
A comparative study of classifier combination applied to NLP tasks

Fernando Enríquez, Fermín L. Cruz, F. Javier Ortega, Carlos G. Vallejo, José A. Troyano ⇑
Universidad de Sevilla, Escuela Técnica Superior de Ingeniería Informática, Avenida Reina Mercedes, s/n 41012 Sevilla, Spain
a b s t r a c t
Keywords:
Natural Language Processing
Text analysis
Classifier combination
Part-of-speech tagging
⇑ Corresponding author.
E-mail addresses: fenros@us.es (F. Enríquez)

javierortega@us.es (F. Javier Ortega), vallejo@lsi.us.es
(J.A. Troyano).
The paper is devoted to a comparative study of classifier combination methods, which have been success-
fully applied to multiple tasks including Natural Language Processing (NLP) tasks. There is variety of clas-
sifier combination techniques and the major difficulty is to choose one that is the best fit for a particular
task. In our study we explored the performance of a number of combination methods such as voting,
Bayesian merging, behavior knowledge space, bagging, stacking, feature sub-spacing and cascading, for
the part-of-speech tagging task using nine corpora in five languages. The results show that some methods
that, currently, are not very popular could demonstrate much better performance. In addition, we learned
how the corpus size and quality influence the combination methods performance. We also provide the
results of applying the classifier combination methods to the other NLP tasks, such as name entity recog-
nition and chunking. We believe that our study is the most exhaustive comparison made with combina-
tion methods applied to NLP tasks so far.
1. Introduction 1.1. Classifier combination
In Natural Language Processing (NLP), there are many lines of
research based on the classification of words, grammatical
constructions and text documents in a number of predefined cate-
gories. In recent years there have been many classification algo-
rithms developed using Machine Learning techniques based on
multiple theories and approaches. These features give them distin-
guishing characteristics that make them better suited for some
tasks than for others preventing the appearance of the ‘‘perfect’’
algorithm for any problem.

Machine Learning is an area where these algorithms have
played a major role and the combination of classifiers has been
studied with great interest. In addition to investigating the results
given by combination methods, a great effort in demonstrating the
theoretical advantages of their use over the application of a single
classifier has been made. The underlying idea is simply to get the
most out of the different views that different classifiers provide
facing the same problem. NLP researchers use these combination
methods for their own classification tasks, generating a succession
of papers that since the late nineties continue providing improve-
ments to their initial results.
, fcruz@us.es (F.L. Cruz), 
 (C.G. Vallejo), troyano@us.es 
What does it take for the combination to be successful? What
does classifier combination offer? What are the reasons to believe
that the combination will improve the results of one classifier? Fol-
lowing the studies of Hansen and Salamon [1] there are two basic
requirements necessary and sufficient for the combination to suc-
ceed in improving the individual classifiers:

� Diversity: Classifiers must make different mistakes when faced
with new data to classify. This is to provide different views of
the same problem, which is achieved in many different ways.
� Accuracy: Classifiers involved should provide a lower error rate

than a random classifier.

When justifying the confidence in the combination as a method
capable of improving classification results, Dietterich [2] suggests
three reasons:

� Statistical: Selecting one of the classifiers can lead us to a mis-
take as it may not be the best classifier for our problem. Further-
more, we do not have infinite resources and the limited number
of examples of the training database can make a particular clas-
sification algorithm suffer more than others.
� Computational: Even if we had unlimited training data, classifi-

ers could fall in a local maximum or other phenomena that
avoids them from reaching their goal.
� Representational: Finally, the search space explored by a partic-

ular classifier algorithm may not contain the objective function
we are trying to approximate. This can occur for all the classifi-
ers at our disposal.

http://dx.doi.org/10.1016/j.inffus.2012.05.001
mailto:fenros@us.es
mailto:fcruz@us.es
mailto:javierortega@us.es
mailto:vallejo@lsi.us.es
mailto:troyano@us.es
http://dx.doi.org/10.1016/j.inffus.2012.05.001
http://www.sciencedirect.com/science/journal/15662535
http://www.elsevier.com/locate/inffus


Also one more reason to combine is the ability to avoid or mit-
igate overfitting according to [3].

Kuncheva [4] also shows that classifier combination can be ad-
dressed following different approaches. These will depend on the
point where the diversity is generated in the whole process. This
way she distinguishes four types of combination separated in
levels:

� Combination level: At this level we have to decide which com-
bination algorithm to use for merging the categories proposed
by the base classifiers.
� Classifier level: Here we focus on the type of base classifiers we

can use among all the available algorithms developed so far.
� Feature level: When an example is represented by a feature vec-

tor in the database we can also focus on deciding which features
to use.
� Data level: At this last level we can use different datasets to

generate different classifiers. This includes all methods that
generate several versions of a dataset by sampling or any other
technique.

Finally, another important element to consider is the type of
outputs provided by the base classifiers for each element. Accord-
ing to Xu [5], there are three levels of outputs:

� Abstract level: The classifier provides the final category or class
among the list of possible categories.
� Rank level: The classifier provides a list of categories sorted

according to the confidence calculated by the classification
algorithm.
� Measurement level: The classifier provides a list of categories

along with their confidence values.

1.2. Classifier combination in NLP

Since the nineties, researchers in the field of Natural Language
Processing began to apply more frequently combining techniques
to improve their classification results. Papers reflected these
improvements although the combination techniques used to be
rather simple. Among the mostly used methods in these early
works were the averages of the results obtained by the base classi-
fiers. Then they started to discover the potential of using linear
combinations, Bayes or more complex classification algorithms
using meta-learning.

In [6] different Boolean formulations of queries on a database of
documents are combined for the information retrieval task.
Although the combination methods differ from the more generic
ones applicable in other domains, the results evaluated on the
TREC (one of the most important competitions dedicated to this
task) resources were promising and served as a starting point for
later works. A year later, in [7] three different systems (knowl-
edge-based, example-based and a lexical transfer system) were
also combined to solve the task of machine translation (MT). The
conclusion, so well exposed in the title of this work, was that three
heads are better than one.

In [8] these ideas were applied to the task of document classifi-
cation, and more particularly to document filtering. Using different
types of classifiers (nearest neighbors, Rocchio, Linear Discriminant
Analysis and neural networks) several experiments were made
with different combination methods (average and regression tech-
niques). The conclusion was that simple average systems offered
better results, although the authors expected that future work
could achieve improvements using Bayesian inference models.

In the other major branch of NLP, speech processing, research-
ers also began to pay more attention to combination methods fol-
lowing the publication of papers like [9]. In this particular work a
post-processing stage in automatic speech recognition is per-
formed, using voting techniques to reduce the error rate of the dif-
ferent systems used.

All these works generated confidence in the application of com-
bination techniques to NLP tasks, but was in 1998 with the publi-
cation of [10,11], when a larger number of researchers started to
develop their work in this direction.

These two papers evolved in parallel and both faced a basic task
in NLP like part-of-speech tagging (POS). Although van Halteren
was experimenting since 1992 with classifier combination using
voting techniques, it was with [10] when he gathered more atten-
tion. The results obtained with the LOB (Lancaster-Oslo/Bergen)
corpus by applying several techniques were definitely outlined.
The methods applied varied from simple majority voting or total
voting precision to stacking using second-level classifiers, through
a pair voting system that provided very good results. Decision trees
and example based learning algorithms were also tested as meta-
classifiers. On the other hand, Brill and Wu showed in [11] similar
conclusions after applying simple voting techniques and meta-
learning methods. Again, after several experiments using the Penn
Treebank corpus, the option of using a second level of learning ob-
tained the best results.

Other works have employed combination methods for improv-
ing performance in POS tagging [12–14], and also in many other
tasks such as word sense disambiguation [15–17], named entity
recognition [18–20], different types of parsing [21,22], document
classification [23,24], information extraction [25,26], and opinion
extraction [27,28] among others.

However, the coverage of the combination methods applied to
NLP tasks has been quite limited, showing a clear tendency to
use voting and stacking techniques against other methods. To
prove this we conducted a bibliographical analysis in which we se-
lected a large number of papers that use the combination of classi-
fiers in NLP tasks. We extracted information about the base
classifiers used, combining techniques applied and many other
data. This study shows, as seen in Fig. 1, that base classifiers usage
is very diverse while voting and stacking are chosen much more
frequently than any other combination method. The reasons may
be the simplicity of the first and the good results announced for
the second, which has proven to be capable of achieving significant
improvements in several tasks where it has been applied.

