odltolen

_ a.23258132!/

UNIVERSITY OF SEVILLE
Dpt. Computer Science and
Artificial Intelligence

Membrane Computing,
Neural Inspirations,
Gene Assembly in Ciliates

Thesis presented by
Tseren-Onolt Ishdorj

to obtain the PhD degree
from the University of Seville

S Cucb—

Tseren-Onolt Ishdorj

Approval of the Supervisors of the Thesis

=S e

Dr. Gheorghe Paun Dr. Mario de J. Pérez Jiménez

Seville, 21.12.06

' UNIVERSIDAD DE SEVILLA
Dpto. de Ciencias de la Computacién
e Inteligencia Artificial

g}
=
~
S

= 4

Membrane Computing,
Neural Inspirations,
Gene Assembly in Ciliates

Memoria presentada por
Tseren-Onolt Ishdorj

para optar al grado de Doctor
por la Universidad de Sevilla

s Gl

Tseren-Onolt Ishdorj

V.° B.° Los Directores de la Tesis

—= e . /Jwﬁ/@@

Dr. D. Gheorghe Paun Dr. D. Mario de J. Pérez Jiménez

Sevilla, 21 de diciembre 2006

Acknowledgments

I am very proud of natural computing community, especially, of P-
friends community, for their achievements and for the scientific frame-
work in which I was privileged to work during elaborating this thesis.

My heartfelt thanks to my supervisors Dr. Gheorghe Pdun and Prof.
Dr. Mario de J. Pérez-Jiménez for their fundamental encouragement
to learn science and for their fatherlike support for my social life too.

My warmest thanks to Dr. Ion Petre for his precious support and help.

Thanks to all the members of the Research Group on Natural Com-
puting of the University of Sevilla, Spain, and all the members of
the Computational Biomodelling Laboratory, Abo Akademi Univer-
sity, Finland, who have provided me such wonderful friendly and sci-
entific working environment.

I am much indebted to my co-authors and co-workers for their fruit-
ful collaboration. Special regards to Artiom Alhazov, Matteo Cava-
liere, Mihai Ionescu, Lingiang Pan, Vladimir Rogojin, Miguel Angel
Gutiérrez-Naranjo, Agustin Riscos-Niifiez, Fernando Sancho-Caparrini,
Dragog Sburlan, Francisco Jose Romero-Campero, Alvaro Romero-
Jiménez, Badmaanyambuu Dorj, and other friends.

I would like to thank my dad Ishdorj and mom Miishaa. Thanks to
my family for their continuous support for making this work possible
during these years.

To my loves: wife Baigalmaa
son Tsedev-Ochir
daughter Gangadari

Contents

An Introduction to the Thesis

1

2

Theoretical Computer Science: A Historical Perspective
1.1 Natural Computing: Cellular and Molecular Computing . . .

11

15
16

1.2 Cells, Membranes and Molecules: An Informal Understanding 19

Preliminaries

2.1 Formal Language Preliminaries
2.1.1 Alphabets, Strings, Languages, and Multisets
2.1.2 Chomsky Grammars 0 .o v v v
2.1.3 Regulated Rewriting
2.1.4 Parallel Rewriting
2.1.5 The Splicing Operation
2.1.6 Automata Theory

2.2 Computational Complexity

2.3 Membrane Computing Preliminaries
2.3.1 Membrane Systems with Symbol-Objects
2.3.2 Computational Complexity in P Systems
2.3.3 P Systems with Active Membranes
2.34 Spiking Neural P Systems

Using Cell Interaction Operations in P Systems
3.1 Polarizationless P Systems
3.1.1 Formalization of Membrane Merging, Separation, and
Release Operations
3.1.2 Two Universality Results
3.1.3 Two Efficiency Results
3.2 Minimal Parallelism 0.,
3.2.1 Computational Completeness Results
3.2.2 Computational Complexity Results
3.3 Replicative-Distribution Rules
3.3.1 Computational Universality
3.3.2 Computational Efficiency

4 Membrane Systems with Neural-Like Operations 93

4.1 Exciting/Inhibiting (On/Off) Operation 94
4.1.1 Using One Catalyst: Two Universality Results 96
4.1.2 Using Non-Cooperative Rules and One Switch 100

4.2 Inhibiting/De-inhibiting (AID) P Systems with Active Mem-
branes 100
4.2.1 Simulating Logical Gates 103
4.2.2 Simulating Boolean Circuits 106
4.2.3 Accepting and Generative Universality Results 109
4.24 An Efficiency Result for AID P systems 110
5 Spiking Neural P Systems 113
51 Axon P Systems e e e 113
5.2 Examples e e e e 115
5.3 The Generative Power of SN P Systems 116
5.3.1 A Characterization of FIN 116
5.3.2 Relationships with REG 117
5.3.3 Beyond REG e e e 118
54 Axon P Systems with States 121
5.5 Spiking Neural P Systems with Self-Activation 125
551 AwsolutiontoSAT 130
6 Computability of Gene Assembly in Ciliates 135
6.1 The Gene Assembly Operations 136
6.2 The Contextual Intramolecular Operations 139
6.2.1 Computational Universality 141
6.2.2 Computational Efficiency 145
Bibliography 157

10

An Introduction to the
Thesis

The thesis background belongs to two major branches of natural computing;:
cellular computing and molecular computing. More precisely, the research
is mainly devoted to model (neural) cell biological phenomena in membrane
computing area, and to investigate the computability and the complexity
issues related to membrane computing models and to certain models of gene
assembly in ciliates.

