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Abstract— We present a highly hardware friendly STDP 
(Spike Timing Dependent Plasticity) learning rule for training 
Spiking Convolutional Cores in Unsupervised mode and training 
Fully Connected Classifiers in Supervised Mode. Examples are 
given for a 2-layer Spiking Neural System which learns in real 
time features from visual scenes obtained with spiking DVS 
(Dynamic Vision Sensor) Cameras. 
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I.    INTRODUCTION 
Biological brains constantly learn new incoming 

information. They never stop learning. Our goal in this work is 
to develop an embedded and low power hardware for online 
unsupervised learning of visual features by using bio-inspired 
Dynamic Vision Sensors (DVS) [1] and spiking neural 
networks (SNNs). SNNs have interesting features like event-
driven power consumption and pseudo-simultaneity [2]. 

In this work, we developed and implemented a new 
algorithm for hardware implementation that has been inspired 
by Masquelier’s pioneering work on STDP (Spike Time 
Dependent Plasticity) [3]. They developed an algorithm for 
face recognition using still image frames. Intensity to delay 
conversion was used to generate artificial spike trains from 
each frame. They used simple Integrated-and-Fire (IF) neurons 
without leakage because after each frame presentation, the 
network resets all neuron states. They allowed maximum one 
spike per each neuron for each frame.  

In our application, we wanted to use a DVS camera as the 
input source. However, a DVS does not use intensity to delay 
encoding. A DVS pixel generates a signed event when there 
has been a given relative change in light (∆𝐼/𝐼 = 𝐶). 
Additionally, we wanted to perform training on the continuous 
input event flow coming from the DVS. For this, we rely on 
synchrony detection, which is very close to what happens in 
biological perception [4]. Synchrony based processing is a kind 
of temporal processing (as oppose to rate encoding) but it does 
not rely on precise spike ordering (as opposed to rank order 
encoding). What matters is that spikes appear close enough to 
each other in time. In synchrony-based processing, a visual 
feature is represented by pseudo-synchronous spikes coming 
from specific synapses.   

Bichler et al. [5] introduced an interesting algorithm for 
online feature extraction based on STDP. The algorithm 
successfully detected cars passing from a freeway by using 
DVS input with unsupervised learning. They used a simplified 
STDP version to enhance processing speed. However, because 
they used fully connected neurons topologies, different neurons 
learned the same features in different positions. 

By using Convolutional Neural Networks, one can share a 
set of weights (kernel) between many neurons. In this way, 
each kernel learns a feature independent of its position. 
Convolutional Spiking Neural Networks (CSNN) are more 
efficient than fully connected SNNs in terms of processing and 
memory for pattern recognition tasks. 

In the next Sections we will briefly explain the learning 
algorithm and its hardware implementation.  

II.   LEARNING ALGORITHM 
In this work, we used a simple 2-layer neural network, as 

shown in Fig. 1. The first layer is an unsupervised learning 
convolutional layer for feature extraction. The second layer is 
a simple supervised-learning classifier. Both layers use a 
simplified STDP-based learning rule, explained later in this 
Section. 

 
Fig. 1.   Simple Network Topology used in this Work 

A.   Neuron model  
The first layer implements a reduced number of 

convolutional populations equipped with STDP for feature 
detection through unsupervised learning. Convolutional 
populations are called here also “ConvCore”.  Each ConvCore 
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can have a few kernels that can be fixed or plastic (with 
STDP). In this Section we just used one layer of ConvCores 
and we used positive input spikes coming from the DVS 
output. For inhibition, we used reset rather than applying an 
inhibitory kernel.  We used simple Leaky Integrated and Fire 
(LIF) neurons. Each incoming spike adds the synaptic weight 
to the membrane value1. When the neuron’s membrane value 
reaches a threshold, it generates a post-synaptic spike, increase 
threshold of ConvCore to the current membrane value and 
reset its membrane value. This simple threshold adaptation 
mechanism is implemented to regulate activity of ConvCores 
and guarantee completion between them. 

Leakage in these neurons has been implemented by using 
an approximation for the exponential decay. One option for 
leakage implementation is to update each neuron only when it 
receives spikes. This method is fully event-driven, but needs 
to keep track of last update time for each neuron. If processing 
time is more important than memory consumption, such fully 
event-driven neuron is recommended. However, in FPGA 
implementations, memory limitations are typically more 
stringent. For this reason we choose to not store the last update 
time for each neuron, but to apply leakage to all neurons 
periodically. The update period depends on the stimulus but 
for normal real-time DVS data, 1ms is reasonable. It will take 
just a few micro-seconds in the FPGA to update the leakage 
for all the neurons.  