Furthermore, if we take the improvements achieved in these pa-
pers using combination techniques and calculate the minimum,
maximum and average mean, we get the values shown in Table
1. Even though the resources used are different as well as the mea-
sures, that may be percentage of accuracy (in most cases), Fb=1, etc.,
the information shown is important from our point of view. In this
summary we see that the improvements are larger for those tasks
in which the base classifiers provide worse results because of their
difficulty. When the margin for improvement is bigger the combi-
nation seems to get the best out of the situation. This occurs even
in high demanding scenarios like POS tagging, where base classifi-
ers provide very good results, but combination is still able to sur-
pass those values. Also if we focus on the combination methods
used, we see that the mean obtained by other methods different
than voting and stacking is better than the obtained by these most
used techniques. So we may conclude that there could be very
good methods that are not well known by the NLP community.

For this reason we decided to conduct a comparative study of
the most relevant combination methods to a level of depth not
present in the literature as far as we know. We collected a set of
corpora with different sizes, tagsets, languages and sources. We
have also made experiments with specific scenarios to show addi-
tional aspects that can be taken into account when assessing a par-
ticular method. There are many important issues about these



BAY
9%

HMM
8%

MB
10%

ME
11%

SVM
10%

TR
10%

Others
42%

DC
23%

IR
9%

NER
15%PAR

7%

POS
17%

WSD
12%

Others
17%

Rest
14%

STACKING
24%

VOTING
41%

Cascading
4%

Linear
4%

NGrams
4%

Average
3%

Bayes
3%

Best
3%

Others
35%

Fig. 1. Distribution of classifiers, tasks and combination methods used. Classification techniques shown are transformation rules (TR), support vector machines (SVM),
maximum entropy (ME), memory based (MB), hidden Markov models (HMM) and Bayes (BAY). The NLP tasks are word sense disambiguation (WSD), part-of-speech tagging
(POS), parsing (PAR), named entity recognition (NER), information retrieval (IR), and document classification (DC).

Table 1
Summary of results obtained in selected papers. For each NLP task included, the
average result obtained by the best base classifier is shown. Also the minimum,
maximum and average improvements obtained using combination are calculated. The
NLP tasks are document classification (DC), named entity recognition (NER), parsing
(PAR), part-of-speech tagging (POS), and word sense disambiguation (WSD). In the
bottom, the same information is shown separating the cases in which the most
popular combination methods are used (voting or stacking) from the rest.

Improvement

Avg. Min. Max. Avg.

DC 68.72 0.01 8.10 2.02
NER 77.63 1.30 6.41 3.52
PAR 66.06 0.03 2.30 1.12
POS 94.86 �0.58 1.75 0.75
WSD 72.28 1.70 7.00 3.34

Voting 71.17 �0.58 6.20 1.53
Stacking 61.68 0.03 9.02 2.45
Others 63.83 0.02 8.10 2.62
methods like their robustness or adaptability to changes in data or
base classifiers.

In the following sections we will show in first place the meth-
odology and general aspects of our experiments in Section 2, fol-
lowed by the results obtained applying several combination
methods to POS tagging in Section 3. Afterwards we will dedicate
Section 4 to explain additional experiments focused on special sit-
uations that in our opinion give even more importance to the use
of these techniques. Finally, we will show more results obtained
with other NLP tasks in Section 5 ending up drawing some conclu-
sions considering all the information collected in this work in Sec-
tion 6.
2. Experimental framework

After an exhaustive bibliographical analysis we have not been
able to find any comparative work taking into account a big num-
ber of combination methods applied to different corpora. There are
important papers that show improvements by using several classi-
fiers to which three or four combination techniques are applied at
most. Also the resources in each case are very diverse, making it
difficult to know the real potential of each method. A wider exper-
imental framework would give a clearer perspective about this
particular way of obtaining better results using the same classifica-
tion tools employed nowadays. Therefore, we have focused our
work on this idea selecting a well known NLP task, many different
data collections, some of the most popular classification tools and
implementing a large number of combination techniques. Further-
more, we have also made simulations that can provide even more
information about how these methods behave when special cir-
cumstances appear.
2.1. Methodology

First, experiments will focus primarily on the Part-of-Speech
(POS) tagging for two reasons, the availability of classifiers and cor-
pora and the difficulty for the combination to improve the results
due to the high level of accuracy obtained by the base classifiers.
However, we will also provide results on other NLP tasks to con-
firm that the observed behavior remains the same.

Second, we will use a total of nine POS corpora and four more to
assess other tasks, which is a great variety of data regarding the
number of examples, languages, tagsets used, etc. This allows us
to check the robustness and consistency of the evaluated methods.

Third, our own implementations have also been developed for
the different combination methods trying to respect the basic ideas
that support them. This way we avoid the use of ad hoc optimiza-
tions that can alter the perception of the real potential of every
algorithm involved in the study. We have implemented at least
one representative from each of the families of combination meth-
ods that can be found in the state of the art, except for those requir-
ing measurement level entries because the base classifiers used do
not provide them.

Finally, in Section 4 we present a number of situations or sce-
narios where combination is shown as a promising option, capable



Table 2
Summary of corpora used. In this table we show several characteristics of the corpora
used in our experiments with POS tagging.

CORPUS Language Tags TRAIN TEST

Sentences Words Sentences Words

Brown ENG 83 14,101 1,048,112 1566 113,080
CoNLL’00 ENG 34 8936 211,727 2012 47,377
CoNLL’02 DUT 13 15,806 202,931 2895 37,761
CoNLL’07 SPA 15 2949 75,822 563 19,206

EUS 23 2595 40,032 580 10,096
Floresta POR 24 8340 195,538 926 17,113
Susanne ENG 131 5754 141,140 830 15,482
Talp SPA 11 3492 91,400 389 9071
Treebank ENG 37 25,117 766,463 1513 46,461
of providing better or more robust final classification systems. In
some of these cases the possibility to combine usually goes unno-
ticed because of an apparent lack of diversity. Thus we have exper-
imented with different corpora sizes, altering the quality of the
classifiers or exploiting heterogeneous information.

2.2. Base classifiers

We have selected some tools that were designed to solve NLP
sequence tagging tasks and meet the essential requirements for
implementing the combination. These requirements are the diver-
sity to provide different perspectives on the problem, accuracy to
be useful for the combination set and efficiency to be applied with-
out excessively penalizing runtime. The following briefly explains
the theory in which they are based.

2.2.1. TnT
The Trigrams’n’Tags [29] (TnT)2 classifier is a statistic tagger

developed by Thorsten Brants for the POS tagging task. This is a very
efficient tagger easily trainable for any language, tagset or domain.
According to the creator it is not optimized for any particular lan-
guage, but to be trained by a great variety of corpora and to achieve
great execution speeds. It is based on second order Markov models
using the Viterbi algorithm and has a variety of methods to deal with
the unknown words and smoothing problems.

2.2.2. TreeTagger
TreeTagger [30] (TT) is a probabilistic tagger also focused on the

task of POS tagging developed by Helmut Schmid, from the Univer-
sity of Stuttgart. It differs from TnT and classifiers based on n-
grams in general by the use of binary decision trees to find the
probabilities of different possible sequences of labels (transition
probabilities). The aim is to avoid problems in these methods for
estimating small probabilities accurately through a limited num-
ber of training data. The probability of each label is obtained by fol-
lowing the corresponding path through the tree until you find a
leaf. The tool displays by default only the label proposed in each
case, which is obviously the one with the maximum likelihood.

2.2.3. MBT
Memory Based Tagger [31] (MBT)3 is a POS tagger developed by

ILK and CNTS groups of the Dutch Universities of Tilburg and An-
twerp respectively. It makes use of memory-based learning, which
is an adaptation of the nearest neighbors algorithm (k-NN) used in
pattern classification. To make use of MBT it is necessary to previ-
ously install the TiMBL software, since MBT is an extension of the
functionality offered by TiMBL. The tag of a word in a particular con-
text is extrapolated from the similar cases stored in memory. This
approach is based on the assumption that reasoning is based on
the direct reuse of past experiences rather than the application of in-
duced knowledge, as stated for example by decision trees.

2.2.4. FV
Our contribution to the list of base classifiers used is the imple-

mentation of a classifier based on the generation of feature vectors
and their subsequent classification by support vector machines
(SVMs). This tagger called FV provides a variant in terms of theo-
retical foundations that underlie the different classifiers as well
as being devoid of any optimization exclusively linked to the POS
tagging task. This introduces an additional distinctive characteris-
tic that increases the diversity, which is a major factor in the appli-
cation of combination methods. FV has delegated the application of
2 http://www.coli.uni-sb.de/�thorsten/tnt.
3 http://ilk.uvt.nl/mbt/.
SVM to SVMlight[32]4 software, which implements the support vector
machines in C. The included features, listed below, are the most
commonly used in the literature.