Natural computing is a general term referring to computing going on
in nature and to computing inspired by nature, which provides valuable
insights into both natural sciences and computer science. Cellular comput-
ing is theoretically and practically a significant branch of natural comput-
ing as, for instance, artificial neural networks and cellular automata were
well developed both mathematically and used in practical applications. In
the framework of the continuous development of the research of comput-
ing with cells, a flourishing direction was initiated in [79] under the name
of membrane computing. The progresses of membrane computing research
were impressive (already, in 2003, ISI considered this research area as “fast
emerging” in computer science). Membrane systems (also called P systems)
are inspired by the compartmental structure and the functioning of living
cells. The result is a non-deterministic, distributed and parallel computing
model. Very shortly, we have a membrane compartmentalized system, in
the regions of which multisets of objects evolve according to some specified
rules. We will give more detailed definitions of P systems in Section 2.3.

A natural question in membrane computing concerns the possibility to
define computing models inspired by neural processes, hence, to link this
area with the neural computing. On the one side, the human brain is an
example of a massively parallel system. As neural systems and membrane
systems have in common many features of parallel and distributed processes,
they could support each other in devising computing models. On the other
side, intuitively, incorporating neural computing ingredients is challenging
and promising because most of the computing models, for instance, finite
automata, which were defined with neural inspiration have known very suc-

11

cessful applications in computing.

The main part of the thesis is basically focused on elementary neural
processes, in particular, on exploring symbolic models of neural cell processes
through membrane systems.

Chapter 6 relates membrane computing with another very active research
area, that of DNA computing — here we consider the very interesting case
of gene assembly in ciliates.

Content of the Thesis

As any kind of computer, be it mechanical, electrical or biological, needs two
basic capabilities in order to function, to store information and to perform
operations on it, these capabilities were always considered in our biological
computing devices throughout the thesis.

Moreover, after defining a computing model, we always investigate its
computational power in comparison with Turing machines and other classic
models of computing, and also we investigate its computational efficiency,
checking whether it can solve computationally hard problems in feasible
time. :

The thesis contains an introduction and six chapters. In Chapter 1, we
briefly mention the historical development of theoretical computer science,
starting from G. Leibnitz’s (1646-1716) wish to formalize human reasoning
in mathematics, A. Turing’s (1912-1954) fundamental mathematical model
of a computer, and its implementation to the electronic computer by von
Neumann (1903-1957). We also give a short informal survey of the exciting
computing models of natural computing, especially the two branches consid-
ered in the thesis: cellular computing — membrane systems, and molecular
computing — DNA computing. Some of the cellular and molecular biology
facts are mentioned in the end of Chapter 1 because those biological moti-
vations are frequently recalled in the following chapters when we formalize
bio-inspired operations.

We start in Chapter 2 with the mathematical definitions, notions, no-
tations of formal languages, computability and computational complexity
theory, and at the end of the chapter we give the formal definitions of mem-
brane systems and of basic operations of gene assembly in ciliates, which
are the main topics of the thesis. In Chapter 3, we formalize some cell
interaction operations in P systems, namely membrane merging, membrane
separation, membrane release, and chemicals replication and distribution.
We investigate the computational power and efficiency of the introduced
bio-operations and universality and also efficiency results are proved. This
shows that membrane separation operation is an efficient tool to achieve an
exponential workspace in linear time. Also, we find that the dual operations
of membrane merging and membrane separation are useful tools to compute

12

with cell membranes. Again, both universality and efficiency results are
proved both in the maximally and the minimally parallel way of using the
rules.

The most essential part of the thesis is focused on “zooming” inside a
neural cell in order to find as biologically well motivated, mathematically
elegant, and computationally powerful and efficient devices as possible in
P systems area. Chapter 4 and Chapter 5 are mainly devoted to this
direction of research. There is a well known phenomenon in neural biology,
the exciter impulse and inhibitor impulse. We formalized exciting/inhibition
rules in P systems as a natural mechanism to control computations. Boolean
circuits have been simulated in this framework. Then, in Chapter 5 we in-
troduce a class of spiking neural P systems called axon P systems. This time
we investigate the language generative power of axon P systems in compar-
ison with Chomsky hierarchy. Moreover, a preliminary attempt to consider
the computational efficiency of spiking neural P systems is presented here,
based on the idea of using a pre-computed arbitrarily large resource. A
solution to SAT is proposed in this framework.