For the exponential leakage approximation, we 
implemented the following operation on the membrane value  

𝑉'() = 𝑉 − 𝑉 ≫ 𝑛-(./ 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (1) 
 

where symbol (>> n) represents a bitwise right shift of n 
bits. We used 𝑛-(./ = 4, which is equivalent to leaking to 
15/16   of the previous membrane value every millisecond. 
This corresponds to a membrane equivalent time constant of 
16ms, which is in the biological range.  

The same leakage circuit is used for thresholds as part of 
threshold adaptation method. This leakage will allow 
decreasing of threshold for ConvCores that were inactive for a 
considerable amount of time. 

If kernel size is [Kx, Ky], each neuron from the previous 
layer is connected to 𝐾𝑥	
  ×	
  𝐾𝑦 neurons in a ConvCore with 
synaptic weights equal to the kernel values. After adding the 
kernel to membrane values of the neurons in a ConvCore, if a 
neuron’s membrane value exceeds the threshold, an output 
spike will be generated. Then, the learning process updates the 
kernel weights.  

To guarantee competition during learning, we used a 
winner-take-all mechanism [6] and inhibitory kernels as shown 
in Fig. 2. First of all, after updating neurons with an event 
kernel projection, more than one neuron’s membrane value 

                                                             
1 We intentionally use here the term “membrane value”, as opposed to the more conventional 
terminology of membrane voltage or potential, because in our hardware implementation it will be stored 
as a plain 9-bit integer value in the interval [0, 511], which is completely different from a physical 
voltage in the range of millivolts. 

may have reached its threshold. In this case, only the one with 
the highest value among all the ConvCores will generate a 
spike. Afterwards, all the neurons in the ConvCore that fired 
will be reset to their resting value. This will stop neurons in the 
same ConvCore to learn multiple features. By using this 
mechanism, a ConvCore can learn only one feature in different 
positions. At the same time, an inhibitory kernel inhibits 
neurons in the other ConvCores in the same kernel area (see 
Fig. 2). For this we used a simple reset rather than applying an 
inhibitory kernel. This second competition mechanism is 
needed to discourage different ConvCores from learning the 
same features. 

B.   Layer 1: Unsupervised Convolutional STDP Learning 
STDP is a bio-inspired learning rule that modifies the 

strength of a neuron’s synapses as a function of the precise 
temporal relations between pre- and post-synaptic spikes [7]. 
There are different variants of STDP rules but all of them share 
a common concept. Synaptic weights are updated on a per-
spike basis and the synaptic update depends on the time 
difference between pre- and post-synaptic spikes.  

Here we used a new STDP rule which is highly efficient for 
hardware implementation, if not the most reported so far. It is 
very similar to Bichler’s proposal [5], where all the synapses of 
a neuron are equally depressed upon reception of a post-
synaptic spike, except for the synapses that were activated with 
a pre-synaptic spike a short time before, which are strongly 
potentiated. Synapses that were active shortly before post 
synaptic spikes are potentiated. Therefore, implementation of 
such a rule needs to store a timestamp for the incoming spikes. 
Also, a buffer is needed to save the last incoming spikes and 
the size of this buffer depends on the input spike rate. In 
hardware implementations, normally buffer sizes are fixed and 
cannot be adjusted via a parameter. Consequently, it is hard to 
estimate the best buffer size for all the applications.  

 
Fig. 2.   Competition mechanisms. After a kernel update in ConvCore#1, the 
neuron in red has max value after passing the threshold, and therefore is the 
only one spiking within the kernel area. After this, all neurons in ConvCore#1 
will be reset, as well as all neurons of the other ConvCores inside the kernel 
area (region in blue will be reset). 

We have modified this rule to make it more hardware 
friendly. In the proposed STDP rule rather than limiting the 
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pre- to post- time window, we limited the number of synapses 
to be potentiated.  This way, when a post synaptic spike is 
generated, a logic block will find specific number of active 
synapses that have contributed in the firing. In our proposed 
rule, there is no need to do time stamping on spikes because 
always a predefined number of synapses will be potentiated. If 
parameters are chosen carefully, leakage will not allow a 
neuron to fire in case the last pre-synaptic spikes arrived long 
time before the post synaptic spike, thus preserving synchrony. 
This rule also stops general potentiation or general depression. 
In addition, we added another mechanism to equally potentiate 
all the selected synapses regardless of number of spike coming 
from a synapse. kernel weights are normalized after 
potentiation. This way, all the synapses will be depressed 
equally with an adaptive rate. 

C.   LAYER 2: SUPERVISED STDP LEARNING 
To classify the ConvCores output activities, a layer of 

simple fully connected supervised STDP neurons has been 
designed as output layer of our spiking neural network. A 
supervised STDP neuron has an extra external input (called 
“supervisor”), encoded also through AER (Address Event 
Representation), which forces post-synaptic spikes from this 
neuron when its representative “category” (or feature) is 
present at the input. Therefore, whenever a “supervisor” spike 
arrives, the corresponding active synapses will be potentiated. 
Otherwise active synapses will be depressed. 