� Lexical features: Regular expressions are used to determine if the
word has some type of lexical characteristics or follow certain
patterns. ‘‘Begins with capital letter’’ or ‘‘contains numbers’’
are examples of these patterns we look for.
� N-grams: Unigram, bigram and/or trigrams that form the con-

text of a particular word.
� Prefixes and suffixes: Prefixes and suffixes of size 1, 2, and 3.
� Word length: Feature that reflects the size, in number of charac-

ters of a word.
� End of sentence: Feature that includes the term the sentence

ends with, usually a period or question mark.

To complete the vector we use a sliding window scheme of a
configurable size. The parameters that can be specified are:

� WINDOW: Sliding window size.
� FEATURES: List of features to consider.
� LEXFEAT: Filename with regular expressions associated with

the lexical features.
� RS: Threshold used to discard a feature when applying the ran-

dom subspace method to generate random feature subsets.

3. Applying combination to POS tagging

Among all the tasks related to the sequential tagging of texts,
we selected POS tagging mainly due to the availability of resources
and the good results that the base classifiers provide. This allows
us to test the combination methods in a high demanding scenario
because of the little margin for improvement left by these good ini-
tial results. However, we have also tested other tasks that will be
discussed later to see if they confirm the results of this section.

3.1. Corpora

First of all we will show the corpora used in the experimenta-
tion phase, indicating its origin and a brief description of its con-
tents in each case. In Table 2 a summary with the number of
sentences and words they contain can be seen, as well as the tag-
sets used. These tagsets may not coincide with the original ones
due to small changes that may have been made because of various
reasons: correction of errors in the corpus, to avoid incompatibili-
ties with the implementation of the classifiers, to increase under-
standability, etc. In cases where there was only one dataset
available, a 10% of the examples were extracted to be used as the
4 http://www.cs.cornell.edu/People/tj/svm_light/.

http://www.coli.uni-sb.de/~thorsten/tnt
http://www.coli.uni-sb.de/~thorsten/tnt
http://ilk.uvt.nl/mbt/
http://www.cs.cornell.edu/People/tj/svm_light/


test corpus leaving the rest for training. We split sentences into a
word per line when needed and when a tag can be linked to a
group of words we use the IOB format. Therefore, if the tag is X
we write ‘B-X’ for the first word of the group, ‘I-X’ for the rest of
the words of the group (if any) and ‘O’ for those words that are
out of this group or any other group.

� Brown: The Brown5 corpus is defined as:
Table 3
Individual base classifier results. The percentage of accuracy obtained by the four base
classifiers is shown for every corpus. We have highlighted in italics the best result for
each corpus.

CORPUS FV MBT TnT TT
A Standard Corpus of Present-Day Edited American English, for
use with Digital Computers.

It was developed at the Department of Linguistics in the Brown
University by Francis and Kucera in 1964, although it has been re-
vised and extended several times. In addition to transforming the
content to the IOB format with a word per line for implementation
reasons, we joined all the sections that compose the corpus and
slightly simplified the original tagset.

� CoNLL 2000: This is the corpus used in the yearly CoNLL meet-
ing held in Lisbon in year 2000,6 dedicated to the text chunking
task, which consists of dividing a text in syntactically correlated
parts of words. The original data is formed by three columns sep-
arated by spaces, each word being represented by a line from the
corpus. The first column contains the word, the second is the POS
tag and the third is the corresponding chunking tag. The existence
of the POS column allows us to use this corpus for the POS tagging
task ignoring the chunking column. However, we also experi-
mented with a particular case of combination, which tries to
exploit the possibility of having this heterogeneous information.
� CoNLL 2002: The CoNLL edition of 20027 was focused on the

Named Entity Recognition (NER) task and provided a corpus in
Spanish and another one in Dutch. In the latter there is a column
with the POS tag, so it offers the possibility of using this corpus
for the POS task, not only for the entity recognition. The data
comes from four editions of the Belgian newspaper ‘‘De Morgen’’
of 2000 and the tagging was carried out by members of the Uni-
versity of Antwerp.
� CoNLL 2007: In its 2007 edition, the CoNLL8 shared task was

dependency parsing. For this purpose several corpora were used
and a subset of them were released under the terms of the Crea-
tive Commons license. In this case we have only used the infor-
mation regarding the POS tagging in Spanish and Euskera.
� Floresta: The Floresta project9 created a syntactically analyzed

corpus in Portuguese that includes the POS tags associated with
the text. These are the tags we have used to apply this corpus
for the POS tagging task.
� Susanne: The Susanne corpus10 was created at the University of

Sussex by the team of Geoffrey Sampson. It is based on 64 of the
500 texts of the Brown corpus and has a very extensive tagset. In
addition to transforming the text format to a word per line, a
slight simplification of the huge initial tagset has been carried
out for implementation reasons.
� CLiC-TALP: The CLiC-TALP11 is a Spanish corpus with one hun-

dred thousand words morphologically analyzed and manually
disambiguated. It was developed by the Servei de Tecnologia
Lingüística (STeL), which belongs to the Faculty of Philology in
the University of Barcelona.
5 http://www.hit.uib.no/icame/brown/bcm.html.
6 http://www.cnts.ua.ac.be/conll2000.
7 http://www.cnts.ua.ac.be/conll2002.
8 http://nextens.uvt.nl/depparse-wiki/SharedTaskWebsite.
9 http://www.linguateca.pt/Floresta/.

10 http://www.grsampson.net/Resources.html.
11 http://clic.fil.ub.es/demos/.
� Penn Treebank: Finally, the Penn Treebank is available through
the Linguistic Data Consortium at the University of Pennsylva-
nia and it consists of one million words from material extracted
from the Wall Street Journal in 1989. Considering the parsing
corpora, they are divided into two large groups: those based
on the tagging of different syntactic categories and the ones
focused on dependency structures. The Penn Treebank is one
of the most popular corpora that belong to the first group.

3.2. Baseline

In order to know the starting point for the different combina-
tion methods behind these experiments, the base classifiers have
been executed independently using the default parameters,
obtaining the results shown in Table 3.

As it can be seen, TnT obtained in most cases the best result,
which should result in a bigger influence when considering the dif-
ferent tags proposed by the classifiers during the combination pro-
cess. It is also important that the rest of the classifiers do not
always hold the same order in respect to the best results obtained
and that the differences vary in significant quantities when we
change from one corpus to another.

3.3. Combination methods

Once the available corpora and base classifiers have been
shown, we now focus on the combination methods to be applied.
As occurred with the FV classifier, we decided to implement our-
selves the combination algorithms to avoid possible optimizations
that harm the comparison. Our goal was the highest correspon-
dence between the results and the potential of each original algo-
rithm. This also allows us to obtain a high level of consistency and
flexibility that facilitates the creation of more complex meta-learn-
ing combination schemes. Below is a brief description of each
method. In the results table we will find the improvements
achieved in relation to the best result obtained by a base classifier,
which will be considered the baseline.

3.3.1. Voting
Voting methods relate the concept of ‘elections’ to the problem

of classification, ‘voters’ to the classifiers involved and the ‘votes’ to
the tags proposed by each of them. This allows to apply the elec-
tion methods found in the Social Choice Theory [33], whose goal
is the study of collective decision making according to individual
preferences.

As representatives of the different existing voting methods we
have implemented the two most popular versions of this type of
algorithms, namely the plurality voting and the weighted voting
(see Fig. 2). It is important to notice that other variants such as the
simple majority or unanimity require the reject option to be al-
lowed. This means it must be possible not to choose any candidate,
Brown 96.18 95.82 96.55 95.64
Conll00Pos 96.41 96.80 97.32 96.41
Conll02nedPos 95.01 95.79 96.16 88.53
Conll07esp 95.35 95.01 95.98 95.44
Conll07eus 91.27 90.59 93.73 94.13
Floresta 96.52 95.81 97.02 96.66
Susanne 92.26 91.16 93.61 91.27
Talp 94.59 94.80 95.82 95.62
TreebankWSJ 96.28 95.67 96.21 95.52

http://www.hit.uib.no/icame/brown/bcm.html
http://www.cnts.ua.ac.be/conll2000
http://www.cnts.ua.ac.be/conll2002
http://nextens.uvt.nl/depparse-wiki/SharedTaskWebsite
http://www.linguateca.pt/Floresta/
http://www.grsampson.net/Resources.html
http://clic.fil.ub.es/demos/


something that is not always feasible. To estimate the weights asso-
ciated with the different participants in the weighted voting scheme,
the hold-out method has been chosen. This method divides the
training corpus to use, one half for training and the other for testing,
considering the average of the two accuracies as the final estimation.

