
IEEE International Symposium on Circuits and Systems, MAY 2017, this is not the final revision of the paper

Hardware Implementation of Convolutional STDP for
On-line Visual Feature Learning

A. Yousefzadeh1, T. Masquelier2, T. Serrano-Gotarredona1, and B. Linares-Barranco1

1Instituto de Microelectrónica de Sevilla (CSIC and Univ. de Sevilla), Sevilla, Spain {reza, bernabe}@imse-cnm.csic.es

2 CERCO UMR 5549, CNRS – Université de Toulouse, F-31300, France

Abstract— We present a highly hardware friendly STDP
(Spike Timing Dependent Plasticity) learning rule for training
Spiking Convolutional Cores in Unsupervised mode and training
Fully Connected Classifiers in Supervised Mode. Examples are
given for a 2-layer Spiking Neural System which learns in real
time features from visual scenes obtained with spiking DVS
(Dynamic Vision Sensor) Cameras.

Keywords— Neuromorphic Systems, Spike Time Dependent
Plasticity (STDP), Spiking Neural Networks, Hardware
Implementation of Neural Systems, Learning Systems.

I. INTRODUCTION
Biological brains constantly learn new incoming

information. They never stop learning. Our goal in this work is
to develop an embedded and low power hardware for online
unsupervised learning of visual features by using bio-inspired
Dynamic Vision Sensors (DVS) [1] and spiking neural
networks (SNNs). SNNs have interesting features like event-
driven power consumption and pseudo-simultaneity [2].

In this work, we developed and implemented a new
algorithm for hardware implementation that has been inspired
by Masquelier’s pioneering work on STDP (Spike Time
Dependent Plasticity) [3]. They developed an algorithm for
face recognition using still image frames. Intensity to delay
conversion was used to generate artificial spike trains from
each frame. They used simple Integrated-and-Fire (IF) neurons
without leakage because after each frame presentation, the
network resets all neuron states. They allowed maximum one
spike per each neuron for each frame.

In our application, we wanted to use a DVS camera as the
input source. However, a DVS does not use intensity to delay
encoding. A DVS pixel generates a signed event when there
has been a given relative change in light (∆𝐼/𝐼 = 𝐶).
Additionally, we wanted to perform training on the continuous
input event flow coming from the DVS. For this, we rely on
synchrony detection, which is very close to what happens in
biological perception [4]. Synchrony based processing is a kind
of temporal processing (as oppose to rate encoding) but it does
not rely on precise spike ordering (as opposed to rank order
encoding). What matters is that spikes appear close enough to
each other in time. In synchrony-based processing, a visual
feature is represented by pseudo-synchronous spikes coming
from specific synapses.

Bichler et al. [5] introduced an interesting algorithm for
online feature extraction based on STDP. The algorithm
successfully detected cars passing from a freeway by using
DVS input with unsupervised learning. They used a simplified
STDP version to enhance processing speed. However, because
they used fully connected neurons topologies, different neurons
learned the same features in different positions.

By using Convolutional Neural Networks, one can share a
set of weights (kernel) between many neurons. In this way,
each kernel learns a feature independent of its position.
Convolutional Spiking Neural Networks (CSNN) are more
efficient than fully connected SNNs in terms of processing and
memory for pattern recognition tasks.

In the next Sections we will briefly explain the learning
algorithm and its hardware implementation.

II. LEARNING ALGORITHM
In this work, we used a simple 2-layer neural network, as

shown in Fig. 1. The first layer is an unsupervised learning
convolutional layer for feature extraction. The second layer is
a simple supervised-learning classifier. Both layers use a
simplified STDP-based learning rule, explained later in this
Section.

Fig. 1. Simple Network Topology used in this Work

A. Neuron model
The first layer implements a reduced number of

convolutional populations equipped with STDP for feature
detection through unsupervised learning. Convolutional
populations are called here also “ConvCore”. Each ConvCore

IEEE International Symposium on Circuits and Systems, MAY 2017, this is not the final revision of the paper

can have a few kernels that can be fixed or plastic (with
STDP). In this Section we just used one layer of ConvCores
and we used positive input spikes coming from the DVS
output. For inhibition, we used reset rather than applying an
inhibitory kernel. We used simple Leaky Integrated and Fire
(LIF) neurons. Each incoming spike adds the synaptic weight
to the membrane value1. When the neuron’s membrane value
reaches a threshold, it generates a post-synaptic spike, increase
threshold of ConvCore to the current membrane value and
reset its membrane value. This simple threshold adaptation
mechanism is implemented to regulate activity of ConvCores
and guarantee completion between them.

