the pointwise multiplication and identify its
closed ideals. First, we need to state some basic properties of W2[0, cc).

4.4.1 The Sobolev Space W'?[0,00) as a Banach Alge-

bra

The content of the following two propositions is already known for specialists
in the Sobolev space, see [1, Chapter V] for instance. However, we will include
here a proof for each of them. Both proofs are interesting by their own,
since they just make use of the isomorphism between 2 and W12[0, 00)
constructed in the previous section.

Proposition 4.4.1. Each f in W2[0, 00) satisfies || fllc < V2||fll1,2 and
vanishes at co. In particular, each f in WYH2[0,00) is uniformly continuous

and norm convergence in W20, 00) implies uniform convergence.

Proof. By Corollary 4.3.3, we can write f(t) = Y20 a, L5 " (2t)e™, where

{a,} is in £2. The Cauchy-Schwarz inequality and Corollary 4.3.3, for each
t >0, yields

o 0o 1/2
1F@) =D an LSV @™ < [l <26_2t+Z(L§f”(2t))2€_2t> -
n=0 n=1

Since ||et||#2 = 1, using (4.8), one easily checks that the quantity into the
brackets above equals to 1+ ™% < 2 and, therefore, || f[leo < V2/|f]l12-

To show that f vanishes at oo, for each positive integer m, we observe
that

m o0
|f(1)] < Zan[/%ﬂ)(%)e_t + Z anL%“l)(Qt)e“t .
n=0 n=m+1

The second term in the right-hand side above is bounded by v/2||{as }n>m+1l2
and, thus, we can take large enough m so that this term is small enough for
each t > 0. For this m and large enough ¢, the first term in the right-hand
side above is clearly as small as desired. The proof is complete. O

50



As a consequence of Proposition 4.4.1, we find that W12[0, co) is a Banach
algebra.

Proposition 4.4.2. The space W 2[0, 00) with the pointwise multiplication
18 a Banach algebra without unity.

Proof. Let f and g be in W20, 00). Upon applying Proposition 4.4.1, we
see that

I£gllz < I fll2llglloo < 211/ 1112llgll12
and
1(f9)ll2 = I1f'g + fd'lla < [ £ l2llglle + 19|20l /oo < 411 F 1,2l g2,
which show that the statement holds. O

We will need a special dense subspace of W12[0, 00). Let C°[0, 0o) denote
the space of infinitely differentiable complex functions on [0, c0) that have
compact support. The content of the next proposition is known, we include
a proof for the sake of completeness.

Proposition 4.4.3. The space C[0,00) is dense in W12[0, 00).

Proof. Suppose that f in W20, co) satisfies

/oo f)g(t)dt + /oo F g {®)dt =0, for each g € CZ[0, 00).
0 0

Since g has compact support, integrating by parts and putting everything
under the same integral sign, we find that

[ - ([ 1) |7@as =0, forcach g e oo,

Observe that since ¢’ has compact support, the second integral above is
always over a finite interval. Let a > 0 be fixed. Since the set of functions ¢’
with g in C2°[0, a) is dense in L?[0, a], we have

f(z) - / ft)dt=0, foreach0<z<a.
0

Therefore, it follows that f(z) = c;e®+coe™®, for 0 < z < a, wherec;, ¢ = 1, 2,
is constant. Since a was arbitrary, it follows that f(x) = c1€® + cee™ for
0 <z < o0. But ¢; = 0 because f is in W12[0,00) and ¢z = 0 because
f(0) = 0. Thus f is the zero function and the result follows. O
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For each t > 0, let &; denote the reproducing kernel for W20, o0o) at the
point ¢, that is, f(t) = (f,8:)12 = (®71f, e;) 2 for each f € W20, 00) and
where @ is the transform defined in Section 4.3. Recall that the spectrum
Q(W12[0,00)) is the space of multiplicative linear functional endowed with
the weak-star topology that, since W12[0, 00) is a Hilbert space, coincides
with the weak topology.

Proposition 4.4.4. The spectrum of the Banach algebra W'2[0, 00) is
QW2[0,00)) = {d; : t > 0}.

Furthermore, the mapping that to each t assigns & is a homeomorphism from
[0,00) onto Q(W2[0, 00)).

Proof. Clearly, for each ¢ > 0, the functional é; is a multiplicative linear
functional on W'2[0, 00), that is, &; is in ) = Q(W?[0, 00)). To prove that
each multiplicative linear functional on W12[0, co) is one of the §;’s, we begin
by considering the Banach algebra

C0,1} = {f : [0,1] — C: f is differentiable and f’ is continuous}
with pointwise multiplication, endowed with the norm

/1l = max{]| flloo, [/ lloc}-

Consider also its Banach subalgebra % = {f € C![0,1]: f(1) = 0}. A
straightforward computation shows that (Tf)(z) = f(z/(1 + z)) defines a
bounded operator from % into W12[0, 0o), which is also an algebra homo-
morphism.

Now, given a multiplicative linear functional » of W12[0,00), we can
construct a functional 3z on C*[0, 1] defined by (f) = »(T'(f — f(1)))+ f(1).
It is easily checked that 3¢ is also a multiplicative linear functional. Since the
multiplicative linear functionals of C1[0,1] are exactly the point evaluations
f— f(s), with 0 < s <1, see [28, p. 204], then there exists 0 < s < 1 such
that 3(f) = f(s) for each f in C'[0,1].

If s =1, it follows immediately that s«(T f) = 0 for each f in &%. Hence
s vanishes on the range of T, which is dense because it contains C°[0, c0),

see Proposition 4.4.3. Therefore, s is the zero functional.

92



If s # 1, then set ¢ = s/(1 — s) > 0 and observe that for each f € 4,

#(Tf)=x(f) = f(s) = (Tf)(®).

Hence » and and the point evaluation d; coincide on a dense set, which
implies that sz = J,. Thus we have shown that Q = {4, : t > 0}.

Next, since each f in W12[0, 00) is continuous, so is the mapping t —
from [0, 00) onto Q. Since [|d¢|l12 < [|®7|||let]| 2 = [|@7, we find that Q
is norm bounded on the dual space. Since the weak topology of a separable
Hilbert space is metrizable on bounded sets, we may conclude that € is
metrizable. Thus, to prove that ¢ — J; is a homeomorphism, it suffices to
show that ¢, — ¢;, whenever é;, — d;,. Suppose that this is not the case, then
there is € > 0 such that |t, — to| > ¢ for each positive integer n. Consider
the W2|0, co)-function defined for ¢ > 0 by

e—|to—t], ifJto —t| <e;

ft) = ,
0, otherwise.

Since 4y, (f) = 0 and 6,,(f) = €, we find that é;,, cannot converge to dy,.

Therefore, the mapping ¢ — §; is a homeomorphism. The result is proved.

O

Proposition 4.4.5. The Banach algebra W2(0, 00) is semisimple and reg-
ular and the mapping F — (), p ker 5¢ is one-to-one from F[0,00) onto the
set of closed ideals of W20, 00).

Proof. Since the multiplicative linear functionals J;’s separate points, the
Banach algebra W'2[0, 00) is semisimple. To prove that W'?[0, o) is also
regular, consider a maximal regular ideal M corresponding to the reproduc-
ing kernel d,,. Suppose that t5 € (a,b) C [0,00) and let U be the image of
(a,b) under the homeomorphism furnished by Proposition 4.4.4. Then U is
an open neighborhood of Mg and

kU) = {f e W'?[0,00): f=0on (a,b)}

is a regular ideal. Indeed, if we take g € C2°[0, 00) such that g = 1 on (a, b),
then, for each f € W2[0,00), we have f — gf € k(U) and therefore g is the
unit in W2[0, 00)/k(U).
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It remains to show that the hypotheses of Lemma 4.1.9 are fulfilled. In-
deed, the Gelfand transform of a function in W'2[0, 0o0) vanishes on a set if
and only if the function vanishes on its preimage under the homeomorphism
furnished by Proposition 4.4.4. Clearly, for each f in W20, c0) there is
a sequence {f,} in C°[0,00) converging to f and such that the zero set of
each f, contains an open neighborhood U, of the zero set of f. Then, by
Lemma 4.1.9, each closed ideal of W'?[0, 00) is of the form (1, _ ker s for
some F in [F[0, 00). Thus the mapping F —

wcF Ker » is onto and, since

m ker sc # ﬂ ker s¢

»cF »eG

whenever F' # (G, it is also one-to-one. The result is proved. a

4.4.2 Proof of the Main Theorem
Now, we have all the tools at hand to prove Theorem 4.1.1.

Proof of Theorem 4.1.1. By Proposition 4.3.5, the symbol % is a cyclic el-
ement of the semisimple regular Banach algebra W12[0,00). Thus, using
Corollary 4.1.10 we obtain that F — (,.cr ker 3 is a one-to-one correspon-
dence from the set of closed subsets of (<) and Lat M. By Proposi-
tion 4.4.4, we see that the map

F — Ir ={f € W"?[0,00): f vanishes on F'}

is one-to-one from F[0,00) onto Lat My. Since My = ®C;®~1, it follows
that the map

F— Jp={f€ (fie)p» =0 for t € F}

is one-to-one from IF[0, o) onto Lat C35. Since Lat C,, consists of the orthog-
onal complements of Lat Cy, we find that the map

F— Jx

is one-to-one from F[0,00) onto Lat Cy. It remains to notice that J& =
span {e, : t € F'} for each F in F[0, 00). The proof is complete. O
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4.5 Consequences

Next we will show some direct consequences of the characterization of the
lattice of invariant subspaces of C,,. First, observe that in the proof of

Theorem 4.1.1, parameter a did not play any role.