If we combine the four classifiers using the two variants of voting
for all different corpora, the results shown in the two first columns of
Table 4 are obtained. They show a better performance of the simple
method (VT) versus the weighted (VTw). This is because the number
of classifiers is not very large, which causes the best of them to ob-
tain a privileged position (higher ratio) and makes it very difficult for
the rest to collect enough votes to change the result. In many cases, it
only manages to match the result of the best base classifier without
any improvement, but this should not be considered as a defect as it
can be very useful in certain situations. For example, when we do not
know which of our classifiers is the best and in ‘‘conservative’’ situ-
ations where we want to make sure not to worsen the outcome we
would obtain using the best base classifier available.
3.3.2. Bayes
Methods based on Bayes’ Theorem make use of the rule that

shows how to obtain the conditional probability of an event A gi-
ven B in terms of the conditional probability of the event B given
A and the prior probability of A. This type of classifiers have been
tested in many papers with very good results, often better than
those obtained by more complex algorithms ([34]).

The implementation carried out is a direct application of this rule
as shown in Fig. 3. We calculate the probability that given a set of
possible tags (s1, . . . ,sk) and a number of observations r = r1, . . . , rN

representing the proposed tags by the N classifiers, the real tag is
sj, with j = 1, . . . , k. Adapting the original equation we can calculate
the support for tag sj as described in Eq. (1). In the practical imple-
mentation we introduce the concept of confusion matrix of a classi-
fier cp (Mp), which is a k � k matrix where Mp[m, n] shows the
number of words of the training corpus T whose correct tag was
sn, and were assigned by cp the tag sm. By Z we denote the number
of tags in T and by Zj the number of sj tags in T. Thus we take Zj/Z
as an estimate of P(sj) and Mp[j, rp]/Zj as an estimate of P(rpjsj).

support½j� ¼ PðsjÞ
YN

p¼1

PðrpjsjÞ ð1Þ

The application of this method with the four base classifiers and
the different corpora yields the results shown in Table 4. Once
again, there is a significant improvement in all corpora, so we con-
sider this method as an easy to implement option, but very profit-
able in terms of the results you get.
Fig. 2. Voting combination algorithm.
3.3.3. Behavior knowledge space
Methods based on memorization try to recall the behavior dem-

onstrated by the classifiers with the training examples and then
make decisions about the new examples based on the past. As a
representative of this type of algorithms, the method Behavior
Knowledge Space [35] has been implemented following the guide-
lines shown in Fig. 4.

Its objective is to estimate the probability P(sjjr) for each tag sj 2
(s1, . . . , sk) and every possible combination of results r 2XN of the
base classifiers. In practice the classifiers are executed with all the
examples T[i] of the training corpus T, generating the vector
x = [x1, . . . , xN] for each one of them. Those vectors are stored in
an indexed table together with the number of times those vectors
appeared associated with every possible tag. To classify a new ele-
ment, we calculate the vector x for that element and access the in-
dexed table recovering the most used tag among the elements that
generated the same vector. The ties and empty cells are problems
usually solved by selecting at random a class or using a voting
scheme to select the final tag. Each table entry BKS(x) has three
fields:

� n(x)(k): Number of times where the combination of classifier
results x is associated with tag k.
� S(x): Total number of occurrences of that combination x in the

training data.
� R(x): Most representative tag associated with combination x.

Using this information the confidence of each possible tag is Be-
lief(sj) = n(x)(j)/S(x). Finally the result will be Rx if S(x) > 0 and
Belief(Rx) P a. In other case the algorithm should abstain as it could
not surpass the given confidence threshold a.

Once more this method was run with the base classifiers lead-
ing to the values shown in Table 4. The improvements are again
widespread in all corpora and even larger than those obtained by
previous methods, reaching a maximum of 1.36 of accuracy. This
maximum value was obtained using the Susanne corpus, which
is characterized by its difficulty due to its big tagset containing
more than one hundred possible tags.

3.3.4. Bagging
A method that stands among those that generate variability in

the data is bagging [36]. It combines different versions of the ori-
ginal corpus created by sampling with replacement. We have
slightly modified the bagging algorithm to make it able to com-
bine several base classifiers as the other combination methods
do (see Fig. 5). Therefore, what our version does is to generate
variability creating a different ‘bag’ in each iteration as usual
and making all the base classifiers share it providing more than
one tag to combine with the rest of iterations. In this case we have
experimented with TnT, TreeTagger and MBT, excluding FV for
being the classifier that needs more time, which gains importance
in an iterative process like bagging as this greatly harms the effi-
ciency of the system. The execution scheme is shown in Fig. 6,
where we can see how the different samples of the training cor-
pus T are used by the N classifiers to create N tagged versions of
the test corpus t.

In another experiment that we call BAGw, the variability is not
generated using the corpus. What is done in this case is the sam-
pling of the database created with all the outputs provided by
the base classifiers using the Weka [37] tool. The execution scheme
coincides with that of stacking, using two learning levels as will be
discussed later and selecting bagging as the second level classifier.
In fact, it is a cascading scheme (a method that will also be seen la-
ter), because it starts running the base classifiers to generate the
database and then Weka uses one of its classification algorithms
and applies bagging to it.



Table 4
Combination results. The accuracy percentage improvement obtained by every combination method is shown for each corpus. This improvement is always in relation to the best
result achieved by the base classifiers. The methods are voting (VT), weighted voting (VTw), Bayes (BAY), behavior knowledge space (BKS), bagging (BAG), bagging using Weka
(BAGw), bagging with stacking instead of voting (BAG-SG), and stacking (SG). The last two columns calculate the average mean of the percentage accuracies of the base classifiers
(AVG1) and combination methods (AVG2) for each corpus.

CORPUS VT VTw BAY BKS BAG BAGw BAG-SG SG AVG1 AVG2

Brown 0.49 0.24 0.39 0.63 0.22 0.32 0.25 0.64 96.05 96.95
Conll00Pos 0.45 0.00 0.37 0.65 0.17 0.55 0.28 0.71 96.74 97.72
Conll02nedPos 0.68 0.00 0.52 0.67 0.24 0.51 0.37 0.66 93.49 96.27
Conll07espPos 0.98 0.00 0.88 1.10 0.15 0.90 0.64 1.34 95.45 96.73
Conll07eusPos 0.16 0.00 0.43 0.51 0.25 0.22 0.22 0.49 92.43 94.42
Floresta 0.63 0.00 0.55 0.72 0.26 0.36 0.23 0.78 96.50 97.46
Susanne 0.71 0.00 0.67 1.36 0.25 0.81 0.30 1.26 92.08 94.28
Talp 0.76 0.33 0.96 1.08 0.49 0.75 0.62 1.10 95.21 96.58
TreebankwsjPos 0.45 0.12 0.27 0.47 0.14 0.35 0.22 0.59 95.92 96.58
Mean 0.59 0.08 0.56 0.80 0.24 0.53 0.35 0.84 94.92 96.36

Fig. 3. Bayes combination algorithm.

Fig. 4. Behavior knowledge space combination algorithm.

Fig. 5. Bagging combination algorithm.

Fig. 6. Execution scheme of ‘‘multiple’’ Bagging (BAG). We generate different
versions of the training corpus T using sampling with replacement. These versions
(T1, . . . , TM) are used by the base classifiers (c1, . . . , cN) to classify the words in the
test corpus t.
The results obtained with 30 iterations (see Table 4), show bet-
ter results with BAGw than with BAG. The reason may be that sam-
pling the corpus at the sentence level may not create enough
variability as the database sampling does. The database is made
out of vectors representing words, but independently including
their context so the learning method can merge different sentences
treating each example in isolation. In the BAG scheme we had to
keep the sentences as in the original corpus because the context
is also important to decide the tag for a particular word. The
improvements shown in the table are calculated as always in rela-
tion to the best base classifier. The difference between bagging and
the other methods is that FV has been excluded as we said before,
so the baseline in this case is the best among TnT, MBT and
TreeTagger.

Bagging has been implemented not as an independent method,
but as a modifier of the classifiers involved. This option will create
different versions of the taggers that can be used as input for any
other combination method. In the original bagging algorithm we
are supposed to use simple voting, but in our implementation this
is a free choice, making it possible to use any other combination
method. If we apply stacking rather than voting we get the results
shown in Table 4 under the ‘BAG-SG’ column, which are slightly
better than the commonly applied method.
3.3.5. Stacking
Stacking is the most popular combination method based on

meta-learning. It uses the results of the base classifiers to generate
a new database on which to apply a second level learning algo-
rithm. The implementation that has been carried out corresponds



to the original Stacked Generalization method introduced by Wol-
pert [38] (see Fig. 7). This method allows you to maximize the
exploitation of the information contained in the training corpus.
The different participant classifiers are trained and executed on
different partitions of the training corpus to form the training data-
base composed by a set of tag vectors, and finally on the test corpus
to generate the test database. Once trained, the second level learn-
ing algorithm ultimately determines the tag to be selected among
those proposed by the base classifiers in the test database. In our
practical implementation we have generated the databases in the
ARFF format and used the Weka tool for the second level learning.
Fig. 8 shows a summary of this procedure.