We pass to the next major topic of the thesis in Chapter 6. Com-
puting in ciliates has been studied since 1998 when Laura Landweber and
Lila Kari introduced their intermolecular computing model with ciliates in
[68]. There are two computing models in this area, the intermolecular gene
rearrangement and the intramolecular gene rearrangement. The contextual
intermolecular model has been shown to have the computational power of
Turing machines, [55]. The intramolecular gene rearrangement model has
waited for clarifying its computational power. We have an answer to this
question for a mathematical model based on intramolecular recombination
which is shown to be equivalent in power to Turing machines. Similarly, the
computational efficiency of both models has not been considered yet so far.
At the end of the thesis we present a preliminary approach in this respect,
with an example of SAT problem solution.

Each of Chapters 3—6 contains a series of open problems and topics for
further research.

The chapters of the thesis are based on the next publications, elaborated
by the author with the fruitful collaboration of several co-authors.

Chapter 3:

1. A. Alhazov, T.-O. Ishdorj, Membrane Operations in P Systems with
Active Membranes. In [85], 37-44.

2. T.-O. Ishdorj, Power and Efficiency of Minimal Parallelism in Polar-
izationless P Systems. Journal of Automata, Languages, and Combi-
natorics, to appear.

3. T.-O. Ishdorj, Minimal Parallelism for Polarizationless P Systems.

13

10.

11.

12.

13.

Proc. 12th Int. Meeting on DNA Computing, Seoul, June 2006, (C.
Mao, T. Yokomori, Eds.), LNCS 4287, Springer, Berlin, 2006, 17-32.

. L. Pan, A. Alhazov, T.-O. Ishdorj, Further Remarks on P Systems with

Active Membranes, Separation, Merging and Release Rules. Soft Com-
puting. A Fusion of Foundations, Methodologies and Applications, 9
(2005), 686—690.

. L. Pan, T.-O. Ishdorj, P Systems with Active Membranes and Sepa-

ration Rules. Journal of Universal Computer Science, 10 (5) (2004),
630-649.

Chapter 4:

. M. Cavaliere, M. Ionescu, T.-O. Ishdorj, Inhibiting/De-inhibiting Rules

in P Systems. LNCS 3365, Springer, Berlin, 2005, 224-238.

M. Cavaliere, M. Ionescu, T.-O. Ishdorj, Inhibiting/De-inhibiting Rules
in P Systems with Active Membranes. In Proc. Cellular Computing
(Complexity Aspects) Workshop (M.A. Gutiérrez-Naranjo et. al, Eds.),
Sevilla, 2005, 117-130, Fénix Editora, Sevilla, 2005.

M. Tonescu, T.-O. Ishdorj, Boolean Circuits and a DNA Algorithm in
Membrane Computing. In Proc. 6th WMC, Vienna, 18-23 July 2005,
and LNCS 3850, Springer, Berlin, 2006, 274-293.

T.-O. Ishdorj, M. Ionescu, Replicative-Distribution Rules in P Systems
with Active Membranes. Pre-proc. First International Colloguium on
Theoretical Aspects of Computing, Guiyang, China, Sept. 20-24, 2004
- UNU/IIST Report No. 310, 263-278, Zhiming Liu (Ed.) Macau,
and LNCS 8407, Springer, Berlin, 2005, 69-84.

Chapter 5:

H. Chen, M. Ionescu, T.-O. Ishdorj, On the Efficiency of Spiking Neu-
ral P Systems. Proc. 8th Int. Conference on Electronics, Information,
and Communication, Ulaanbaatar, Mongolia, June 2006, 49-52.

H. Chen, T.-O. Ishdorj, Gh. Paun, Computing Along the Axon. Pre-
proc. Int. Conference on Bio-inspired Computing: Theory and Appli-
cations (BIC-TA), September 2006, Wuhan, China, 60-70.

Chapter 6:

T.-O. Ishdorj, I. Petre, R. Vladimir, Computational Power of In-
tramolecular Gene Assembly. Manuscript, 2006.

T.-O. Ishdorj, I. Petre, An Efficient Computing Paradigm Inspired by
Gene Assembly in Ciliates. Manuscript, 2006.

14

Chapter 1

Theoretical Computer
Science: A Historical
Perspective

The classic notion of computation is firmly rooted in the notion of an al-
gorithm, which, informally speaking, is a set of rules for performing a task.
The German mathematician Gottfried W. Leibnitz (1646-1716) wanted to
formalize human reasoning in such a way that it could be described as a
collection of rules, which then could be executed in a mechanistic way.

This research into the understanding of the notion of an algorithm was
carried on by many outstanding scientists and it culminated in the works of
Kurt Godel, Alonzo Church, Alan Turing, and Emil Post approximately in
the period 1930-1940. '

The work ([103]) for the formalization of the notion of an algorithm by
the English mathematician Alan Turing (1912-1954) led to the construction
of the first computers, and to the beginnings of computer science. In for-
malizing the notion of an algorithm, Turing has focused on what a person
performing calculations does when following a set of rules, hence following
a given algorithm. Thus the beginnings of computer science were rooted in
human-designed computing.

John von Neumann (1903-1957) introduced in 1945 the concept of a
stored program in a draft report on the EDVAC (Electronic Discrete Variable
Automatic Computer) design. His 1946 paper, written with Arthur W. Burks
and Hermann H. Goldstine, was titled “Preliminary Discussion of the Logi-
cal Design of an Electronic Computing Instrument”, and the principles re-
vealed in it were to have a profound effect on the subsequent development of
computer science. Since then, any discussion about computer architectures,
about how computers and computer systems are organized, designed, and
implemented, inevitably makes reference to the “von Neumann architecture”
as a basis for comparison.