Leakage in these neurons has been implemented by using
an approximation for the exponential decay. One option for
leakage implementation is to update each neuron only when it
receives spikes. This method is fully event-driven, but needs
to keep track of last update time for each neuron. If processing
time is more important than memory consumption, such fully
event-driven neuron is recommended. However, in FPGA
implementations, memory limitations are typically more
stringent. For this reason we choose to not store the last update
time for each neuron, but to apply leakage to all neurons
periodically. The update period depends on the stimulus but
for normal real-time DVS data, 1ms is reasonable. It will take
just a few micro-seconds in the FPGA to update the leakage
for all the neurons.

For the exponential leakage approximation, we
implemented the following operation on the membrane value

𝑉'() = 𝑉 − 𝑉 ≫ 𝑛-(./ 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (1)

where symbol (>> n) represents a bitwise right shift of n
bits. We used 𝑛-(./ = 4, which is equivalent to leaking to
15/16 of the previous membrane value every millisecond.
This corresponds to a membrane equivalent time constant of
16ms, which is in the biological range.

The same leakage circuit is used for thresholds as part of
threshold adaptation method. This leakage will allow
decreasing of threshold for ConvCores that were inactive for a
considerable amount of time.

If kernel size is [Kx, Ky], each neuron from the previous
layer is connected to 𝐾𝑥	
 ×	
 𝐾𝑦 neurons in a ConvCore with
synaptic weights equal to the kernel values. After adding the
kernel to membrane values of the neurons in a ConvCore, if a
neuron’s membrane value exceeds the threshold, an output
spike will be generated. Then, the learning process updates the
kernel weights.

To guarantee competition during learning, we used a
winner-take-all mechanism [6] and inhibitory kernels as shown
in Fig. 2. First of all, after updating neurons with an event
kernel projection, more than one neuron’s membrane value

1 We intentionally use here the term “membrane value”, as opposed to the more conventional
terminology of membrane voltage or potential, because in our hardware implementation it will be stored
as a plain 9-bit integer value in the interval [0, 511], which is completely different from a physical
voltage in the range of millivolts.

may have reached its threshold. In this case, only the one with
the highest value among all the ConvCores will generate a
spike. Afterwards, all the neurons in the ConvCore that fired
will be reset to their resting value. This will stop neurons in the
same ConvCore to learn multiple features. By using this
mechanism, a ConvCore can learn only one feature in different
positions. At the same time, an inhibitory kernel inhibits
neurons in the other ConvCores in the same kernel area (see
Fig. 2). For this we used a simple reset rather than applying an
inhibitory kernel. This second competition mechanism is
needed to discourage different ConvCores from learning the
same features.

B. Layer 1: Unsupervised Convolutional STDP Learning
STDP is a bio-inspired learning rule that modifies the

strength of a neuron’s synapses as a function of the precise
temporal relations between pre- and post-synaptic spikes [7].
There are different variants of STDP rules but all of them share
a common concept. Synaptic weights are updated on a per-
spike basis and the synaptic update depends on the time
difference between pre- and post-synaptic spikes.

Here we used a new STDP rule which is highly efficient for
hardware implementation, if not the most reported so far. It is
very similar to Bichler’s proposal [5], where all the synapses of
a neuron are equally depressed upon reception of a post-
synaptic spike, except for the synapses that were activated with
a pre-synaptic spike a short time before, which are strongly
potentiated. Synapses that were active shortly before post
synaptic spikes are potentiated. Therefore, implementation of
such a rule needs to store a timestamp for the incoming spikes.
Also, a buffer is needed to save the last incoming spikes and
the size of this buffer depends on the input spike rate. In
hardware implementations, normally buffer sizes are fixed and
cannot be adjusted via a parameter. Consequently, it is hard to
estimate the best buffer size for all the applications.

Fig. 2. Competition mechanisms. After a kernel update in ConvCore#1, the
neuron in red has max value after passing the threshold, and therefore is the
only one spiking within the kernel area. After this, all neurons in ConvCore#1
will be reset, as well as all neurons of the other ConvCores inside the kernel
area (region in blue will be reset).