The values obtained combining the four base classifiers are
shown in Table 4. The results provided by this method are very
good. The second level of classification seems to be capable of rec-
ognizing and successfully classifying patterns in which the correct
tag is in inferiority.
3.3.6. Feature selection
Another point in the classification process where variability can

be generated is when the feature vectors that represent the exam-
ples in the database are generated. We have carried out two types
of experiments in order to cover this kind of methods.

The first approach involves the implementation of the Random
Subspace Method. It has not been implemented as a separate
method, but as a modifier applicable to the FV classifier, selecting
subsets of features randomly. We have generated thirty versions of
the FV classifier by selecting the features to be considered in each
version with a probability of 50% each one. The results obtained by
Fig. 7. Stacking combination algorithm.

Fig. 8. Stacked Generalization scheme. The training corpus T is divided in K parts (T1,
partitions. This leads to the training database while the test database is obtained using
this method do not improve in any case those obtained using the
FV classifier with all the features, loosing 0.39% points of accuracy
on average. The explanation resides, from our point of view, in the
correlation between different types of features that makes remov-
ing random elements of different groups reduce the likelihood of
extracting knowledge from data by combination methods. Also
the big number of features involved may require a big number of
subsets to be considered making the system very inefficient. This
belief led us to the second way of experimenting with this type
of combination.

The second approach is to make natural groupings of the fea-
tures used by the FV classifier and then proceed to their combina-
tion. We applied the algorithm shown in Fig. 9 to the following
versions of the FV classifier:

� FV: Complete version that makes use of all the possible features.
� FVb: Includes all the features except the lexical features.
� FVc: Equivalent to the complete version leaving out the bigrams

and trigrams although including the unigrams.
� FVd: Equivalent to the complete version, but removing the

information of prefixes an suffixes.

Table 5 shows the results of the four versions of the FV classifier
and also the improvements achieved by two types of combination,
namely C–A and C–B. The only difference between them is that C–B
combines the four versions including the complete version while
C–A only combines FVb, FVc and FVd. For the combination we have
used the stacking method because of its good performance and
robustness. It is important to note that we have obtained benefits
using combination with only one base classifier.
3.3.7. Cascading
This method has been implemented in a different manner be-

cause it is implicit in the implementation scheme that has been fol-
lowed for the entire system. We have developed the whole
framework through standardized interfaces that allow chaining
combiners in different levels. This makes it possible to use the out-
put of a combination method as input to another as if it were a base
classifier.

To test this option different schemes have been executed using
three levels as explained in Fig. 11. The results of the four base clas-
sifiers are used as inputs for several combination methods and the
outputs of these are given to a different combination method.
Fig. 10 shows the scheme with stacking as the second level combi-
nation method (C-SG in Table 6). The other experiments follow the
. . . , TK), each one being tagged by the classifiers once trained with the remaining
the entire corpus T for tagging the test corpus t.



Fig. 9. Feature selection combination algorithm.

Table 5
Results obtained combining different versions of FV. First, the FV base classifier
accuracy results are shown for all its versions. These versions are: complete (FV),
without lexical features (FVb), without bigrams and trigrams (FVc) and without
prefixes an suffixes (FVd). Finally, the last two columns show the accuracy
improvements obtained combining all versions (C–B) or just the reduced ones (C–A).

CORPUS FV FVb FVc FVd C–A C–B

Brown 96.18 95.69 95.89 94.35 0.35 0.36
Conll00Pos 96.41 94.70 96.17 93.87 0.23 0.30
Conll02nedPos 95.01 94.84 94.60 93.11 0.49 0.49
Conll07espPos 95.35 94.82 95.17 91.75 0.03 0.05
Conll07eusPos 91.27 91.41 91.17 84.78 0.12 0.11
Floresta 96.52 95.35 96.27 93.95 0.09 0.11
Susanne 92.26 91.21 91.98 88.90 0.08 0.20
Talp 94.59 94.61 94.42 90.62 0.11 0.20
TreebankwsjPos 96.28 94.70 96.07 95.00 0.19 0.19
Mean 94.87 94.15 94.64 91.81 0.18 0.22

FV TnT TT MBT 

BAY BKS VT 

SG 

Fig. 10. Cascading execution scheme. There is a two layer combination where
different methods combine the base classifier outputs, and their own outputs are
combined by a final second level method, which is stacking (SG) in this figure.

Fig. 11. Cascading combination algorithm.

Table 6
Cascading results. The accuracy improvement obtained by the cascading scheme for
each corpus is shown. Each column represents the experiments with a different
combination method in the second level: Bayes (C-BAY), behavior knowledge space
(C-BKS), stacking (C-SG) and voting (C-VT). The final two columns show the average
accuracy of the base classifiers (AVG1) and the combination methods (AVG2).

CORPUS C-BAY C-BKS C-SG C-VT AVG1 AVG2

Brown 0.69 0.66 0.68 0.67 96.05 97.23
Conll00Pos 0.67 0.67 0.66 0.66 96.74 97.99
Conll02nedPos 0.67 0.66 0.72 0.67 93.49 95.89
Conll02nedPosb 0.59 0.59 0.64 0.56 93.87 96.76
Conll07espPos 1.23 1.23 1.18 1.18 95.45 97.19
Conll07eusPos 0.52 0.52 0.50 0.59 92.43 94.66
Floresta 0.77 0.81 0.73 0.71 96.50 97.78
Susanne 1.33 1.35 1.15 1.52 92.08 94.95
Talp 1.14 1.08 1.12 1.18 95.21 96.95
TreebankwsjPos 0.57 0.56 0.49 0.55 95.92 96.82
Mean 0.84 0.84 0.80 0.86 94.87 96.60

Table 7
Results obtained when the best classifier is removed. The accuracy improvements
achieved by the combination methods in relation to the best classifier that remains in
the system are shown for each corpus. Methods include Bayes (BAY), behavior
knowledge space (BKS), stacking (SG), and voting (VT). The last two columns calculate
the average accuracies of the base classifiers (AVG1) and combination methods
(AVG2) for each corpus.

CORPUS BAY BKS SG VT AVG1 AVG2

Brown 0.64 0.86 0.94 0.66 95.88 96.96
Conll00Pos 0.84 0.98 1.11 0.91 96.54 97.76
Conll02nedPos 0.99 1.04 1.00 0.99 92.71 96.39
Conll07espPos 1.51 1.43 1.51 1.22 95.27 96.86
same pattern changing the method that is placed in the second
level.

The results show that improvements are very significant for all
schemes that have been tested, exceeding even the best values ob-
tained so far. We also have to highlight the robustness of this sys-
tem that keeps very good levels of accuracy regardless of the
classifier that occupies the second level.
Conll07eusPos 0.28 0.64 0.68 0.29 92.82 94.20
Floresta 0.86 0.98 0.96 0.82 96.33 97.57
Susanne 1.35 2.19 1.95 1.24 91.56 93.94
Talp 0.93 1.09 1.11 0.85 95.00 96.62
TreebankwsjPos 0.07 0.15 0.31 0.08 95.80 96.36
Mean 0.83 1.04 1.06 0.78 94.66 96.29
4. Additional experiments with POS tagging

After successfully applying different kinds of combination meth-
ods, we wanted to go into a deeper analysis designing some addi-
tional experiments. Our objective was to test them with new
scenarios and schemes that may be useful in practice, answering
interesting questions about what would happen under certain cir-
cumstances. From now on we will employ some of the methods that
have performed better on the tests conducted in the previous
section.

4.1. Eliminating the best

What happens if you remove the best base classifier from the
combination scheme? So far we have conducted experiments with
the four base classifiers and when we had to pick one of them usu-
ally TnT was chosen as it is the one with the best overall results.
Now we will do the opposite, removing the best classifier from
the system to see if combination continues providing improve-
ments over the individual results of the remaining classifiers. After
removing the best participant for each corpus the results shown in
Table 7 are obtained. We find out that the improvements are even
greater than with all the base classifiers.