Corollary 4.5.1. All composition operators induced by parabolic non-automor-
phisms that take the unit disk into itself share their lattices and their cyclic
vectors.

We can obtain two more corollaries from the proof of Theorem 4.1.1 that
describe the lattices of the adjoint operator Oy acting on the Hardy space and
the multiplication operator M,-a: acting on the Sobolev space W20, oo).

Corollary 4.5.2. Let ¢ be a parabolic non-automorphism that takes the unit
disk into itself. Then

Lat C; = {{f €I (fegwr=0fortc F}: F € F[O,oo)}.
Corollary 4.5.3. Let M, -a: be the operator of multiplication by e™® acting
on the Sobolev space W20, 00). Then

Lat M -a = {{f € W'2[0,00): f vanishes on F}: F € ]F[O,oo)}.
Theorem 4.5.4. Let ¢ be a parabolic non-automorphism that takes the unit
disk into itself. Then C, has no non-trivial reducing subspace.

We will exhibit three different proofs based on the definition and the two

different characterizations of reducing subspaces furnished by Theorem 2.4.3

First Proof. Let F be in F[0, +00) for which Np = span {e; : t € F'} is non-
trivial. We must show that its orthogonal complement N# is not invariant
under C,. To this end we need to evaluate the inner product of two different
eigenfunctions. Let s > t > 0, since e, is an inner function then |e;(e?)] =1
almost everywhere. Hence

2 -
(er, es) 2 = / et(ew)et(ew) es_¢(e) df
0

27

:/ les—,(e?) do
0

= es-t(O)

=e~ls=0),
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Interchanging the roles of s and ¢ in case t > s > 0, we obtain that
(€1, €s) 2 = e71t=sl for each t,s > 0. (4.9)

Now we are ready to prove the theorem.

First assume that 0 is not in F. Set {; = min F. One easily checks
that f,, = 1 — e"™¢,, is orthogonal to e; for each ¢ > ¢y, which means that
fio is in Ng. If N7 is invariant under C,, then fi, — C,fy, is in N, But
Jto—Cy fr, = e 0 (1—e%0)e,, is also in Np, which means that fi, —C, fi, = 0.
Hence, f;, = 1, a contradiction.

Assume now that 0 is in F'. Let s > 0 be fixed and consider the operator
M., of multiplication by e;. We have

M, ,(Np) =esspani{e;: t € F} =span{esys: Lt € F} = Nyyp.  (4.10)
Clearly, M., is a Hilbert space isometry preserving inner products. Therefore,
M., (NE) = (M., (Np))*. (4.11)

Proceeding by contradiction, assume that N is also invariant under C,.
Then
Mes(C<P(NIJ’:)) g Mes(NéT)' (412)

Since, for each f in S#2, we have
Co(Me, [) = Cylesf) = e eCof = ™ M, (Cof),

from (4.12), it follows that C,(M,,(N#)) is included in M., (Ng). Therefore,
from (4.10) and (4.11), we immediately see that

1 L
CW(N3+F) g Ns+F'
This is a contradiction because 0 is not in s + F. The proof is complete. [I
The next proof was indicated by El Hassan Zerouali.

Second Proof. According to assertion 2 in Theorem 2.4.3, M is reducing for
C,, if and only if Py commutes with C,,. Suppose T is in the commutant
of Cy,, that is, C,, T = TC,,. Then, for all £ > 0 we have

Cyo(Ter) = T(Cy er) = T(e™%e;) = e (Tey).
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Thus Te; is an eigenvector of C,, and since all eigenvectors in 0(Cl,) have
multiplicity one, then there exits a complex number A(¢) such that Te, =

A(t)e;. Thus we have constructed a mapping X : [0, +00) — C such that
Tey = A(t)ey forallt > 0.

Note that since T is bounded and e;, converges to e; if and only if the
sequence {t,} converges to ¢, the mapping A is continuous.

Now suppose that T is a projection that commutes with C,,. Since
projections are idempotent operators, T? = T and therefore \2(t) = A(¢) for
all £ > 0. Therefore the range of A is included in {0,1}. Since we already
know that X is a continuous mapping, then either A = 0 or A = 1. Thus the
only reducing subspaces are the trivial ones, {0} and 5#2. O

Third Proof. According to assertion & in Theorem 2.4.3, a subspace M is
reducing for Cy, if and only if it is invariant under both C,, and Cj . Since
M € Lat C,,,,

M =span{e;: t € F}

for certain closed set F' C [0, +0c). On the other side, M € Lat Cj_. Corol-
lary 4.5.2 shows that there exists F”, a closed subset of [0, +00), such that

M= {f€%2: (f,e1) 2 =0 for alltEF’}.

Therefore M = {0}, since (e;, es) 2 = e "%l # 0 for each non-negative
numbers ¢ and s. (]

Recall that the cyclic vectors of an operator can be characterized as those
that do not lie in any subspace invariant for this operator. This observation
allows us to prove immediately the following corollary

Corollary 4.5.5. Let ¢ be a parabolic non-automorphism that takes the unit
disk into itself. Then a function f in J#? is a cyclic vector of Cs, if and
only if

(fe)e2 #0 for allt > 0.
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Chapter 5

The Lattice in Other Spaces

In this chapter we characterize the lattice of invariant subspaces of the com-
position operator induced by a parabolic non-automorphism acting in a wide
variety of spaces of analytic functions. First we start with some weighted
Bergman spaces. Then we use that characterization to obtain the lattice
of invariant subspaces in the rest of the Hardy spaces and in the remaining
weighted Bergman spaces.

5.1 Dirichlet Space

Until now we have characterized the lattice of invariant subspaces of the
composition operator induced by a parabolic non automorphism of the Hardy
space. The characterization of the invariant subspaces relied heavily on the
spectrum of the operator: any of its invariant subspaces is spanned by a set
of eigenfunctions of the operator. An immediate question arises: Is still the
lattice the same in a smaller space that does not contain the eigenfunctions
but where the operator preserves the same spiral-like spectrum?.

The Dirichlet space fulfills the desired properties, it does not contain the
eigenfunctions e,’s but the spectrum is still the same that the spectrum in the
Hardy space [24]; nevertheless, there is a relevant difference: C,, is normal in
%,. Evenmore, the operator is completely normal. Recall that an operator is
normal whenever it commutes with it adjoint. An operator is said completely

normal in case it is normal and all its invariant subspaces are reducing, see
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(39, p.22].
Let A(z) stand for the normalized Lebesgue area of the unit disk. The
Dirichlet space & is the space of functions f holomorphic on D for which the

I =17 O)P + / P () dA(2)

is finite. It is easy to see that the norm above comes from an inner product
and 2 is indeed a Hilbert space. Let 2, denote the subspace of & that
consists of the functions that vanish at 0 and let [1] the one dimensional
subspace 2 formed by the constant functions. We clearly have the orthogonal
decomposition 2 = [1] & %,. Let P denote the projection from 2 onto 2.
Consider the compression ap = PC,P of C, to %y. Now, if f = f(0) + g,
where g is in %, then

Cof = Cof (0) + Cpg = (f(0) + g((0))) + Cog = f((0)) + Clog.
When there is no risk of confusion, we will denote ap just by C,.

Proposition 5.1.1. Let ¢, be a parabolic non-automorphism that takes the

unit disk into itself. Then C,, acting on Dy is completely normal.

Proof. In [15], the adjoint of Cy,, : Dy — P is calculated. It turns out that
Cy, Is a composition operator as well, C7, = Cy,, being its inducing symbol

_ 2-a)z+a

Vals) = 3 +2+a

Recall that any Mobius transform can be represented as a square two di-
mensional matrix and that the composition of two Mdbius transformations
corresponds precisely to matrix multiplication of the corresponding matrices.