15

In the history of computing, electronic computers are only the latest
in a long chain of man’s attempts to use the best technology available for
doing computations. While it is true that their appearance, some decades
ago, has revolutionized computing, computing does not start with electronic
computers, and there is no reason why it should end with them. Indeed, even
electronic computers have their limitations in what concerns the amount of
the data they can store and their speed thresholds, both these aspects being
determined by physical barriers which will soon be reached.

A promising direction in theoretical computer science for the next gen-
eration of computing devices is natural computing, a research area more and
more active in the last decades. Natural computing is a fast growing field of
interdisciplinary research driven by the idea that natural processes can be
used for implementing computations, constructing new computing devices,
and to get inspirations for new computational paradigms.

The current understanding of this research area includes fields like quan-
tum Computing, evolutionary computing, neural networks, molecular and
cellular computing. Quantum computing uses quantum parallelism to per-
form computations; evolutionary computing uses the concepts of mutation,
recombination, and natural selection from biology to design new algorithms
and new ways of performing computations; neural networks construct com-
putational paradigms inspired by the highly interconnected neural structures
in the brain and in the nervous system.

Molecular and cellular computing (background topics of this thesis) con-
struct and investigate computational models inspired by molecular processes
that can be either artificially created in laboratory or naturally happening
in living organisms, like, for instance, the biochemical reactions present in
living cells.

1.1 Natural Computing: Cellular and Molecular
Computing

Computing with cells is a considerably old field in computer science theory.

The first cellular computing model inspired in the functioning of the
brain, in the way its elements (neurons) are connected by a net in an appro-
priate way (nervous system), was created in 1943 by Warren S. McCulloch
and Walter Pitts, MIT, within the paper “A logical calculus of the ideas im-
manent in nervous activity” [66]; afterward it led to automata theory, [57].
The model consists of a network of simple processors, connected by com-
munication channels, in such a way that they only operate over local data
and data received via such channels. Additionally, these models include a
training and learning procedure.

The next fundamental impact into cellular computing is due to John
von Neumann who in 1947 introduced the notion of cellular automata (CA)

16

based on generalizations of multicellular interactions, in an attempt to de-
velop an abstract model of self-reproduction in biology. Cellular automata
was designed also to answer the basic question whether is it possible to
construct robots that can construct identical robots, i.e., robots with the
same complexity. The model proposed by von Neumann gave a positive
(theoretical) answer to this question.

CAs are dynamical systems in which space and time are discrete. A
cellular automaton consists of an array of cells, each of which can be in one
of a finite number of possible states, updated synchronously in discrete time
steps, according to a local, identical interaction rule. CAs exhibit three no-
table features, namely, massive parallelism, locality of cellular interactions,
and simplicity of basic components (cells). Thus, they present an excellent
point of departure for our forays into parallel cellular machines.

In 1968, the biologist Aristid Lindenmayer (1925-1989), introduced a
beautiful mathematical model of development of multicellular organisms,
[60]. The development happens in parallel everywhere in the organism. A
living system may consist of millions of parts, all having their own charac-
teristic behavior. However, although a living system is highly distributed,
it is massively parallel. Therefore, parallelism is a built-in characteristic of
Lindenmayer (L) systems. These basic ideas gave rise to an abundance of
language-theoretic problems, both mathematically challenging and interest-
ing from the point of view of diverse applications.

Those biological cell-inspired computing models consider the cell as an
atomic unit and only the interactions/communications between cells play an
essential role for computing, not also their internal structure.

Three decades after A. Lindemnayer’s work, Gheorghe Paun, observing
the structure and the behavior of living cells, where chemical compounds are
processed in a massively parallel manner inside a compartmental structure of
cell membranes that control the substance exchange between regions they
delimit, proposed an abstract cellular computing model called membrane
system in his work “Computing with membranes”, [79], in 1998. Membrane
systems are based on biological single living cell compartmental structure
and chemical evolution, communication and interaction functions in com-
partments. The computing model was subsequently named P system. A
key structural notion is that of a membrane by which a system is divided
into compartments where chemical reactions can take place. These reac-
tions transform multisets of objects present in the compartments into new
objects, possibly transferring objects to neighboring compartments, includ-
ing the environment. P systems are a class of distributed parallel computing
devices of a biochemical type.

The idea to perform computations on a molecular and atomic scale and
to construct “sub-microscopic” computers is credited, by many scientists,
to R. P. Feynman. Feynman, in his famous talk “There is plenty of room

17

at the bottom” given in 1959 at the annual meeting of American Physical
Society, proposed to manipulate directly atoms to construct nano-machines
(including nano-computing machines). The content of this talk together
with many seminal ideas about (what we generally call now) nanotechnology
can be found in [35].