Therefore, combination methods can further help when we do
not have the best classifiers for the task we are working on. In fact,
in Table 8 we see that the combination of the remaining classifiers
almost always significantly improves the results given by the best
performing classifier available for each corpus. This suggests that it
is better to combine several average classifiers than to run only
one, even when it is clearly better than the rest.

4.2. The corpus quality

How does the quality of the corpus affect the combination
results? To answer this question, we created three additional



Table 8
Comparing the best classifier and the combination of the rest. The accuracy
improvements achieved by the combination methods in relation to the best classifier
available are shown for each corpus. Methods include Bayes (BAY), behavior
knowledge space (BKS), stacking (SG), and voting (VT). The best classifier, whose
accuracy is shown under the ‘BEST-BC’ column, did not participate in the combination
schemes it is being compared with.

CORPUS BEST-BC BAY BKS SG VT

Brown 96.55 0.27 0.49 0.57 0.29
Conll00Pos 97.32 0.32 0.46 0.59 0.39
Conll02nedPos 95.81 0.56 0.61 0.57 0.56
Conll07espPos 95.98 0.97 0.89 0.97 0.68
Conll07eusPos 94.13 �0.12 0.24 0.28 �0.11
Floresta 97.02 0.50 0.62 0.60 0.46
Susanne 93.61 0.00 0.84 0.60 �0.11
Talp 95.82 0.73 0.89 0.91 0.65
TreebankwsjPos 96.28 0.00 0.08 0.24 0.01
Mean 95.84 0.36 0.57 0.59 0.31

Table 9
Results with reduced versions of the Penn Treebank corpus. The accuracy improve-
ments achieved by the combination methods in relation to the best classifier are
shown for each corpus. Methods include Bayes (BAY), behavior knowledge space
(BKS), stacking (SG), voting (VT), and stacking without the FV classifier (SG00). The last
two columns calculate the average accuracies of the base classifiers (AVG1) and
combination methods (AVG2) for each corpus.

CORPUS BAY BKS SG VT SG00 AVG1 AVG2

TreebankwsjPos 0.27 0.47 0.59 0.45 0.31 95.92 96.75
TreebankwsjPos200k 0.33 0.57 0.56 0.47 0.84 94.83 95.97
TreebankwsjPos100k 0.34 0.49 0.65 0.41 1.06 93.73 95.26
TreebankwsjPos50k 0.25 0.22 0.73 0.36 1.22 92.42 94.20
Mean 0.30 0.44 0.63 0.42 0.86 94.22 95.55
versions the Penn Treebank corpus reducing the number of words
it contains. Thus we have the following corpora:

� treebankwsjPos: complete corpus with 766,463 words.
� treebankwsjPos200k: reduced version with 198,550 words.
� treebankwsjPos100k: reduced version with 95,924 words.
� treebankwsjPos50k: reduced version with 47,739 words.

After running different combination methods, results in Table 9
are obtained. Even in the shorter version we are still getting
improvements over the base classifiers, although they provide
many more errors to the system due to the lack of training data.
It is also interesting how stacking can get greater improvements
with the smaller corpus than the rest. This suggests that while base
classifiers suffer from the low quality data, the results of combina-
tion and especially stacking do not decrease in the same amount,
being more robust. We also show the stacking results without
the best classifier (SG00), which in this case is FV, achieving greater
improvements as expected after the previous section.
Table 10
Results of stacking using lexical information. Accuracy improvements of the stacking
scheme are shown with and without the lexical information being part of the learning
database.

CORPUS SG SG-lex

Brown 0.64 0.72
Conll00Pos 0.71 0.77
Conll02nedPos 0.66 0.70
Conll07espPos 1.34 1.48
Conll07eusPos 0.49 0.51
Floresta 0.78 0.79
Susanne 1.26 1.45
Talp 1.10 1.10
TreebankwsjPos 0.59 0.67
Mean 0.84 0.91
4.3. Heterogeneous information

In this section we will try to exploit a stacking ability, which is
to integrate heterogeneous information in the learning process
extracting knowledge from different sources. This phase of testing
consists of several schemes that generate the stacking database
with the outputs of the base classifiers along with other values of
different types.

A first approach would be to add lexical information about the
words in the corpus. We used the following regular expressions to
detect lexical features:

� Lowercase: ^[a–z]+$
� 1st-Uppercase: ^[A–Z].*$
� Uppercase: ^[A–Z]+$
� Abbreviation: ^[A–Z].*n.$
� Acronym: ^[A–Z]n. ([A–Z]n.)+$
� Number: ^[0–9]+$ ^[0–9]+[,.][0–9]+$
� Range: ^[0–9]+"-"[0–9]+$
� Quantity: ^[0–9]+[,.]?[0–9]+[%$]$
� 4-Numbers: ^[0–9][0–9][0–9][0–9]$
� Hour: ^[0–9][0–9]:[0–9][0–9]$
� Punctuation: ^[n-.,;n!?"/()n[n]{}]+$

The results of stacking with and without lexical information are
shown in Table 10. It can be verified that these results, which were
initially good, are indeed better with the new information entered.

Another approach is to add tags to the database obtained using
different corpora, with equal or even different tagsets that may
come from other tasks. To perform these experiments we imple-
mented the possibility of specifying a list of classifiers along with
the corpus with whom we wish them to be trained before being
executed on the target corpus. Thus, in addition to receive the
usual tags obtained by the current training corpus, we also receive
the tags provided by the classifiers using other corpora, where
these classifiers may be the same or different. In Fig. 12 we see
the execution scheme where T is the training corpus, t the test cor-
pus and ci the base classifiers used, while the Tj are the training cor-
pora that provide the heterogeneous information. The additional
Fig. 12. Stacking using heterogeneous information. In addition to the N base
classifier opinions, obtained using the original training corpus T, we make use of M
other training resources that can give us additional information. These can be
resources of related tasks or maybe the same task, but using different although
similar languages for example. Any information that can help the learning
algorithm find different patterns can be helpful improving the final results.



Table 11
Results of heterogeneous combination. First, only one base classifier is used (TnT) while different heterogeneous sources are introducing additional information to the system. In
‘SG-H1’ we include more corpus of the same task, although with different tagsets and sizes. In ‘SG-H2’ we include even more information adding more corpora from other tasks.
Second, previous schemes are repeated using three base classifiers (TnT, TreeTagger and MBT) instead of just TnT (‘SGm-H1’ and ‘SGm-H2’). All three base classifiers are executed
with every corpus. Finally, we repeat the experiments once more, but adding lexical information to the learning database. The results obtained are shown under the ‘SGmL-H1’
and ‘SGmL-H2’ columns.

Baseline 1 Classifier Baseline 3 Classifiers Adding lexical info.

CORPUS (TnT) SG-H1 SG-H2 (SG) SGm-H1 SGmH2 SGmL-H1 SGmL-H2

Brown 96.55 0.21 0.25 96.89 0.07 0.11 0.10 0.13
Conll00Pos 97.32 0.39 0.42 97.81 0.02 0.02 0.12 0.05
TreebankwsjPos 96.21 0.35 0.43 96.52 0.14 0.13 0.17 0.18

TreebankwsjPos200k 95.48 0.70 0.70 95.74 0.47 0.59 0.62 0.62
TreebankwsjPos100k 94.82 1.11 1.16 95.14 0.79 0.89 0.79 0.82
TreebankwsjPos50k 93.88 1.79 1.80 94.13 1.44 1.49 1.63 1.63

Mean 95.71 0.76 0.79 96.04 0.49 0.54 0.57 0.57
corpora generate the classifiers that, once executed with the t cor-
pus, provide the additional tags.

Following this idea we started using the TnT classifier and car-
rying out the next experiments:

� SG-H1: Using the Brown, CoNLL 2000 and Penn Treebank cor-
pora, taking in each case one as the target corpus and the other
two as heterogeneous information sources.
� SG-H2: The following sources are added to the H1 scheme:

– The Susanne corpus.
– The BioCreAtIvE12 (Critical Assessment of Information Extrac-

tion Systems in Biology) corpus that comes from the National
Library of Medicine of the United States and contains the POS
tag among others.

– The CoNLL 2000 Chunking corpus.
– A portion of the IE-ER (Information Extraction: Entity Recog-

nition Evaluation)13 NER corpus from the NIST 1999. In par-
ticular we have worked with the data made available to
researchers for testing and developing their systems.

Results appear in Table 11, which also shows the results of TnT
as baseline.

After confirming that adding heterogeneous information was
beneficial we repeated the same experiments, but this time using
more base classifiers. We combined TnT, TreeTagger and MBT,
obtaining the results shown in Table 11 under the columns
‘SGm-H1’ and ‘SGm-H2’. This table also shows the improvements
obtained by stacking without adding the heterogeneous informa-
tion, which can be considered the baseline for these experiments.