Thus ¢, o ¥, is represented as

2—a a 2—-a a [ 12=a?—|a 2(a+7)
~a 2+a -a 2+4a ) —20a+a) [2—a?—|a? |

An the composition v, o ¢, corresponds to

2-@ @ 2—a a _ |2 —al? — |af? 2(a+7a) '
-a 2+a —-a 2+a —2(a+a) |2—al*—]a]?
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Therefore, ¢, 01, = ¥, 0 ¢, and the composition operators mentioned above
commute

C.Ca = Copuops = Cygop, = Cp, Oy,
Since Cy, = C_, the operator C,, is normal on .

'To prove that the operator is completely normal, we make use of Theorem
1.23 of [39]. That theorem states that a normal operator whose spectrum is
simply connected is completely normal. Since ¢(C,,) is a spiral, it is simply
connected and therefore the operator is completely normal. ([l

a?t

5.1.1 An isomorphism between %, and L? (g((j%)7 = 10gt)

We will start defining an isometry between %, and L? (o(Cl,), ';gf ). This
will be accomplished in three steps. First we will move to the analog of
the space %, in the upper half-plane. Let IT denote the upper half plane.
The Dirichlet space of the upper half plane 2, consists of those functions

holomorphic on the upper half plane I vanishing at ¢ and for which
1P, =3 [ [~ [ 1+ i)l dsay

Now, the change of variables

is finite.

'wza(z)zzl_z

that takes D into II, shows that F' € 2, if and only if F oo € %;. Hence,
the composition operator

CUZ@W"*@()

defines an isometric isomorphism between 2 and %,. Note that the isometry
is well defined since o(0) = 4.

Second step will be to move to a Lebesgue space via the Fourier transform,
F. Following [24, Theorem 2.1], we know that F : 9y — L*(R*,tdt) is an
isometry.

Finally, doing a change of variables we arrive to L2 (J(C‘pa), %;)tg_é) with
the aid of the isometry defined as

K,: LAR*tdt) — L2 (0(Cy,), 8t)

fo— (=)
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Thus, we have constructed for any complex number with Ra > 0 an isometry
U, = K,FC, : 9y — L? (U(C’%), :aizo_:te_t) Let us see how the composition
operator is transformed under this isometry.

Start with the composition operator C,, acting on Z. It is similar to the
operator C,C, C-! acting on Zp. A straightforward computation shows up
that C.C,,C~! is nothing but T,;, the operator of translation by az defined
as Toi f(2) = f(z+ ai). Thus, C,, is similar to T,; on Z. At this point we
recall one of the most basic properties of Fourier transform: it transforms
translation by a¢ into multiplication by e~®. Thus, via the Fourier trans-
form, the operator T,; is similar to M,-«: acting on L?(R*,¢dt). Finally, the
change of variables K, transforms the operator M,—.: into another operator
of multiplication, M,, acting on L2 (0(C,,), :ﬁ’g—t).

a?t

Theorem 5.1.2. The operator defined as

+co o '
U f(t) = K, FC f(t) = _\/.12;7; /_ f (i - z) jiefa g

is an isometry from Dy onto L2 (a(C,,), —28t).

a2t

Furthermore, under this isometry the composition operator C,_ acting on

Dy is similar to the multiplication operator M, acting on L? (U(C%), - ;‘z’tgt).

5.1.2 Invariant subspaces on %,

Now we are ready to study the invariant subspaces of C,, and the isomor-
phism described in Theorem 5.1.2 will be the key tool for that together with

Proposition 5.1.3 ([44, Example 1]). If X is a compact set of the complexs
plane and u is a reqular non-atomic Borel measure on X, then the invariant
subspaces of My : L*(X,du) — L*(X,dp) are

{f e L*(X,dy): f =0 a.e. on E}
for measurable sets E of (X, p).

We will say that two Lebesgue measurable subsets A and B in (0, 00) are
equivalent if A\ B U B\ A has null measure. Let A(0, c0) denote the set of
the equivalent classes under the latter relation. We have,
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Corollary 5.1.4. Let ¢ be a parabolic non-automorphism that takes the unit
disk into itself. Then Lat C, is the inverse image under FC, of

{{f € L*(R*,tdt) : f vanish on A} : A € A(0,00)}.

Proof. Theorem 5.1.2 asserts that C,,, is similar to multiplication by the
independent variable on L? (0(C,, ), =58%). Applying Proposition 5.1.3 we

’ a2t
obtain that any subspace of L2 (¢(C,,), —"—;%f—t) invariant under M, is of the
type
—logt
{f cL? (0(0%), +tg) : f=0a.e. on E} i
a

Now we can go back to L?(R*,¢dt) using the isometry K,. This isometry
establishes a bijection between the invariant subspaces of M,-.: and those of
M. Thus, a subspace N C L?(R*, tdt) is invariant under M,-.: if and only
if
N ={feL*(R*"tdt): K,f =0a.e. on Ex}

for certain measurable set Ey of (0(C,,), ——%ﬁ) Note that the mapping
% transforms bijectively the o-algebra of measurable sets of (RT,tdt)
onto that of measurable sets of (0(C,, ), —2&%). Thus,

) a2t
N ={f € L*(R*,tdt): f =0 a.c. on F}

for some measurable set F' of (R, ¢dt). The theorem is already proved since
a subspace M C % is invariant under C,, if and only if M is mapped by
FC; onto one of the invariant subspaces of M,-.: characterized above. [

We can obtain a more explicit expression for the invariant subspaces of

Cy,. Composing the isometries,

1 +oo T—%\ _ip

Performing a change of variables in the above display, a subspace M C % is

invariant under C,, if and only if there exists a measurable set F' of (RT, ¢ dt)
such that

+

1 etety _
Mz{fegg.\/—2_7T/Tf(x)(1_x)2d:v:0fora.e.tlnF}.
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5.1.3 Invariant subspaces on ¥

At this point we wonder what can be said about the invariant subspaces of
Cy, on 9. We have decomposed the Dirichlet space as the orthogonal sum
of two of its subspaces

2 =1 & %,.

We recover the notation 5% for the operator PC,, P acting on %, and C,,
will denote the composition operator itself acting on the whole space 2. Since
the constant function 1 is an eigenvector of C,,, the subspace [1] is invariant
under Cy,, and the operator has the following matrix representation

1 B
CSOa = -~ 9y
0 C,,

where 1 represents the identity operator, relative to the orthogonal decom-
position of 2 mentioned above. Thus, the composition operator acting on
the Dirichlet space can be decomposed as the sum of two operators,

~ 1 0 0 B
Coo. =10C,, + 5= ~ + , 5.1
crotrs=(1 )4 (22),

where S is a rank one operator and C can be identified with the operator
Cy, + Do — Zo. Note that B is not zero since % is not invariant under Cl, .
Even more, the following lemma asserts that there is no non-trivial invariant

subspace of ¢, included in the subspace %,.

Lemma 5.1.5. Let M € Lat C,, be different from the null space. If Py :
9 — C denotes the orthogonal projection onto the constants, then PyM =
C.

Proof. Let M € Lat C,, be different from {0} and suppose that M C %,.
Take a function f in M. Since M is invariant under C,,, the orbit {C}_ f}n>0
is included in M and therefore Cf;a f(0) = 0 for any n > 0. Recall that ¢,
is conjugated to a translation un the upper half-plane, thus C} = C,,,,, and
therefore 0 = Cy,, f(0) = f(©na(0)) for any n > 0. Hence any function in
the subspace M must vanish at the sequence {©n.(0) = na/(2 + na)}n>o-
But this sequence is not a Blaschke sequence, so the only function vanishing
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at this sequence is the zero function. This contradicts the assumption and
proves the result. O

Now we are in position to prove the main theorem.

Theorem 5.1.6. Let ¢ be a parabolic non-automorphism that takes the unit
disk into itself. Then for C, acting on the Dirichlet space D, we have

Lat C, = {0} U {[1) @ M where M € LatC,}.

Proof. First, suppose that f € [1] & M, where M is an invariant subspace
under C, acting on Dy. Thus f = f(0) + g, where g € M. Therefore,

Cof = CypJ(0) + Cog = (f(0) + 9((0))) + Cpg = f((0)) + Cipy,

which belongs to [1] & M, since M is invariant under C,. Thus [1] & M is
invariant for C,,.

Conversely, suppose that A is invariant under C,. We may suppose that
N # (1], since in such a case there is nothing to prove. In addition, Lemma
5.1.5 implies that A is not contained in Dy. Let M denote the image of
N under the orthogonal projection from D onto Dy. Clearly, M is different
from {0} and is invariant under 590. Indeed, choose an arbitrary function
9 € M. Then g(z) = Pg, f(2) for certain f in N. Therefore,

C<pg = P@occpP@og = P@octpg = P@o(f(o) + Cﬁpg) = P@OCLPfa

where we have used in the second equality above we have used that Pg, is
idempotent and in the third one we used that Pg,f(0) = 0. Thus, since N/
is invariant under C, then @Og belongs to M and actually M is invariant
under ap. We will show that the constant function 1 belongs to N, from
which the result follows immediately.