Few years later, in 1973, C. Bennett discussed how to perform com-
putations on a molecular scale (see [9]) proposing to use RNA molecules
as a physical medium for implementing computations; in a following work
[10] Bennett proposed a theoretical model of a Turing machine storing in-
formation using RNA molecules and processing them by using (imaginary)
enzymes to catalyze biochemical reactions.

A formal model of the recombination of DNA molecules has been in-
troduced by Tom Head [44], in 1987, as the splicing operation under the
influence of restriction enzymes (which cut DNA molecules at specific sites)
and ligases (which paste together DNA fragments whose sticky ends match).

As von Neumann moved from Turing’s abstract computing model to
practice, an important achievement in computer science in general and in
natural computing in particular was obtained by computer theorist Leonard
M. Adleman in 1994, [1], when he surprised the scientific community by
using the tools of molecular biology to solve a hard computational prob-
lem. Adleman’s seminal experiment, solving an instance of the directed
Hamiltonian Path Problem by manipulating DNA strands, partially accom-
plishes Feynman’s theory in practice. The experiment provoked an avalanche
of computer science/molecular biology /biochemistry/physics research, while
generating at the same time a multitude of open problems.

The excitement for DNA computing was mainly caused by its capability
of massively parallel searches. This, in turn, showed its potential to yield
tremendous advantages from the point of view of speed, energy consumption
and density of stored information. For example, in Adleman’s model, [2],
a DNA computer could be 1,200,000 times faster than the fastest super-
computer, and about 1010 times more energy efficient ([1]). A single DNA
memory could hold more words than all the computer memories ever made.

DNA computing is concerned with studying and constructing computa-
tional components in vivo or in vitro. The former is concerned with the theo-
retical foundations and experimental work on building DNA-based comput-
ers in test tubes. The latter is concerned with constructing computational
components in living cells, and with studying computational processes tak-
ing place in living cells (such as simple switching circuits, [70]).

On the other hand, another general possibility consists in investigating
computational processes at molecular level that take place in living cells.
For instance, a fruitful line of research consists in analyzing the process of
gene assembly in ciliates (the reader can consult the recent monograph [32]
dedicated to this research area). Two models for gene assembly in ciliates
have been proposed and investigated in the last few years. The DNA ma-

18

nipulations postulated in the two models are very different: one model is
intramolecular — a single DNA molecule is involved, folding on itself ac-
cording to various patterns, while the other is intermolecular — two DNA
molecules may be involved, hybridizing with each other. Consequently, the
assembly strategies predicted by the two models are completely different.
Interestingly however, the final result of the assembly (including the assem-
bled gene) is always the same. '

The computational nature of gene assembly in ciliates was first pointed
out by Lila Kari and Laura Landweber [55], [58], [59] — they noticed that
the process of assembling genes resembles the structure of the “molecular
solution” of the directed Hamiltonian path problem reported by Adleman
in his paper [1]. Kari and Landweber have proposed a model based on
intermolecular interactions. Another model of gene assembly, based on in-
tramolecular interactions (different parts of the same molecule interacting
with each other) was introduced by Ehrenfencht, Prescott and Rozenberg
in [34] and [91]. This research concentrates on the (formal and biological)
properties of the process of gene assembly itself.

As the reader can see, molecular and cellular computing have grown in
an extremely fast way and have spread in several different directions; our
short historical introduction cannot cover all these aspects but the reader
can consult the proceedings of the annual meeting on DNA based computers,
currently in its twelfth year, or the monographs dedicated to the area, for
instance [11, 87}, as well as the proceedings of yearly workshops on membrane
computing, currently in its eighth year, or the monographs [81, 25] and the
web-page [106].

1.2 Cells, Membranes and Molecules: An Infor-
mal Understanding

In this section we recall some basic elements concerning living cells: cell
structure and functions. The reader can use this section as a short reference
for the biological arguments used through all the thesis. We also recall
some precise biological facts in the following chapters when we give the
formalizations of them.

According to the standard cell biology all living things are composed of
one or more cells. But what exactly is a cell, and what does it look like?
Francis Harry Compton Crick (1916-2004) (together with James Dewey
Watson (1928-) he solved the DNA mystery in 1953, [27]), describes it
in his own words: The cell is like a bag, with a strong outside to give it
strength, and an inside that is a special filter which divides the inside from
the outside. It is a very clever filter; whilst many of the molecules that are
produced inside the cell, cannot get through the filter, it still allows other
molecules to flow in and out. If we look inside this bag, under a powerful

19

microscope, we notice that in several parts of the cell there are quite a lot
of very large, long molecules, and many rather small, thin ones, which looks
rather like a long piece of string. There may be several different kinds of
each size. So the cell is like a very complicated factory In it many sorts
of work are going on at the same time, with small molecules being changed
one into another, and large molecules being built out of small ones. It is
astonishing that the cell can, from every simple beginnings, build up this
huge variety of molecules of all shapes and sizes. Imagine, then, every cell
acting as a very small, highly efficient factory. (Adapted from Crick’s book,
Of Molecules and Men, [26].)

Cells fall into prokaryotic and eukaryotic types. Prokaryotic cells are
smaller (as a general rule) and lack much of the internal compartmentaliza-
tion and complexity of eukaryotic cells. No matter which type of cell we
are considering, all cells have certain features in common: cell membrane,
DNA, cytoplasm, and ribosomes.