Finally, we added the lexical information as explained earlier in
this section, leading to the ‘SGmL-H1’ and ‘SGmL-H2’ experiments
shown in Table 11.

The results show that stacking can take advantage of the infor-
mation that we introduce in the database resulting in a noticeable
performance improvement. Furthermore, when we repeat the
same experiments on smaller versions of the Penn Treebank we
see the importance of this schemes, because the benefits are even
greater when the original corpus is small (see Table 11).

5. Applying combination to other NLP tasks

After verifying the usefulness of combination methods with the
POS tagging task, we now repeat some experiments with other
sequential tagging tasks such as NER, Bio-NER, and Chunking.
The objective is to confirm the ability to improve the individual
classifiers in other tasks. This also allows us to evaluate the meth-
12 http://www.mitre.org/public/biocreative/.
13 http://www.itl.nist.gov/iad/894.01/tests/i.e.-er/er_99/er_99.htm.
ods with problems for which the base classifiers were not opti-
mized (except for FV that has not been optimized for any
particular task). In addition to the recognition accuracy, the mea-
sure we use is the Fb=1 value (see Eq. (2)), as it takes into account
both precision and coverage while detecting words that are part
of an entity or a chunk. This is the most commonly used measure
in the literature for these tasks.

Fb¼1 ¼
ðb2 þ 1Þ � precision � recall

b2 � precisionþ recall
ð2Þ
5.1. Corpora

We begin as we did with the POS section with the description of
the corpora used, showing their main features in Table 12.

� Coling 2004: This corpus was created for the task evaluated in
the International Joint Workshop on Natural Language Process-
ing in Biomedicine and its Applications.14 Contains over 2000
MEDLINE abstracts extracted from the GENIA corpus of biomedi-
cal entities, which in turn is a product of the project of the same
name, related to the Information Mobility Project (CREST, JST)
and the Genome Information Science Project (MEXT). From the
GENIA corpus only five classes of entities were left, which are:
DNA, RNA, protein, cell_line and cell_type, tagged using the IOB
tagging format with one word per line.
� CoNLL 2000: As discussed in the POS tagging section, this cor-

pus is the one used in the CoNLL competition in its 2000 edition,
dedicated to the Chunking task. In this case, we use the Chunk-
ing tags column ignoring the POS tags.
� CoNLL 2002: The CoNLL 2002 corpus is a corpus developed for

the NER task in two languages, Spanish and Dutch. It consists
of two columns separated by a space, where the first contains
the words and the second the NER tag in IOB format. The enti-
ties considered are four: names of persons (PER), organizations
(ORG), locations (LOC) and ‘‘miscellaneous’’ (MISC). Data comes
from the Spanish news agency EFE on May 2000 and was tagged
by members of the Polytechnic University of Catalonia and the
University of Barcelona. The Dutch part consists of four editions
of the Belgian newspaper ‘‘De Morgen’’ of 2000 and tagging was
carried out by members of the University of Antwerp.

5.2. Applying combination methods

Table 13 shows the results obtained with some of the combina-
tion methods that have performed best for the POS task. Labels cor-
14 http://www.genisis.ch/�natlang/JNLPBA04/.

http://www.mitre.org/public/biocreative/
http://www.itl.nist.gov/iad/894.01/tests/i.e.-er/er_99/er_99.htm
http://www.genisis.ch/~natlang/JNLPBA04/
http://www.genisis.ch/~natlang/JNLPBA04/


CORPUS Language Task Tags TRAIN TEST

Sentences Words Sentences Words

Coling’04 ENG BIO 11 18,546 492,551 3856 101,039
CoNLL’00 ENG CHK 23 8936 211,727 2012 47,377
CoNLL’02 SPA NER 9 8323 264,715 1915 52,923

DUT NER 9 15,806 202,931 2895 37,761

Table 13
Combination results on NER, Bio-NER and Chunking. The accuracy and Fb=1 improvements for several combination methods are shown. The ‘AVG’ column calculates the average
results obtained by the base classifiers for each corpus. The following columns show the improvements in relation to the best base classifier. The combination methods are
stacking (SG), stacking using lexical features (SG-l), voting (VT), and four cascading schemes (C-x), each one with a different method x in the second layer (Bayes, behavior
Knowledge space, stacking or voting).

CORPUS AVG SG SG-l VT C-BAY C-BKS C-SG C-VT

Acc Fb=1 Acc Fb=1 Acc Fb=1 Acc Fb=1 Acc Fb=1 Acc Fb=1 Acc Fb=1 Acc Fb=1

Coling04 89.56 57.63 0.19 2.99 0.03 1.75 0.01 0.57 0.10 1.10 0.15 2.66 0.04 2.45 0.08 1.89
Conll00Chunk 90.51 84.12 0.71 1.24 0.84 1.40 0.00 0.00 0.55 0.89 0.70 1.27 0.47 0.88 0.55 0.94
Conll02esp 94.73 64.72 0.39 2.32 0.33 1.18 0.28 1.10 0.42 1.02 0.38 1.04 0.45 2.43 0.45 1.76
Conll02nedNer 95.96 60.82 0.28 4.03 0.27 4.37 0.28 2.72 0.35 4.00 0.36 3.92 0.24 2.40 0.36 4.21

Mean 92.69 66.82 0.39 2.65 0.37 2.18 0.14 1.10 0.36 1.75 0.40 2.22 0.30 2.04 0.36 2.20

Table 12
Summary of the NER and Chunking corpora used. In this table we show several characteristics of the corpora used in our experiments with other NLP 
tasks different from POS tagging.
respond to stacking (SG), stacking with lexical information (SG-l),
voting (VT) and different cascading schemes (C-x). The x of the lat-
ter is the method that occupies the second combination level:
Bayes (BAY), behavior knowledge space (BKS), stacking (SG) or vot-
ing (VT).

We found that improvements also occur in tasks very different
from POS tagging and for which the base classifiers were not opti-
mized. This is a situation that often arises in research, where the
availability of optimal tools and resources is not always guaranteed
and the combination methods should be seen as a good option to
consider. In these tasks, where the elements to classify are often
formed by more than one word, individual errors may have some
effect on the surrounding words. The difference between accuracy
and Fb=1 reflects the fact that one simple tag that is corrected can
make a set of words form a correctly classified chunk.

6. Conclusions

Like in many other fields, Natural Language Processing (NLP) re-
search deals with many problems that, due to their complexity, of-
ten are divided into separate tasks that once resolved provide a
portion of the information needed to achieve the ultimate goals.
These tasks are often considered classification problems, consisting
of assigning a category to a word, phrase, piece of text or an entire
document. As a result we have seen an extensive use of multiple
algorithms and classification methods that have been developed
in recent years. Progress in resolving these tasks has been made,
with very good results in some cases and not so successful in
others.

On the other hand, in the area of Machine Learning many
researchers have worked hard studying other methods that at-
tempt to exploit the various approaches taken by the classification
methods. These are algorithms that combine the categories pro-
posed by the classifiers in order to exploit the virtues of each one
of them. Among combination methods we find very popular cases
like the voting techniques, and others not so well known, but with
very convincing results as shown in published papers.

We have studied the combination methods from different
points of view, looking for distinct theoretical aspects and trying
to shed light on what we should consider when deciding to com-
bine classifiers in a particular situation. The main contributions
can be summarized as follows:

1. Bibliographical analysis: We have carried out an initial biblio-
graphical analysis, briefly explained in the first section, in which
we have tried to summarize the historical use of combination
methods in NLP. Analyzing a large number of papers that apply
combination methods to a NLP task, we found that while the use
of classification methods is varied, demonstrating the high level
of knowledge about the various alternatives, the use of combina-
tion methods is quite biased towards voting and stacking.

2. Comparative study: We have implemented a large number of
combination methods and conducted several experiments to
test their effectiveness solving the task of POS tagging. This is
a very well known task and also very demanding due to the
great results obtained by the base classifiers that are combined.
We have shown results that support the application of these
methods with significant improvements. Some of the experi-
ments were carried out even with only one base classifier, dem-
onstrating that diversity can be created in different manners
and combination can be applied in multiple situations. The
meta-learning performance was outstanding demonstrating
its robustness and flexibility. Both stacking and cascading have
obtained very good results in all scenarios. In addition to the
POS task, we made experiments with other tasks such as NER,
Chuncking, and even Bio-NER with very good results. Note that
90% of the 360 combination experiments carried out have
exceeded the values obtained by the base classifiers and in most
cases very significantly.