Since M # {0}, using the description of the invariant subspaces of ap,
we may choose a non-zero function ¢ € M such that FC,g has compact
support. By a Paley-Wiener theorem, see [45, p. 375], F~!(FC,g) is an
entire function. Therefore, g is analytic on the closed unit disk D. Thus the
corresponding function f = f(0)+g in NV is also analytic on D. In particular,

J(z) = (1= 2)"h(2)
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for some non-negative integer k£ and h analytic on D with h(1) # 0. We will

show that ( e
1 1 — Pnl\Z
e Cnf = 2 p(2)
=0 = T= g )
tends, in the norm of D, to h(1). To this end, it is enough to show that

(2+na

1 a1 a4

tends to zero in D. The change of variables w = ¢,(z) in the integral above
yields
k(2 + na)* 2 + na)*

kot ( —w kit P -
oF /%(D) |(1—w)* " h(2)| dA(2)+—— /%(D) l(1—w)*H (2)|dA(2),

where the first term above does not appear in case k = 0. The above display
is less than or equal to

229 Aou(o) (mass(it — b} + max(it — wlf b))} ).

Set M’ = maxp |h/(w)| and M = maxp |h(w)|. Then the above display is less
than or equal to

(2 + na)* nRa — 1/t nfRa — 1|*
—A 1-— kM +11 — ——| M
2k (on(D)) n¥fa + 1 * nRa +1
Since )
1 nRa — 1
D 11— ——
Al = 3 (1- 51
the result follows. Since h(1) # 0, it follows that 1 is in M. The proof is
complete. O

5.2 Bergman Spaces

We have already characterized the lattice of invariant subspaces in the Dirich-
let space, a space of analytic functions that does not contains the eigenfunc-
tions of the composition operator but where the spectrum is the same. As
expected, the lattice of invariant subspaces was totally different to the lat-
tice of the operator acting on the Hardy space. Recall that the density of
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the span of the eigenfunctions was a key point to characterize the invariant
subspaces of C,.

Now we turn our attention to weighted Bergman spaces of the unit disk.
The Hardy space is densely contained in each of the weighted Bergman
spaces. Therefore the eigenfunctions e; are included in these spaces and
they span it. Hence one would expect that as in the Hardy space case, each
invariant subspace is spanned by eigenfunctions. As we will see, this is not
the case in weighted Bergman spaces.

The Bergman space of the unit disk, denoted by A2, is defined as the set
of analytic functions with square modulus integrable in D. That is,

£ = {f cor®): [ 1P AE) < oo} ,

where dA(z) denotes the normalized area measure on D. It is a Hilbert space
when endowed with the inner product

(f.g)ae = / ()7 dA(2),

for any two functions f, g € A2
The Bergman space is a particular instance of a wider class of spaces
known as weighted Bergman spaces. For any real number o > —1 we define
the measure
dAs = (a+1)(1 — |2)*)* dA(2).

For each @ > —1, the weighted Bergman space of the unit disk .A2 is the space
formed by all analytic functions in L?(DD, dA,). The space A? is endowed with
the inner product that inherits from L?(D, dA,) that will be denoted as

f, 9)as = / 1(2)9(2) dAal2).

Equipped with the above inner products, the weighted Bergman spaces are
Hilbert spaces. Bergman spaces are named after S. Bergman. Most of the
theory of Bergman spaces has been developed during last four decades, al-
though the major breakthroughs were made during the 1990’s. Two books,
appeared recently, are good introductions to the subject [12] and [21].
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An orthonormal basis for A2 is formed by the functions

'n+2+a)
—_— " c D,
n!'(2+ a) o f
forn =0,1,2,...,see [21, p. 4]. Here I represents the usual Gamma function

that generalizes the notion of factorial function to complex numbers.
Once we know about the existence of such an exceptional basis for A2,

we can rewrite its norm an inner product. Let

f= ianz" and g= i b, 2"
n=0 n=0

be two functions in A2, then

= nlT(2+a)
11 = > 2, ? (52)
A4 ; 'n+2+a)
and
oo IT .

From now on, we will use these equ1valent norm and inner product in AZ2.
As an immediate consequence of the Stirling’s formula for the Gamma func-
tion, the weight appearing in the inner product (5.3) can be asymptotically
estimated as

(2 + «)

Tn+2+a) F@+a)n+ )7~ (n+1)77 (5.4)

where the notation f, =~ g, indicates that the quotient sequence {f,/gn}

is bounded from above and below by two positive constants as n tends to
infinity. Thus we can define an equivalent inner product in A2 as

(f,@)a=Y — = n+1l+a (5.5)

n:O
With this equivalent inner product, the Hardy space is easily seen to be a
vector subspace of each A2. In fact, the Hardy space can be regarded as the

limit case o = —1. An orthonormal basis for this new inner product is

(n+1)+2n 0 n=0,1,2,... (5.6)
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From the formula of the new equivalent inner product it is immediate to see
that in case p = 2, the weighted Bergman spaces A% are totally ordered with
respect to inclusion. In particular, if a; < as, then Af,l c Aiz.

We close the section mentioning that Littlewood’s Subordination The-
orem implies that all composition operators are bounded in each weighted
Bergman space A2 for a > —1, see [10, Theorem 3.1]. Thus it makes sense

to study the lattice of invariant subspaces in each weighted Bergman space.

5.3 An Isomorphism Between A; and W,ﬁf 2

In order to extend the characterization of Lat 52 C,, to the weighted Bergman
spaces A2, the first attempt could be the following. Since we have develop
certain machinery in the Sobolev space Wh2[0,00) and characterized its
closed ideals, the first step would be to find an isomorphism between .42
and W12[0, c0). This can be done easily for each a > —1.

Proposition 5.3.1. Fiza > —1 and set f = (=14 «)/2. Then the mapping

D, A2 — W12[0,00)
[ @af)®) = (freda

15 an isomorphism of Hilbert spaces.

. 0 2
In addition, ||®.f||7, = “f“itg _ If(2)| '

Proof. Due to the particular choice of 3, the image of the basis (5.6) for A2
under the mapping ®,, is

(@a(n + 2 () = (0 + 1220 ) o = (27 e0) e = (227)(2)-

Hence the image of the basis coincides with the image under @ of the standard
basis for the Hardy space. Since we already proved in Corollary 4.3.2 that ®
is an isomorphism, so is ®,.

Therefore @, is well defined since it can be extended continuously to the
whole space A%. The formula for the norm is a consequence of the formula
for the norm appearing in Corollary 4.3.2. a
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Therefore we have already obtained an isomorphism between each .42
and the Sobolev space W'?[0,00). Next step would be to check wether C%
is similar under the isomorphism ®, to the multiplication operator M.-a:.
Fix o > —1 and, as above, let § = (~1 + «)/2. Then for each function f in
A2 we can write

(2aCy, N)(t) = (CL freduz = ([, Cpper) a3 = €™ (f er) g = e (Daf)(1).

The above chain of equalities equals to say that POy, = Me-at P, However,
there is an error in second equality in above display. The operator Cj
denotes the adjoint of the composition operator C,, in the Bergman space
A2, therefore it is defined through the equality (C}, f,e;)a = (f,Cyp e1).2-
Hence for the Bergman space A5 we have that

<C;af7 et>A% % (f, C<Paet>.A%'

since C, is not the adjoint of Cy,, acting on A%. Thus, if we want the adjoint
operator Cj to be similar to the multiplication operator M, -a:, there is no
choice that redefine the isomorphism &, as

(@af)(t) = (f,et)az, t=0, (5.7)

for each function f € A2 and identify the arriving space as certain Sobolev
space.

For each non-negative integer k, consider the Hilbert space L2[0,00) of
complex Lebesgue measurable functions defined on [0, c0) endowed with the
inner product

(f, )i = / T F0gDrtd,  f.g€ IR0, 00)

For each non-negative integer k, the Sobolev space W,f +1’2[0, 00) consists of
those functions f in L2[0,00) which have derivatives of order j, 1 < j <k,
and f® is absolutely continuous on each bounded subinterval of [0, 00) and
JU%+D) belongs to L2[0, 00). It is simple to check that the space W ?(0, 00)
becomes a Hilbert space endowed with the inner product

k+1

k+1 R T G
(f, g)W:-H,z - Z ( j > /0 F9 () gD (£t dt, flge W:+1,2,
=0
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where, as usual, f(© denotes the function itself.