The shapes of cells are quite varied with some, such as neurons, being
longer than they are wide and others, such as parenchymnia (a common type
of plant cell) and erythrocytes (red blood cells) being equidimensional. Some
cells are encased in a rigid wall, which constrains their shape, while others
have a flexible cell membrane (and no rigid cell wall).

INA to ANA Bk RNA o Arotein
Transcription e =

DNA

Figure 1.1: Structural architecture of a cell.

The structure and functions of cells are prescribed by genes contained
in the DNA molecules of chromosomes. The genetic information in DNA is
transcribed into RNA molecules, which in turn are translated into protein
molecules. Protein molecules are the principal molecules that prescribe cell
structures and functions.

20

Cells reproduce by cell division. In order to divide, a cell must first in-
crease in size so that two daughter cells of adequate size can be produced. An
essential preparation for cell division is the duplication of the chromosomes
so that each daughter cell can receive a full diploid set of chromosomes. In
other words, each DNA double helix in every chromosome must first be du-
plicated if a cell is to divide successfully. The duplication of DNA molecules
is referred to as DNA replication. The replicated DNA are identical to
each other in nucleotide sequences, and therefore contain precisely the same
genes, and are identical to the original parental double helix.

Proteins are suspended in the inner layer, although the more hydrophilic
areas of these proteins “stick out” into the cells interior and outside of the
cell. These proteins function as gateways that, in exchange for a “price”,
will allow certain molecules to cross into and out of the cell. These integral
proteins are sometimes known as gateway proteins. The outer surface of the
membrane will tend to be rich in glycolipids, which have their hydrophobic
tails embedded in the hydrophobic region of the membrane and their heads
exposed outside the cell. The compartments of an animal cell are depicted
in Figure 1.1.

We also briefly describe here the neural cells structure and functioning
which we have chosen, and those features that are of interest from a compu-
tational point of view and from which we will abstract the (mathematical)
features of our computing devices.

Because this thesis is not deeply connected to biology, but biology is its
background, sometimes the reason to introduce models, it might be suitable
to describe here the biological phenomenon starting with a mathematical
point of view. Several decades ago, John von Neumann considered an ap-
proach toward the understanding of the nervous system focusing on the in-
formation theory and automata, hence computing machines. He said: “The
most immediate observation regarding the nervous system is that its func-
tioning is prima facie digital. The basic component of this system is the
nerve cell, the neuron, and the normal function of a neuron is to generate
and propagate a nerve impulse. This impulse is a rather complex process,
which has a variety of aspects — electrical, chemical, and mechanical. It
seems, nevertheless, to be a reasonably uniquely defined process, i.e., nearly
the same under all conditions; it represents an essentially reproducible, uni-
tary response to a rather wide variety of stimuli. (...) The nerve impulse
is a continuous change, propagated — usually at a fixed speed, which may,
however, be a function of the nerve cell involved — along the axon. In the
area of the axon over which the pulse-potential is passing, the ionic consti-
tution of the intracellular fluid changes, and so do the electrical-chemical
properties of the wall of the axon, the membrane” (The Computer and the
Brain, 1958, [69]).

The nervous system consists of about 10'° nerve cells. Each of these neu-

21

« The dendrites receive informaticn
from receptor cells or axon terminals
of other neurons.

R4

>

Preoprapdt tarwinals
F
. NI GRATION

o T e The soma integrates (sums) the

il information received from all of its
' dendrites.

\\‘ « The axon hillock is the site of action
\

€\ e potential (AP) formatior.
i « The axon carries the AP away from
—— the soma.
I « The axon terminals trar smit the
o (SR e e information to a muscle. a gland, or
\34‘;" oometing another neuron.
N AT

Figure 1.2: A biological neuron structure

rons is connected to about 10000 other neurons via synapses. This gigantic
network of neurons and synapses is placed in a small portion of the human
brain. Neural networks are generally considered as information-processing
systems, i.e., as systems which operate transformations of their inputs in
order to produce outputs.

Brain cells communicate in a process that begins with an electrical signal
and ends with a neurotransmitter binding to a receptor on the receiving
neuron. It lasts less than a thousandth of a second, and is repeated billions
of times daily in each of the human brain’s 100 billion neurons. The main
part of the action takes place inside the secreting cell.

The basic unit in the nervous system is the neuron. The neuron is not
one homogeneous integrative unit but is (potentially) divided in many sub-
integrative units, each one with the ability of mediating a local synaptic
output to another cell or local electro-tonic output to another part of the
same cell.