3. Additional experiments: We have completed the comparative
study with other experiments that focus on special situations
of interest. First we reduced the quality of the classifiers and
corpora involved in the combination process. This may be
important for those who find themselves with poor resources
and cannot afford the cost of tagging a larger corpus or con-
struct better classifiers. Second, we tried to take advantage of
one main feature of stacking, that is the ability of incorporating
heterogeneous information to the learning process. This allows
us to get the best out of all resources obtaining the highest
accuracy.



Therefore we believe that combination methods always give us
a great opportunity to improve existing systems. The development
of tools that take advantage of its virtues can boost the results for
classification tasks and by extension, for the NLP problems that are
based on them.

References

[1] L. Hansen, P. Salamon, Neural network ensembles, IEEE Transactions on
Pattern Analysis and Machine Intelligence 12 (10) (1990) 993–1001.

[2] T.G. Dietterich, Ensemble methods in machine learning, in: J. Kittler, F. Roli,
(Eds.), Multiple Classifier Systems, Lecture Notes in Computer Science, vol.
1857, 2000, pp. 1–15.

[3] Y. Freund, Y. Mansour, R. Schapire, Why averaging classifiers can protect
against overfitting, in: Proceedings of the Eighth International Workshop on
Artificial Intelligence and Statistics, 2001.

[4] L.I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms, Wiley-
Interscience, 2004.

[5] L. Xu, A. Krzyzak, C.Y. Suen, Methods of combining multiple classifiers and
their application to handwriting recognition, IEEE Transactions on Systems,
Man, and Cybernetics 22 (1992) 418–435.

[6] N. Belkin, J. Callan, The effect of multiple query representations on information
retrieval system performance, in: Proceedings of the Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval,
1993, pp. 339–346.

[7] R. Frederking, S. Nirenburg, Three heads are better than one, in: Proceedings of
the fourth Conference on Applied Natural Language Processing (ANLP-94),
1994, pp. 95–100.

[8] D. Hull, J. Pedersen, H. Schutze, Method combination for document filtering,
SIGIR Forum (ACM Special Interest Group on Information Retrieval) (1996)
279–288.

[9] J. Fiscus, A post-processing system to yield reduced word error rates: recognizer
output voting error reduction (rover), in: IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU-97), 1997, pp. 347–354.

[10] H. Halteren, J. Zavrel, W. Daelemans, Improving data driven wordclass tagging
by system combination, in: Proceedings of the 36th Annual Meeting of the
Association for Computational Linguistics and 17th International Conference
on Computational Linguistics, vol. 1, 1998, pp. 491–497.

[11] E. Brill, J. Wu, Classifier combination for improved lexical disambiguation, in:
Proceedings of the 17th International Conference on Computational
Linguistics, 1998, pp. 191–195.

[12] L. Marquez, H. Rodriguez, J. Carmona, J. Montolio, Improving pos tagging using
machine-learning techniques, in: Proceedings of the 1999 Faint SIGDAT
Conference on Empirical Methods in Natural Language Processing and Very
Large Corpora, 1999, pp. 53–62.

[13] H. Halteren, W. Daelemans, J. Zavrel, Improving accuracy in word class tagging
through the combination of machine learning systems, Computational
Linguistics 27 (2) (2001) 199–229.

[14] M. Kuta, M. Wrzeszcz, P. Chrza�szcz, J. Kitowski, Accuracy of baseline and
complex methods applied to morphosyntactic tagging of polish, in: ICCS ’08:
Proceedings of the 8th International Conference on Computational Science,
Part I, 2008, pp. 903–912.

[15] T. Pedersen, A simple approach to building ensembles of naive bayesian
classifiers for word sense disambiguation, in: Proceedings of the 1st North
American Chapter of the Association for Computational Linguistics Conference,
2000, pp. 63–69.
[16] R. Florian, D. Yarowsky, Modeling consensus: classifier combination for
word sense disambiguation, in: EMNLP ’02: Proceedings of the ACL-02
Conference on Empirical Methods in Natural Language Processing, 2002, pp.
25–32.

[17] L.A. Cuong, A study of classifier combination and semi-supervised learning for
word sense disambiguation, Ph.D. thesis, Japan Advanced Institute of Science
and Technology, 2007.

[18] R. Florian, A. Ittycheriah, H. Jing, T. Zhang, Named entity recognition through
classifier combination, in: Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, 2003, pp. 168–171.

[19] Z. Kozareva, O. Ferrández, A. Montoyo, R. Muoz, A. Suárez, J. Gómez, Combining
data-driven systems for improving named entity recognition, Data &
Knowledge Engineering 61 (3) (2007) 449–466.

[20] H. Wang, T. Zhao, Identifying named entities in biomedical text based on
stacked generalization, in: Proceedings of the World Congress on Intelligent
Control and Automation (WCICA), 2008, pp. 160–164.

[21] J. Henderson, E. Brill, Bagging and boosting a treebank parser, in: Proceedings
of the 1st North American Chapter of the Association for Computational
Linguistics Conference, 2000, pp. 34–41.

[22] D. Zeman, Z. Žabokrtský, Improving parsing accuracy by combining diverse
dependency parsers, in: Proceedings of IWPT-2005, 2005, pp. 171–178.

[23] J. Huang, O. Madani, C. Giles, Error-driven generalist+experts (edge): a multi-
stage ensemble framework for text categorization, in: CIKM ’08: Proceeding of
the 17th ACM Conference on Information and Knowledge Management, 2008,
pp. 83–92.

[24] X. Qi, B. Davison, Web page classification: features and algorithms, ACM
Computing Surveys (CSUR) 41 (2) (2009) 1–31.

[25] G. Sigletos, G. Paliouras, C. Spyropoulos, M. Hatzopoulos, Combining
information extraction systems using voting and stacked generalization,
Journal of Machine Learning Research 6 (2005) 1751–1782.

[26] M. Banko, O. Etzioni, The tradeoffs between open and traditional relation
extraction, in: Proceedings of ACL-08: HLT, 2008, pp. 28–36.

[27] K. Tsutsumi, K. Shimada, T. Endo, Movie review classification based on a
multiple classifier, in: The 21th Pacific Asia Conference on Language,
Information and Computation (PACLIC), 2007.

[28] S. Li, C. Zong, X. Wang, Sentiment classification through combining classifiers
with multiple feature sets, in: IEEE NLP-KE 2007 – Proceedings of International
Conference on Natural Language Processing and Knowledge Engineering, vol.
4368024, 2007, pp. 135–140.

[29] T. Brants, Tnt. A statistical part-of-speech tagger, in: Proceedings of the 6th
Applied NLP Conference (ANLP00), 2000, pp. 224–231.

[30] H. Schmid, Probabilistic part-of-speech tagging using decision trees, in:
Proceedings of the Conference on New Methods in Language Processing, 1994.

[31] W. Daelemans, J. Zavrel, A. Bosch, K. Sloot, Mbt: memory-based tagger,
reference guide, Tech. Rep. 03-13, ILK, 2003.

[32] T. Joachims, Making Large-Scale SVM Learning Practical, MIT Press, 1999
(chapter 11).

[33] K. Arrow, Social Choice and Individual Values, Wiley, New York, 1951.
[34] S. French, Group consensus probability distributions: a critical survey,

Bayesian Statistics 2 (1985) 183–202.
[35] Y.S. Huang, C.Y. Suen, A method of combining multiple experts for the

recognition of unconstrained handwritten numerals, IEEE Transactions on
Pattern Analysis and Machine Intelligence 17 (1995) 90–93.

[36] L. Breiman, Bagging predictors, Tech. Rep. 421, Department of Statistics,
University of California, Berkeley, 1994.

[37] I.H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and
Techniques, Morgan Kaufman, 2000.

[38] D. Wolpert, Stacked generalization, Neural Networks 5 (1992) 241–259.


	A comparative study of classifier combination applied to NLP tasks
	1 Introduction
	1.1 Classifier combination
	1.2 Classifier combination in NLP

	2 Experimental framework
	2.1 Methodology
	2.2 Base classifiers
	2.2.1 TnT
	2.2.2 TreeTagger
	2.2.3 MBT
	2.2.4 FV


	3 Applying combination to POS tagging
	3.1 Corpora
	3.2 Baseline
	3.3 Combination methods
	3.3.1 Voting
	3.3.2 Bayes
	3.3.3 Behavior knowledge space
	3.3.4 Bagging
	3.3.5 Stacking
	3.3.6 Feature selection
	3.3.7 Cascading


	4 Additional experiments with POS tagging
	4.1 Eliminating the best
	4.2 The corpus quality
	4.3 Heterogeneous information

	5 Applying combination to other NLP tasks
	5.1 Corpora
	5.2 Applying combination methods

	6 Conclusions
	References