We have modified this rule to make it more hardware
friendly. In the proposed STDP rule rather than limiting the

IEEE International Symposium on Circuits and Systems, MAY 2017, this is not the final revision of the paper

pre- to post- time window, we limited the number of synapses
to be potentiated. This way, when a post synaptic spike is
generated, a logic block will find specific number of active
synapses that have contributed in the firing. In our proposed
rule, there is no need to do time stamping on spikes because
always a predefined number of synapses will be potentiated. If
parameters are chosen carefully, leakage will not allow a
neuron to fire in case the last pre-synaptic spikes arrived long
time before the post synaptic spike, thus preserving synchrony.
This rule also stops general potentiation or general depression.
In addition, we added another mechanism to equally potentiate
all the selected synapses regardless of number of spike coming
from a synapse. kernel weights are normalized after
potentiation. This way, all the synapses will be depressed
equally with an adaptive rate.

C. LAYER 2: SUPERVISED STDP LEARNING
To classify the ConvCores output activities, a layer of

simple fully connected supervised STDP neurons has been
designed as output layer of our spiking neural network. A
supervised STDP neuron has an extra external input (called
“supervisor”), encoded also through AER (Address Event
Representation), which forces post-synaptic spikes from this
neuron when its representative “category” (or feature) is
present at the input. Therefore, whenever a “supervisor” spike
arrives, the corresponding active synapses will be potentiated.
Otherwise active synapses will be depressed.

III. HARDWARE IMPLEMENTATION
To do real-time learning and feature extraction, we

implemented the above algorithm with HDL (Hardware
Description Language) on FPGA2. Fig. 3 shows the hardware
setup that was used. We used a silicon retina (DVS) as input
and a Spartan-6 FPGA Node-Board [8] for the network. USB-
AER2 [9] boards were used to send spikes in real-time to a
computer for visualization.

Fig. 3. Hardware Setup for Learning Experiments

Fig. 4 shows the block diagram of the FPGA
implementation inside the Node-Board Spartan-6 FPGA. It
contains ConvCores and supervised STDP Neurons core and
AER interfaces (to handle asynchronous communications with
outside FPGA). The number of ConvCores and the
configuration of layers can be customized. Different cores

2 To receive Verilog codes please send an email to bernabe@imse-cnm.csic.es

communicate with Address Event Representation (AER)
events [9].

A conceptual block diagram of the ConvCores is shown in
Fig. 5. Each ConvCore contains a convolutional processor to
perform convolution and two RAMs to keep the neurons
membrane values (Neuron RAM) and synaptic weights (Kernel
RAM). A STDP processor is shared between all ConvCores in
one block because STDP events are rare and only one STDP
processor is fast enough to handle them. STDP processor
connected to a circular buffer to keep the last spikes and use
them in STDP learning. Xilinx’s Chipscope debug tool is used
to program the initial parameters and to monitor the kernels
evolution online using a computer.

Fig. 4. FPGA System Implementation Block Diagram (DVS and USB-AER

boards are outside of FPGA)

Fig. 5. Simplified Block diagram of ConvCore in FPGA

 The amount of recourses needed to implement the
ConvCore scheme on FPGAs depends on number of neurons
and kernels. For example, once we implemented this core on a
Spartan-6 FPGA (XC6SLX150T-3) with 32x32 input pixels, 6
kernels with 9x9 weights and 512 words for the circular buffer.
With these parameters, ConvCores take 1276 slices (out of 23K
available slices) of FPGA. Among these occupied slices, 587
slices belong to convolutional processors and 537 slices belong
to STDP processor. Update of membrane values for each input
event takes 90 clock cycles and STDP learning takes less than
900 clock cycles for updating kernels. Also, for each
millisecond, one leakage update process takes 1025 clock
cycles. When clock frequency is 100MHz, each convolution
takes 0.9us and each STDP process takes less than 9us. These
delays are reasonable for on-line learning in real-time.

IEEE International Symposium on Circuits and Systems, MAY 2017, this is not the final revision of the paper

IV. IMPLEMENTATION RESULTS
To test our network, we used two simple letters (‘A’ and

‘B’) and moved them in front of the DVS to generate spikes.
Fig. 6 (a) shows a screenshot from the jAER software [10] used
to visualize DVS spikes. Due to space limitation, we only
presented the results of layer 1.