Set the notation u,(z) = (n + 1)+%/2;" for the members of the or-
thonormal basis of A2. Recall from (4.8) that the Taylor coefficients of e,
are Laguerre polynomials evaluated at 2t multiplied by e™. Therefore the
orthonormal basis of A2 is mapped under ®,, to

(Patin)(t) = (Un, &) 4z = (n + 1)~/ [1)(21), (5.8)

Before proceeding further, we recall some properties of the Laguerre polyno-
mials that will be needed in what follows. For each o > —1, the Laguerre

polynomial of index o and degree n arises from the generating function

1 -2zt - n
(RS exp (1 — z) = ZLS")(t)z .

n=0

The characteristic feature of the Laguerre polynomials is that the sequence
{e7"2L{ () }n50 forms a complete orthogonal system for the space L2[0, 00).
Indeed, if d,,, denotes Kronecker’s delta, then

/ 2" L () LD (t) dt = [dl+a+n)

T S (5.9)
0 .

It is easy to see that for a > 1, the Laguerre polynomials satisfy
L) = LE () - L0 ()

and

DL3(6) = ~Li3P(1),
where D denotes the derivative operator, see [40, p. 203]. From these two
properties, straightforward easy calculations show that the functions defined
by

L (t) = e ' LM (2t)

for each n > 0 and for each a > 1, satisfy

L@ = plat)) _ plet) (5.10)
and
DL® = —let) _ D (5.11)
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As above, in all that follows, zﬁ:") is assumed to be 0 whenever n < 0. A
change of variables shows that the fundamental relations in (5.9) written in
terms of £ are

o) ~la 1 T(1+a+n)
(L, LNy 45 = 5i7a - Snm- (5.12)

We have,

Theorem 5.3.2. For each non-negative integer k, the map ®y is an isomor-

phism from A}(D) onto W,2[0, 00).

Proof. We start by proving that {(®xu,)(t)}n>0, is & complete orthogonal
system of W:j_rf [0, 00). To this end, observe that fixed a natural number n
the functions

(I)kun(t> = (n + 1)_(1+k)/2[,£;1)(t)

are essentially the same, they just differ by a constant multiple. Hence, show-
ing that for each non-negative integer k the set {(®xun)(t) }n>0 is a complete
orthogonal system of W,f_:"f 2[0, 00) equals proving that the system {E,(fl) b0
is complete and orthogonal for each Sobolev space W,f:f 210, 00). To handle
a simpler notation, we will prove that the latter system is a complete orthog-
onal system for W:+1’2[O, oo) for each non-negative integer k.

In order to do this, we will show that the inner product in W,f 1210, 00)
of two functions in {ﬁ,(fl) }n>o is given by

k+1

2 1 k+1
> ( Jl” )(D’cg;l), DILGYy =2 ST (k“; 1) (c®, £y (5.13)

1=0 1=0
We stress here that identity above is just a consequence of the linearity of
the inner product and properties (5.10) and (5.11) of the functions i
and not of cancelations arising from their orthogonality properties shown in
(5.12). In fact, this is the reason why we can get rid of the index in the inner
product above. In particular, we may and will use the identity in (5.13) for
other functions different from L’gfl) as soon as they satisfy the properties in
(5.10) and (5.11).

The identity in (5.13) will be proved by induction on k. For & = 0, the
left hand side in (5.13) is equal to

(LD, L0D) + (L5 (L5D))
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Using (5.10) and (5.11), we see that the above display is equal to
(LD = L2, £ = L)) + (LD + L2, LD+ £3)1),
which, using the linearity of inner product, is equal to

20LO, £OY 4+ 2(£9 £O .

n—11

Now, suppose that we have already proved the identity in (5.13) for £ — 1.
Using the binomial relations

(5 0= o

we see that the left-hand side in (5.13) is equal to

k+1 k k k
Lp(-1) plp-1 L p(-1) plp=1)
Z(l_l)wﬁn ,D'L; )+;(l><D£n ,DILEYY. (5.15)

=1

The induction hypothesis shows that the second term above is equal to

k
28" (?) (e 1 %Dy, (5.16)
=0

On the other hand, a change of indexes shows that the first term in (5.15) is
equal to

k

Z (7) Dl+1£( 1) Dl+1£( 1) Z( > »Slk 11)7D£(k 1)> (517)

=0

where we have applied the induction hypothesis again with £ replaced by
Dﬁ%a), which also satisfy the properties in (5.10) and (5.11). Finally, using
(5.10) and (5.11) in (5.16) and (5.17), respectively, we obtain that (5.15) is
equal to

k
k
26y <l>((££Lk_)l+£§f_)l_1,Eﬁ)_l+ﬁ(m’“’_l_1>+<£§f) —L® e ® p®
=0

Cancelations along with the binomial relation in (5.14) show that the above
display is equal to

k+1
2k+12 (k + 1) (c® ® )
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an the induction is complete. Now, the orthogonality of the system {ng 1)}
in W 2(0, 0o) follows immediately from formulas in (5.12) and (5.13). The
fact that the system {Eﬁfl)} is complete in W,f+1’2 is standard and a proof
that can be done following the lines of the proof of Theorem 5.7.1 in [50, p.
107]. Thus we omit the proof here.

Finally, we show that @ is indeed an isomorphism. Indeed, for each n > 0,
we clearly have ®pu, is different from 0, otherwise u,, would be orthogonal
to each e; and this is not possible since the eigenfunctions span the space
AZ?. In addition, for n > k, we deduce from (5.13) and (5.12) that

1
2 - —— (—1) 2
stz = G Vo g
2kt2 XX k42 (k+1) (k1)
= (n-{—l)’”’l Z( I )(‘C’n—l 7£n-—l )/H-l
=0

1 E k(-1 k+1)
w1 ) T

=0

Upon making n tend to oo, the last display tends to

k+2<k+2) k+2
> ) =2

=0

Therefore, {®yu,} is bounded above and bounded away from 0. Since {u,}
and {U,} are complete orthogonal systems, it immediately follows that @
is an isomorphism between A3 (D) and W::ff 20, 00). The proof is complete.

O

Now we can obtain the desired similarity between the adjoint of the com-

position operator and a multiplication operator acting on the Sobolev space
k42,2
Wk—:_l [07 OO)

Proposition 5.3.3. Let v, be a parabolic, either automorphism or not, self-
map of the unit disk. Then the adjoint of C,, acting on A} is similar
under @, to the multiplication operator My, where ¥(t) = e ™, acting on

W::ff’Q[O, 00).
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Proof. Using the eigenvalue equation (4.5), for each f € A2(t), we have

(PeC3, 1)) = (Cy, fr ez = ([, Cpuecd az = e (fr ) az = €™ (2uf)(2),

for each ¢ > 0. Thus M,, = @kC;aé,;l. The result is proved. 0

5.4 The Lattice in 42

Proposition 5.4.1. For each even integer k > 0, the space W,f’Ll’Z[O, 00) 18
a commutative Banach algebra without identity.
Furthermore, ||f©lo0 < ||f||W:+1,z for each 0 < [ < (k+1)/2. Hence,

convergence in W,f 1200, 00) implies uniform convergence of the derivatives
up to order (k+1)/2.

Proof. First, we will show that for each positive integer | < (k + 1)/2, the
operator D! from W20, 00) into L*°[0, 00) is bounded. Each function f

. k412 .
in W, 712[0, 00) can be written as

In__ p-1)y

hgE

J(t) = (Br-1h)(t) =

Il
=)

T

where h = Y >°  a,z" belongs to A?_;. Upon iterating (5.11), we have the
second equality below,

(7%
(n+ 1)k

(DB =D (DL

Il
gk
=
&
—_
~—

ko
(M-
N
. e~
N
3=
b
S
=

n=0 3=0
l o
l Qnp (t-1)
< E ———L (1)

Now, recall that cﬁf:}’ is null for n — j < 0. Thus we have the equality
below. Applying the Cauchy-Schwarz inequality in the first inequality below
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and the fact that ®,_; is an isomorphism in the second, we have

n—|-1 whn;
0

G‘TH-J L(l—-l)(2t)e—t

= (L40e0)? )
-2t —Qt
<Ihla. (ze Py LR )

0 o (i-1) ) 1/2
< CHfHWkH 2 <26 2y Z (__(_2@_6_%>

(n+ 1)k
<O -2)” l”Ai_lllf”W:“ﬂa

where the last inequality follows from the identity

et —2tz
—tL(l 1) 2t
Ze ( )t P T2

and the fact that |e;(z)] < 1. The power series of the function (1 — 2)7! is

1 T(n+1)
1 - 2) =2 nlTQ) -

n=0

Hence, we can apply Stirling’s formula to estimate its coefficients as in (5.4)
and obtain that (1 — 2)~ belongs A?_, if and only if I < (k +1)/2. Putting
everything together, there is a positive constant C, which does not depend
on f, such that

ID'fD)lleo < Cllf sz, for 0 < U< k.