Neurons are considered to have 3 main parts: a soma, the main part of
the cell where the genetic material is present and life functions take place; a
dendrite tree, the branches of the cell from where the impulses come in; an
axon, the branch of the neuron over which the impulse (or signal) is prop-
agated. The branches present at the end of the axons are called terminal
tree. An axon can be provided by a structure composed by special sheaths.
These sheaths are involved in molecular and structural modifications of ax-
ons needed to propagate impulse signals rapidly over long distance. The

22

impulse in effect jumps from node to node, and this form of propagation
is therefore called saltatory conduction. It is an efficient mechanism that
achieves maximum conduction speed with a minimum of active membrane,
metabolic machinery, and fiber size. There is a gap between neighboring
myelinated regions that is known as the node of Ranvier, which contains a
high density of voltage-gated Na™ channels for impulse generation. When
the transmitting impulses reach the node of Ranvier or junction nodes of
dendrite and terminal trees, or the end bulbs of the trees, it causes the
change in polarization of the membrane. The change in potential can be ex-
citatory (moving the potential toward the threshold) or inhibitory (moving
the potential away from the threshold). In Figure 1.2, neuron structure is
represented.

The impulse transmission through a neuron follows this path: from den-
drite to soma to axon to terminal tree, and then to synapse. If different
impulses reach at the same time a certain node, then it might happen that
the combined effects of the excitation and inhibition may cancel each other
out. Once the threshold of the membrane potential is reached, an impulse
is propagated along the neuron or to the next neuron.

The foregoing account has considered the synapse as a mechanism for
unidirectional transmission between cells, as envisaged in the classical stud-
ies. The complexity revealed by modern research has widened this view to
include several new concepts. First, the presynaptic terminal may have re-
ceptors for its own released products; thus, the presynaptic terminal may be
postsynaptic as well to its own transmitter. Second, the postsynaptic ter-
minal may send retrograde signals to the presynaptic terminal. These may
be rapid signals. By these actions, the synapse can be viewed as having a
bidirectional nature. Third, it is obvious that the synapse is not a simple
link between two neurons, but rather is a complex organelle in its own right.
In most synapses the direct cause of change in potential is not electrical but
chemical: the electrical pulse reaches the endbulb and causes the released
of transmitter molecules from little packets (vesicles) through the synaptic
membrane.

The transmitter diffuses across the cleft to act on its postsynaptic recep-
tors. Diffusion is controlled by the cleft extracellular matrix. The concen-
tration of the transmitter is brought back to basal levels by diffusion, and in
some cases by hydrolysis or reuptake. Neuropeptides may diffuse over long
distances. Some of the previously mentioned ideas will be incorporated (ab-
stracted) in our computing model, investigated in Chapters 4 and 5. More
details about neural biology, can be found in the classical book [101], and
about information processes taking place along the axon in [100].

Ciliates form a diverse group of unicellular organisms — some 8000 species
are currently known and many others are likely to exist — that are found
practically in all environments containing water. Their diversity can be

23

appreciated by comparing their genomic sequences: some ciliate types differ
genetically more than humans differ from fruit flies!

1234587
045 O
T Ay AT A
/ { In the macronucleus, gene-sized
chromosomes assemble from
their scramblad building blocks;
telomere repaats (boxes) mark
and protect the surviving ends

in the micronucleus. coding
regions of DNA are dispersed
over the long chromasome

N——

Figure 1.3: Overview of gene unscrambling,
from http://www.princeton.edu/~ 1£1/

Two characteristics unify ciliates as a single group: the possession of
hairlike cilia used for motility and food capture, and the presence of two
kinds of functionally different nuclei in the same cell, a micronucleus and a
macronucleus; the latter feature is unique to ciliates. The macronucleus is
the “household” nucleus — all RNA transcripts are produced in the macronu-
cleus. The micronucleus is a germline nucleus and has no known function
in the growth or in the division of the cell. The micronucleus is activated
only in the process of sexual reproduction, where at some stage the micronu-
clear genome gets transformed into the macronuclear genome, while the old
macronuclear genome is destroyed. This process is called gene assembly, it
is the most involved DNA processing known in living organisms, and it is
most spectacular in the Stichotrichs species of ciliates ([43]). An overview of
gene unscrambling is presented in Figure 1.3. In Chapter 6, we investigate
a computability model based on gene assembly in ciliates.

24

Chapter 2

Preliminaries

2.1 Formal Language Preliminaries

This section gives a brief survey of the notions of formal languages, automata
theory, and regulated rewriting used in this thesis.

2.1.1 Alphabets, Strings, Languages, and Multisets

An alphabet is a finite and non-empty set of symbols. Given an alphabet
V, the free monoid generated by V under the operation of concatenation
(defined in the usual sense) is denoted by V* (it is the set of all strings
of symbols from V). The empty string is denoted by A (it consists of no
symbols); the set of non-empty strings over V is V* = V* — {A}.

An arbitrary subset of V* is called a language over V. A language not
containing the empty string is said to be A — free.

Given a string € V* such that © = z1x9, for some z1,z2 € V*, then
x1,x2 are respectively called a prefiz and a suffix of z. If x = x1z923, for
some r1,x2,x3 € V* then x5 is called a substring of x. The sets of all pre-
fixes, suffixes, and substrings of a string z are denoted by Pref(z), Suf f(x),
Sub(z), respectively. The notation Perm(z) indicates the set of all strings
that can be obtained as a permutation of the string x.