III.   HARDWARE IMPLEMENTATION 
To do real-time learning and feature extraction, we 

implemented the above algorithm with HDL (Hardware 
Description Language) on FPGA2. Fig. 3 shows the hardware 
setup that was used. We used a silicon retina (DVS) as input 
and a Spartan-6 FPGA Node-Board [8] for the network. USB-
AER2 [9] boards were used to send spikes in real-time to a 
computer for visualization.  
 

 
 

Fig. 3.   Hardware Setup for Learning Experiments 

Fig. 4 shows the block diagram of the FPGA 
implementation inside the Node-Board Spartan-6 FPGA. It 
contains ConvCores and supervised STDP Neurons core and 
AER interfaces (to handle asynchronous communications with 
outside FPGA). The number of ConvCores and the 
configuration of layers can be customized. Different cores 

                                                             
2 To receive Verilog codes please send an email to bernabe@imse-cnm.csic.es 

communicate with Address Event Representation (AER) 
events [9].  

A conceptual block diagram of the ConvCores is shown in 
Fig. 5. Each ConvCore contains a convolutional processor to 
perform convolution and two RAMs to keep the neurons 
membrane values (Neuron RAM) and synaptic weights (Kernel 
RAM). A STDP processor is shared between all ConvCores in 
one block because STDP events are rare and only one STDP 
processor is fast enough to handle them. STDP processor 
connected to a circular buffer to keep the last spikes and use 
them in STDP learning. Xilinx’s Chipscope debug tool is used 
to program the initial parameters and to monitor the kernels 
evolution online using a computer.  

 
Fig. 4.   FPGA System Implementation Block Diagram (DVS and USB-AER 

boards are outside of FPGA) 

 
Fig. 5.   Simplified Block diagram of ConvCore in FPGA 

 The amount of recourses needed to implement the 
ConvCore scheme on FPGAs depends on number of neurons 
and kernels. For example, once we implemented this core on a 
Spartan-6 FPGA (XC6SLX150T-3) with 32x32 input pixels, 6 
kernels with 9x9 weights and 512 words for the circular buffer. 
With these parameters, ConvCores take 1276 slices (out of 23K 
available slices) of FPGA. Among these occupied slices, 587 
slices belong to convolutional processors and 537 slices belong 
to STDP processor. Update of membrane values for each input 
event takes 90 clock cycles and STDP learning takes less than 
900 clock cycles for updating kernels. Also, for each 
millisecond, one leakage update process takes 1025 clock 
cycles. When clock frequency is 100MHz, each convolution 
takes 0.9us and each STDP process takes less than 9us. These 
delays are reasonable for on-line learning in real-time.  



IEEE International Symposium on Circuits and Systems, MAY 2017, this is not the final revision of the paper 

IV.   IMPLEMENTATION RESULTS 
To test our network, we used two simple letters (‘A’ and 

‘B’) and moved them in front of the DVS to generate spikes. 
Fig. 6 (a) shows a screenshot from the jAER software [10] used 
to visualize DVS spikes. Due to space limitation, we only 
presented the results of layer 1. 

 
(a) 

 

 
(b) 

 

 
 

(c) 

 
(d) 

Fig. 6.   (a, c) Screen captures of jAER software to visualize DVS output. 
Black dots show negative spikes while white dots show positive ones. (b, 
d) Reconstruction of kernel weights after learning. To see the complete 
recording videos (including parameters) and online evolution of kernels 
refer to [11]. 
 

STDP kernels learn the features that repeat more. For 
Convolutional STDP, when kernel size is larger than the 
object, we expect the kernel to learn the whole object. 
Otherwise, kernels should learn just some parts of the objects 
as features. Different objects may have common features, so it 
is natural to extract characteristic features and use them for 
object recognition.  

We tested our hardware with kernel sizes of 9x9 while 
subsampling the output of the DVS from 128x128 down to 
32x32. First we used two ConvCores. Fig. 6 (b) shows the 
reconstruction of kernel weights after learning the input shown 
in Fig. 6 (a). In this case because sizes of objects are smaller 
than ‘9x9’, kernels learned the whole object templates.  

In another experiment we presented the same stimulus to 
DVS but closer, so that the objects resulted in sizes larger than 
the kernels, as shown in Fig. 6 (c). In this case we used eight 
kernels of 7x7. The kernels learned characteristic features from 
the two letters. Reconstructed kernel weights for this 
experiment are shown in Fig. 6 (d). 

V.   CONCLUSIONS 
In this work we have introduced a digital implementation of 

an algorithm for online STDP learning of visual features by 
using real live visual data from a DVS camera.  
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