The above inequality is what in fact justifies taking the derivatives in the
sum above.
Now, assume that f and g belong to W:H’Q[O, o0). We claim that

17995 e < Ol el gllygons,  for0<I<j<k+l (518)

Indeed, note that (k + 1)/2 < k if and only if & > 2. Thus, for 0 <[ <
(k+1)/2, we have

||f(l)g(j—l)“k < Cv”f(l)||Oo”g(j—l)||,c < C[[f[[W:+1,2||g||W:+1,z.
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For I > (k+1)/2, it must be j — ! < (k+ 1)/2 and again, we have
1F999 PN < CUTONENg oo < Ol llypraallgllpisra.

Therefore, (5.18) holds and we can use it in the second inequality below.

k+1

(V] oreee -Z <k+ 1) 1(Fg) 12
an gy 1) j () - 2
= O gl=b
()2 k
< ki‘i (k + 1) z’: () 17D g6-02
k1 i,
¢y ( ; 1) 2 < )||fn§V:H,2||g||3V:H,2

1=0
=0 1=0
=C3k+1||f”$y:+1,2||9“W:+1,2~

The result is proved. U

Note that in case k is an odd integer, then one cannot proceed as in the
proof of Proposition 5.4.1. Indeed, for each f in W2[0,00) there exists a
function h(z) = >  a,z" in A? such that

(o ¢]

- _ n_ p(-1)
0 = (@) = 3 L0
Its derivative is given by
TN — an ( (0)
10 = =30 200 + 2250

The derivative f/ does not need to be bounded. Indeed, £’ (0) = 1 for every
n and there are plenty of functions in .A? for which the series

0 an
Zn—l-l

n=0

diverges.
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We continue with the study of the lattice of invariant subspaces in A2
for k£ an even non-negative integer. Given a point w in D, the reproducing

kernel for the weighted Bergman space .42 at w is the function

1

ku,a(2) = T —wz)ar?’

see [21, p. 6].

Proposition 5.4.2. Let 9(t) = ¢™® and Ra > 0. Then the operator M,
acting on W,f +1’2[0, 00) is cyclic with cyclic vector ¥ for each non-negative
integer k.

Proof. Recall that o(2) = (Z—1)/(Z+1) maps bijectively the right half plane
onto the unit disc. Therefore, for any a with Ra > 0 we set w = o(a) € D.
Then (w+1)/(w — 1) = a and hence

DOk 1 (t) = (k. i, et)A,% — et — @,
Since cyclicity is preserved under similarities, proving the statement is equiv-
alent to prove that the function kq(z) is cyclic for C}; on the space Aj.
Suppose that f in .42 is orthogonal to the orbit of &, under C7,- Then,
for each n > 0, we have

0= (Cirka, faz
= (ka, Cg, [ a2
= (ka, Cppaf ) 22
= (Ka, f © Pna) a2
= f(pna(a)).

The sequence {gn,(c)} is not a Blaschke sequence, but this does not neces-
sarily imply that the Bergman function f is the null function, since not all
zero sequences of Bergman functions are Blaschke sequences. Thus, in order
to ensure that f equals zero, we must ask an extra property to the sequence
{pna(a)}. This extra property is furnished by Lemma 4.3 in [17, p. 51|
which states that if a function g in A2 vanishes in a sequence {w,} and this
sequence is included in D(1/2,1/2), an Euclidean disk with center at 1/2 and
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radius 1/2, then {w,} is a Blaschke sequence. Since ¢,,(D) C D(1/2,1/2)
for a sufficiently large n, then Lemma 4.3 of [17] implies that f is the null
function and the proposition is proved. O

Observe that, once again, every reproducing kernel is a cyclic vector for
the adjoint operator Cj .

Now that we already know that W,f:f ?[0,00) is a Banach algebra and
that M.-=: is cyclic with cyclic vector e, Proposition 4.1.2 implies that
the lattice of invariant subspaces of M,-a: is formed by all closed ideals of
W,fff 210, 00). To identify the ideals in that Sobolev space, we will make use
of the characterization of the closed ideals in W*2[0,00). To this end, we
start proving that the closure in W2[0, 00) of a closed ideal of W20, co)

is again a closed ideal in W12[0, 00).

1:2[0,00)
1

Proposition 5.4.3. Let I be a closed ideal of W:H’z[O, 00). Then 7"
its closure in W2[0, 00), is a closed ideal in W20, 00).

Proof. Let I be a closed ideal of W,f 1200, 00). We start showing that "
is a closed ideal of W20, 00). Indeed, let f be a function in 77", Then
there exists a sequence {f,}n>0 € I converging to f in W1?[0,00). Now
let, g be an arbitrary function in W2[0, 00). Since W,f]:lz 20, 00) is dense in
the space W12[0, 00), then there exists a sequence {g,} € W;2*(0, 00) such
that g,, converges to g in W2{0, 00). Since W'2[0, 00) is a Banach algebra,
we have

”gnfn - 9f||1,2 < Hgnfn - gnf”l,2 + Hgnf - 9f“1,2
< Clignllizllfa = flliz + Clign — glli2ll fll12,

for any natural number n. Thus the sequence {g, f,} converges to gf. Since
I is an ideal of W,f:fz[o,oo) and {f,} C I, then g,f, € I for all n >
—wt

— 2 2
0. Therefore gf € IW1 and, since g was arbitrary, I is an ideal of
Wh2[0, o0). O

However, last proposition does not imply that all ideals in W,f +120, 00)

are of the form {f € Wit"?[0,00): f(t) = O paratodot € F}. As an

immediate consequence of 5.4.1 we have the following
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Proposition 5.4.4. For each even integer k > 2, the set
Ir={f e W*20,00): fO(t) =0 foralit € F, 0 <1<}

is a closed ideal of Wt12[0,00) for each F € F[0,00) and each 0 < j <
(k+1)/2.
Furthermore, in case F has isolated points and j > 1,

Ip #{f € WiT?[0,00): f(t) =0 for all t € F}.

Proof. The first assertion follows immediately from the uniform convergence
of the derivatives

For the second, set ¢y be an isolated point of F and (a, b) an interval such
that (a,b)NF = {t}. Let f be a C* function that equals 0 outside (a, b) and
does not vanish on (a,b). Then (t, — t) f(¢) is in {f € WFT%[0,00): f(t) =
0 for all t € F'} but it does not belong to Ir since f'(to) = f(to) # 0. O

Thus new invariant subspaces arise for the operator M, acting on the
space W,f #1210, 00). These new subspaces correspond to new invariant sub-
spaces that do not lie in the lattice of invariant subspaces of C,, acting in
2. In particular, we have

Theorem 5.4.5. For each even integer k > 2, consider C,,, acting on A2_,.
Then, for each F € F[0,00) and each j < (k+1)/2 the subspace

!
MF:WL{<Z+1> et(z):téFandOSlgj}
Y —

belongs to LatC,,.
In particular, in case F does not have isolated points, the invariant sub-

space Mp is not generated by eigenfunctions e;.

Proof. 1t is an straightforward consequence of Proposition 5.4.4 and the fact

that .
@ean®6) =3 () (£5) ato)

!
J=0
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To close the chapter we show the following striking property of the eigen-
functions e;. Suppose that the closed set F' C [0, 00) does not have isolated
points or, equivalently, F' equals the closure of its interior. Then, in case a
function f in W2 vanishes on F also its derivatives vanish on F. Hence,
for any 0 < j < (k+1)/2 we have

{f c W:“)?[0,00): fiFr = 0} = {f € W:+1,2[0, 00): f(j)IF =0,0<I< j} )
Carrying the above set to A;_; with the isomorphism ®;_;, we have that
{fe A : Pporfip=0} = {f €A1 (@1 /)P p=0,0<1< j}.