(a)

(b)

(c)

(d)

Fig. 6. (a, c) Screen captures of jAER software to visualize DVS output.
Black dots show negative spikes while white dots show positive ones. (b,
d) Reconstruction of kernel weights after learning. To see the complete
recording videos (including parameters) and online evolution of kernels
refer to [11].

STDP kernels learn the features that repeat more. For
Convolutional STDP, when kernel size is larger than the
object, we expect the kernel to learn the whole object.
Otherwise, kernels should learn just some parts of the objects
as features. Different objects may have common features, so it
is natural to extract characteristic features and use them for
object recognition.

We tested our hardware with kernel sizes of 9x9 while
subsampling the output of the DVS from 128x128 down to
32x32. First we used two ConvCores. Fig. 6 (b) shows the
reconstruction of kernel weights after learning the input shown
in Fig. 6 (a). In this case because sizes of objects are smaller
than ‘9x9’, kernels learned the whole object templates.

In another experiment we presented the same stimulus to
DVS but closer, so that the objects resulted in sizes larger than
the kernels, as shown in Fig. 6 (c). In this case we used eight
kernels of 7x7. The kernels learned characteristic features from
the two letters. Reconstructed kernel weights for this
experiment are shown in Fig. 6 (d).

V. CONCLUSIONS
In this work we have introduced a digital implementation of

an algorithm for online STDP learning of visual features by
using real live visual data from a DVS camera.

VI. ACKNOWLEDGEMENTS
This work was supported in part by the EU H2020 grants

644096 “ECOMODE” and 687299 “NEURAM3”, b y
Samsung Advanced Institute of Technology grant NPP,	
 by
Spanish grants from the Ministry of Economy and
Competitivity TEC2012-37868-C04-01 (BIOSENSE) and
TEC2015-63884- C2-1-P (COGNET) (with support from the
European Regional Development Fund), and by Andalusian
grant TIC-6091 (NANONEURO). ARY is supported by a
Spanish FPI Scholarship from the Ministry of Economy and
Competitivity.

VII. REFERENCES
	

[1] T. Serrano-Gotarredona and B. Linares-Barranco, "A 128x128 1.5%
Contrast Sensitivity 0.9% FPN 3us Latency 4mW Asynchronous
Frame-Free Dynamic Vision Sensor Using Transimpedance
Amplifiers," IEEE J. Solid-State Circuits, vol. 48, no. 3, March 2013.

[2] J. A Pérez-Carrasco e. al., "Mapping from Frame-Driven to Frame-Free
Event-Driven Vision Systems by Low-Rate Rate Coding and
Coincidence Processing--Application to Feedforward ConvNets," IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no.
11, Nov. 2013.

[3] Timothée Masquelier et al, "Unsupervised Learning of Visual Features
through Spike Timing Dependent Plasticity," PLoS Comput Biol , 2007.

[4] Timothée Masquelier e. al., "Microsaccades enable efficient synchrony-
based coding in the retina: a simulation study," Scientific Reports, vol.
6, 04 2016.

[5] O. Bichler et al., "Extraction of temporally correlated features from
dynamic vision sensors with spike-timing-dependent plasticity," Neural
Networks, vol. 32, 8 2012.

[6] M. Oster et al, "Computation with spikes in a winner-take-all network,"
Neural Comput., Sep. 2009.

[7] H. Markran et al, "Regulation of Synaptic Efficacy by Coincidence of
Postsynaptic APs and EPSPs," Science, vol. 275, 01 1997.

[8] T. Iakymchuk et al, "An AER handshake-less modular infrastructure
PCB with x8 2.5Gbps LVDS serial links," IEEE International
Symposium on Circuits and Systems (ISCAS), June 2014.

[9] Rafael Serrano-Gotarredona et al, "CAVIAR: A 45k Neuron, 5M
Synapse, 12G Connects/s AER Hardware Sensory–Processing–
Learning–Actuating System for High-Speed Visual Object Recognition
and Tracking," IEEE Transactions on Neural Networks, Sept. 2009.

[10] F. Corradi et al, "jAER," [Online]. Available: https://sourceforge.net/
projects/jaer/.

[11] A. Yousefzadeh, "Real-Time Videos," 2016. [Online]. Available:
https://youtu.be/05NyI3qp05g & https://youtu.be/VRz1uLXa4KA

View publication statsView publication stats

https://www.researchgate.net/publication/316488029