Since both subspaces above are equal, their respective orthogonal subspaces
are equal and we obtain that

'
span{et:teF}:span{<Z+1) et:tEF,OSZSj}~
P
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Chapter 6
The Parabolic Automorphism

When Ra = 0 in formula (4.2), then ¢ is a parabolic automorphism of I and
still satisfies the eigenfunction equation (4.4) with the same eigenfunctions.
But, instead of a spiral, the spectrum is the unit circle. Now, the lattice
becomes much more complicated. The reason for this is that the eigenspaces
asociated to each eigenvalue are infinite dimensional. If we fix ty with 0 <
to < 27/lal, then it is clear that

ker (Cp, — ™) = 5pan {ei12mm/1a) : 0 =0,1,...}.
We have

6.1 The Eigenvectors

Proposition 6.1.1. Let a # 0 with Ra = 0 and X = e~ where 0 < {y <
2n/|al. Then £* is isomorphic to ker(C,, — M) under the operator that to
each sequence {a,} assigns the function [ =37 | anetgtamn/|al-

Proof. Suppose that Sa > 0. If Sa < 0, the proof runs analogously. Since

the operators C,,, with Sa > 0, are similar to each other, we may assume

that @ = 4/(27). Since multiplication by e~ is an isometric isomorphism,
we may also assume that t; = 0.
Recall from (4.9) that (e;, es) 2 = e~lt=¢! for each ¢,s > 0. From that

formula, one immediately checks that the functions defined as

-1
fn:en_e €n+l, ’I'LZO,
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are pairwise orthogonal. Since eg = Y - e * fi, the set {f,} forms a com-
plete orthogonal system of ker (Cy, .., — I). Thus, since Wfall2e =1—e2,
we need only to prove that the operator T defined by

oo

Tfn =€np = Ze_kfn—i-k:

k=0

is bounded with bounded inverse. But observe that T can be written as
T=(I-et5),

where S is defined by Sf, = fny1 is the operator known as unilateral shift.
Clearly, I — e71S is bounded and has bounded inverse because |[e”1S|| < 1.
The result is proved. (]

Therefore a large number of new invariant subspaces appear. Let ¢, be
a parabolic automorphism that takes the unit disk into itself. Then, for each
t >0 let My = [e; + €s421/|q)] De the one-dimensional subspace generated by
the eigenfunction e; + €;195/1q). Thus M, is invariant under C,,. It is clear
that for any parabolic non-automorphism ¢, that takes the unit disk into
itself, the subspace M, is not invariant under C,,. Indeed,

span Orb(C,,, e; + €ryar/ja) = SPan {e, €1or/jal}-

Therefore any eigenfunction of ¢, that it is not an eigenfunction of any of
the parabolic non-automorphisms generates a new invariant subspace. The
same is true for subspaces generated by an infinite number of eigenfunctions
corresponding to different eigenvalues.

The above observation shows up another difference between the automor-
phism and the non-automorphism case. Recall from 4.5.1 that all composi-
tion operators induced by parabolic non-automorphisms that take the unit
disk into itself share their lattices of invariant subspaces. This is not the case
for parabolic automorphism. Let a; and as be two different pure imaginary
numbers. Then the subspace M = [eg + €2r/|q,]] is invariant under Cr, but
it is not invariant under C7, since Proposition 6.1.1 implies that eg + €274,

is not an eigenvector of Cy, .
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6.2 Invariant Subspaces Without Eigenvec-

tors

The following proposition shows that there are a lot of invariant subspaces
which are not spanned by eigenfunctions.

Proposition 6.2.1. Let @, be a parabolic automorphism of the unit disk.
Then Cy,, has a non-trivial infinite-dimensional invariant subspace with at
most the eigenfunction 1.

Proof. As in the proof of Proposition 6.1.1, it suffices to consider the case a =
i/2n. Before constructing M we will study the image of the eigenfunctions
of Cy, ,. under ®. Recall that (Pe,)(t) = e71*~!l. Integrating by parts it is
easy to obtain the relationship between ®e, and the reproducing kernel d;.

Indeed,
€ 2 0 an €s ry 0

for any s > 0. Now, the image under ® of an arbitrary eigenfunction of
C¢i/27r IS

0 %0 o (toH)
hyy = @ (Z a]-et0+j> = Z a; <5t0+j - T(S°> ,
=0 7=0
where {a;} € ¢2 and 0 <ty < 1. Those are the eigenfunctions of My,

By Theorem 4.3.1 we know that ® is an isometric isomorphism between
ZH? and W,?[0,00). Therefore it preserves orthogonality between these
spaces. Using the similarity provided by Proposition 4.3.4, in order to con-
clude the proof it is enough to prove that there is a subspace M C W,'*[0, o)
invariant under M, such that its orthogonal complement M+ has no eigen-
function for the adjoint M} but the eigenfunction d.

Now we are ready to construct M. Take fy in W,'*[0,00) such that
fo(t) # 0 for each t > 0 and

1/2
/0 In | fo(8)] dt = —oo. (6.1)

We also take f; in W,%[0, 0o) such that f(t) > 0 for each t > 1 and vanishing
on [0,1]. For each n > 2, set 2, = n — 2+ 27" and take f, in Wy'*[0, c0)
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such that f,(¢) # 0 for ¢t € (zp, Tys1) and f,(t) = 0 otherwise. The required
subspace is

M:span{MJan:kEZandn:O,l,Z,...}.

Clearly, M is invariant under M,y.

Now let tos)
e e—(to+i
hto = Zaj (5t0+j - 2 50) 5

J=0

where 0 < #p < 1 and {a;} € £?, be an arbitrary eigenfunction of M. Assume
that hy, is orthogonal to M. Since M C W;%[0, 00), this is equivalent to
> 120 ;04,45 being orthogonal to M.

First suppose that 0 <ty < 1. Then the equality tqg + j = x,, j > 0 and
n > 2, holds for at most just one n > 2. Suppose that {y + j # z,, for every
Jj > 1 and every n > 1. Then t; + j, for each j > 1, belongs to a unique
(@, Tne1). It follows that

0= <fnvht0> :a—jf"(t0+j)

for each j > 1, which implies that a; = 0 for each j > 1. Then hy, =
ao(ds, — €780 /2), but we have

0 = (fo, h) = @ fo(to)-

Thus ag = 0 and hy, is the zero function.

In case there is an n such that ¢ty + k& = z,,, then as above we deduce that
a; = 0 for every j different from k. In addition, since hy, is orthogonal to fo
and f1, we have

apfo(to) + @xfolto+ k) =0

and
Gof1(to) + axfi(te + k) = 0.

Since f; vanishes only on [0, 1], then a; = 0. Thus ap = 0 and Ay, is the zero
function again.

In case tp = 0, then j # =z, for each j > 1 and each n > 2. In this case
any j > 1 belongs at most to one of the intervals (zn, z,+1). Hence, as in
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the previous case, a; = 0 for each j > 1. Then hy, = agdp, which in fact is
orthogonal to M.

Therefore, the unique eigenfunction of My orthogonal to M is .

Finally, we see that there are infinitely many functions other than & in
M=+, In fact, M* is infinite-dimensional since M cannot span all functions
in W'2[0,1/2]. Indeed, f, is the only function non vanishing on [0,1/2] and
by (6.1), Szegd’s Theorem, see [23], implies that {e*® fo(t) }rez does not span
L?[0,1/2] and therefore neither W12[0,1/2]. The result is proved. O
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Chapter 7

Further Developments

The work just presented here suggests multiple directions where the research
can be continued. The first one would be to complete the characterization
of invariant subspaces of a composition operator induced by a parabolic au-
tomorphism.

As for the composition operator induced by a hyperbolic transformation,
all the work remains to be done. The eigenvectors of these composition
operators has been already characterized. In case ¢ is a hyperbolic fractional

map, wether automorphism or non-automorphism, the eigenvectors of C, are

1+Z s+it
1—=2 '

fort € Rand —1/2 < s < 1/2, see [10, Lemma 7.24]. Note that the power is
defined in terms of the principal branch of the logarithm. Hence, to identify

the functions

their invariant subspaces a similar approach to the one made for the parabolic
non-automorphism can be made. First step would be to prove that the
eigenfunctions span the Hardy space and after that the composition operator
will be similar to a multiplication operator acting on a certain functional
Hilbert space. After identifying that functional Hilbert space, some results
could be obtained concerning invariant subspaces for these operators.
However, one cannot expect to complete the characterization of the lattice
of invariant subspaces of the composition operator induced by a hyperbolic

automorphism since that problem is as difficult as the Invariant Subspace
Problem.
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The remaining case, the characterization of the lattice of invariant sub-
spaces of composition operators induced by loxodromic maps, is a quite dif-
ficult task as well. Even the study of its cyclic properties, which in principle
is easier than the study of its invariant subspaces, is complex. In [6] the
authors characterize the cyclicity and hypercyclicity of the elliptic, parabolic
and hyperbolic cases, but the skip the study of the loxodromic case.

90



Bibliography

[

[9]

R. A. Adams, Sobolev spaces. Pure and Applied Mathematics, Vol. 65.
Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publish-
ers|, New York-London, 1975.

A. Aleman, H. Hedenmalm and S. Richter, Recent progress and open
problems in the Bergman space. Quadrature domains and their applica-
tions, Oper. Theory Adv. Appl. 156 (2005), 27-59.

A. Aleman, S. Richter and C. Sundberg, Beurling’s theorem for the
Bergman space, Acta Math. 177 (1996), 275-310.

N. Aronszajn and K. T. Smith, Invariant Subspaces of Completely Con-
tinuous Operators, Annals of Math. 60 (1954), 345-340.

W. Arveson, A Short Course in Spectral Theory. Graduate Texts in
Mathematics, 209. Springer-Verlag, New York, 2002.

P. S. Bourdon and J. H. Shapiro, Cyclic phenomena for composition
operators, Mem. Amer. Math. Soc. 125 (1997), no. 596, x+105 pp.

J. B. Conway, A Course in Functional Analysis. Second edition.
Springer-Verlag, New York, 1990.

C. C. Cowen, Composition operators on H?, J. Operator Theory 9
(1983), 77-106.

C. C. Cowen, Linear fractional composition operators on H?, Integral
Eqns. Op. Th. 11 (1988), 151-160.

91



[10]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21

C. C. Cowen and B. D. MacCluer, Composition operators on spaces of
analytic functions, Studies in Advanced Mathematics. CRC Press, Boca
Raton, 1995.

P. L. Duren, Theory of HP spaces, Pure and Applied Mathematics, Vol.
38 Academic Press, New York-London, 1970.

P. L. Duren and A. Schuster, Bergman spaces, Mathematical Surveys
and Monographs, 100. American Mathematical Society, Providence, RI,
2004.

P. Enflo, On the invariant subspace problem for Banach spaces, Semi-
naire Maurey-Schwarz (1975-1978).

P. Enflo, On the invariant subspace problem for Banach spaces, Acta
Math. 158 (1987), 213-313.

E. A. Gallardo-Gutiérrez, A. Montes-Rodriguez, Adjoints of linear frac-
tional composition operators on the Dirichlet space, Math. Ann. 327,
(2003), 117-134.

E. Gallardo-Gutiérrez and A. Montes-Rodriguez, The role of the angle
in supercyclic behavior, J. Funct. Anal. 203 (2003), 27-43.

E. Gallardo-Gutiérrez and A. Montes-Rodriguez, The role of the spec-
trum in the cyclic behavior of composition operators, Mem. Amer. Math.
Soc., 167 (2004), no. 791, x+81 pp.

Garnett, J. B., Bounded Analytic Functions, Academic Press, New York,
1981.

P. R. Halmos, A Hilbert space problem book, Graduate Texts in Mathe-
matics, vol. 19. Second edition. Springer-Verlag, New York-Berlin, 1982.

G. H. Hardy, The mean value theorem of the modulus of an analytic
function, Proc. London Math. Soc., 14 (1915) 269-277.

H. Hedenmalm, B. Korenblum and K. Zhu, Theory of Bergman spaces,
Graduate Texts in Mathematics, vol. 199. Springer-Verlag, New York,
2000.

92



[22] A. Ya. Helemsky, Banach and locally convez algebras, Oxford University
Press, New York, 1998.

(23] H. Helson, Lectures on invariant subspaces, Academic Press, New York,
1964.

[24] W. M. Higdon, The spectra of composition operators from linear frac-
tional maps acting upon the Dirichlet space, J. Func. Anal., 220, (2005),
55-75.

[25] E. Hille and R. S. Phillips, Functional analysis and semi-groups, Rev.
ed. American Mathematical Society Colloquium Publications, vol. 31.
American Mathematical Society, Providence, R. 1., 1957.

[26] K. Hoffman, Banach spaces of analytic functions, Dover Publications
Inc., New York, 1968.

[27] R. A. Horn and C. R. Johnson, Matriz analysis, Cambridge University
Press, Cambridge, 1990.

[28] K. Y. Katznelson, An introduction to harmonic analysis, Dover Publi-
cations Inc., New York, 1976.

[29] G. Konigs, Recherches sur les intégrales de certaines équations fonc-
tionelles, Annales Scientifiques de I’Ecole Normale Supérieure Sér. 3, 1
(1884), 3-41 (suplement).

[30] J. E. Littlewood, On inequalities in the theory of functions, Proc. London
Math. Soc. 23 (1925), 481-519.

[31] A. Mahvidi, Invariant subspaces of composition operators, J. Operator
Theory 46 (2001) 453-476.

[32] V. Matache, On the minimal invariant subspaces of the hyperbolic com-
position operator, Proc. Amer. Math. Soc. 119 (1993), 837-841.

[33] V. Matache, The eigenfunctions of a certain composition operator, Con-
temp. Math., 213 (1998), 121-136.

93



[34]

35]

[36]

[40]

[41]

[42]

[43]

[44]

[45]

R. Mortini, Cyclic subspaces and eigenvectors of the hyperbolic compo-
sition operator, Travaux mathématiques, Fasc. VII, (1995), 69-79, Sém.
Math. Luxembourg, Centre Univ. Luxembourg, Luxembourg.

E. A. Nordgren, Composition operators, Canadian J. Math. 20 (1968),
442-449.

E. A. Nordgren, P. Rosenthal and F. S. Wintrobe, Composition operators
and the invariant subspace problem, C. R. Math. Rep. Acad. Sci. Canada
6 (1984), 279-283.

E. A. Nordgren, P. Rosenthal and F. S. Wintrobe Invertible composition
operators on HP, J. Funct. Anal. 73 (1987), 324-344.

R. E. A. C. Paley and N. Wiener, Fourier transforms in the complex
domain, American Mathematical Society, Providence, RI, 1934.

H. Radjavi and P. Rosenthal, Invariant subspaces, Ergebnisse der Math-
ematik und ihrer Grenzgebiete, Band 77. Springer-Verlag, New York-
Heidelberg, 1973.

E. D. Rainville, Special functions, Chelsea Publ. Company, New York,
1971.

C. J. Read, A solution to the invariant subspace problem, Bull. London
Math. Soc. 16 (1984), 337-401.

C. J. Read, A solution to the invariant subspace problem on the space
¢', Bull. London Math. Soc. 17 (1985), 305-317.

C. E. Rickart, General theory of Banach algebras, The University Series
in Higher Mathematics, D. van Nostrand Co., Inc., Princeton, New York,
1960.

P. Rosenthal, Invariant subspace lattices, Duke Math. J., 37 (1970),
103-112.

W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1987.

94



[46] D. Sarason, Composition operators as integral operators, Analysis and
partial differential equations, 545-565. Lecture Notes in Pure and Appl.
Math., 122, Dekker, New York, 1990.

[47] Shapiro, J. H., Composition Operators and Classical Function Theory,
Springer Verlag, 1993.

(48] E. Schréder, Uber iterierte Funktionen, Math. Ann. 3 (1871), 296-322.

[49] H. J. Schwartz, Composition Operators on HP, dissertation, University
of Toledo, 1969.

[50] G. Szego, Orthogonal polynomials American Mathematical Society Col-
loquium Publications, vol. 23., New York, 1939.

[51] B.S. Yadav, The Present State and Heritages of the Invariant Subspace
Problem, Milan J. Math. 73 (2005), 289-316.

95



Symbol Index

C,, 11

D, 71
J(F,0), 37
L2[0, 00), 70
L n
LYY, a7

Py, 17
WL2(R), 45
W20, 00), 44
W20, 00), 70
W, 20, 00), 45
D, 5

T, 68
Q(«7), 34

®, 45

Dy, 70

IL, 8

=~ 68

M, 35

£ n
#(D), 11
A2, 6
H7(I0), 8
o(T), 24
z, 35

dA, 67
dA,, 67
e, 32
W), 37
k(E), 37
ko, 6
ke, 78

97



Subject Index

algebra, 32
multiplication, 33

Banach algebra, 33
commutative, 33
cyclic element, 33
identity, 33
regular, 37
semisimple, 36
spectrum, 34

Bergman space, 67
weighted, 67

Blaschke sequence, 8

Cayley transform, 10, 31
composition operator, 1, 11
cyclic vector, 19

eigenfunction, 24
eigenspace, 28
eigenvalues, 24
eigenvector, 24

Fourier transform, 9

functional Hilbert space, 5

Gelfand map, 35
Gelfand transform, 35

Hardy space, 6

upper half-plane, 8
hull map, 36

inner function, 38
Invariant Subspace Problem, 2

Jacobson radical, 36
kernel map, 37

Laguerre polynomials, 71

lattice, 16
complete, 16

linear fractional transformation, 12
conjugate, 13
trace, 14

Mébius transformation, 12

multiplicative linear functional, 34

operator, 5
bounded, 5
completely normal, 59
cyclic, 18
multiplication, 33
normal, 59
restriction of, 16
similar, 23
spectrum, 24

orbit of a vector, 18

99



reproducing kernel, 6
root of unity, 24
primitive, 25

Sobolev space, 44
span, 16
spectrum

of a Banach algebra, 34

of an operator, 24

*of a Banach algebra, element, 36

subspace, 16

cyclic, 19

invariant, 16

projection onto, 17

reducing, 17

100