A circular string is a sequence x = xz1T9---Z, with the assumption
(convention) that z; follows z,. In other words, x can be represented by
any circular permutation of 1z - - - T, for instance, z;jy1 - Tpx1 - - Ty, for
any 1 <4 < n—1. Thus, a circular string ex is an equivalence class of all
linear strings associated to the linear string x. The set of all circular strings
over V is denoted by V*°.

The length of a string € V* is the number of all occurrences in x of
symbols from V', and it is denoted by |z|, while the number of occurrences
in z of a specified symbol a € V is denoted by |z|,. The empty word has a
length 0. For a language L C V*, the set length(L) = {]z| | z € L} is called
the length set of L.

25

Given two words x and y, the concatenation of z and y (in symbols, zy)
is defined as the word z consisting of all symbols of z followed by all symbols
of y; thus, |z| = |z| + |y|- In particular, the concatenation of a word x with
itself k times will be denoted as z¥, and z° = \.

The set of symbols from V occurring in a string z is denoted by alph(zx);
given a language L C V*, we define alph(L) = |, 1, alph(z).

Given an alphabet V = {aj,a9,...,a,}, with every string x € V* we
can associate the Parikh vector Wy (z) = (|2]a1, |%lags - - -+ |2|a,)- Given a
language L C V*, we can also define the Parikh image of L as Uy (L) =
{¥v(z) |z e L}.

If FL is a family of languages, then PsF'L denotes the family of Parikh
images of languages in F'L and NFL the family of length sets of languages
in FL.

A set M of vectors in N, for some n > 1, is said to be linear if there
are some vectors vy, ...,y € N m > 0, such that M = {vg + > i, ;v; |
ai1,...,am, € N} A finite union of linear sets is a semilinear set. A language
L C V* is semilinear if its Parikh image Wy (L) is a semilinear set.

The usual set operations of union, intersection, difference, and comple-
mentation can be naturally extended to languages.
There also are several operations which are specific to languages:

e the concatenation of two languages Li,Ls C V* is the set LiLy =
{:L'11L'2 | X1 € L1,1L'2 e Lz};

o the Kieene closure is L* = (U5 Lt, where L' = Li"'L for all i > 1
and, by convention, L® = {\}. The +-Kleene closure is the set Lt =
Uizt L

e the right quotient of a language Ly C V* with respect to a language
Ly CV*istheset L1/Ly = {x € V*| zy € L) for some y € La};

e the left quotient of a language L, € V* with respect to a language
Ly CV*is the set Lo\L1 = {z € V* | yz € L; for some y € Ly};

e the right derivative of a languagé L C V* with respect to a string
xz € V* is the set 9L(L) = {w € V* | wz € L};

e the left derivative of a language L C V* with respect to a stringz € V*
is the set OL(L) = {fw € V* | zw € L}.

Let £(U*) denote the set of all languages over an alphabet U. A finite
substitution over an alphabet V is a mapping o : V* — L(U*) such that,
for each symbol a € V, o(a) is a finite non-empty language, with o()\) =
{A\} and o(z122) = o(x1)o(zg) for all strings 1,22 € V*. If none of the
languages o(a),a € V, contains the empty string, then the substitution is

26

called A — free. If each o(a) consists of a single string, then the substitution
is said to be a morphism.

A morphism ¢ : V* — U* is called a coding if o(a) € U for alla € V
and it is called a weak coding if o(a) € UU{A} for eacha € V.

The mappings defined on strings are extended to languages in the natural
way; for instance if o : V* — U* is a morphism and L C V*, then o(L) =
{o(z) |z € L}.

A family FL of languages is closed under an m-ary operation 7, if, for
all languages Li,..., Ly in FL, the language v,(L1,...,Ly) is also in FL.

Any language which can be obtained by using finitely many times the
operations of union, concatenation, and Kleene closure is called regular.
Regular languages are defined (among many other possibilities) by means of
reqular expressions. In short, such an expression over a given alphabet V is
constructed starting from A and the symbols of V' and using the operations
of union, concatenation, and Kleene +, using parentheses when necessary
for specifying the order of operations. Specifically, (i) A and each a € V are
regular expressions, (ii) if E1, Fy are regular expressions over V, then also
(E1) U (E2), (E1)(E»), (F1)* are regular expressions over V, and (iii) noth-
ing else is a regular expression over V. With each regular expression E we
associate a language L(E), defined in the following way: (i) L(A) = {A}
and L(a) = {a}, for all a € V, (ii) L((Ey1) U (E3)) = L(E1) U L(E»),
L((E1)(Ep)) = L(E1)L(E3), and L((E;)*) = L(E1)™, for all regular expres-
sions E1, E9 over V. Non-necessary parentheses are omitted when writing a
regular expression, and (E)* U {\} is written in the form (E)*.

A multiset over a set V is a map M : V — N, where M(a) denotes the
multiplicity of the symbol a € V in the multiset M. This fact can also be
indicated in the forms (a, M(a)) or a™(® for all a € V. If the set V is finite,
e.g., V = {ai1,...,a,}, then the multiset M can be explicitly described as
{(a1, M(a1)), (a2, M(a2)),...,(an, M(ay))}. The support of a multiset M is
the set supp(M) = {a € V | M(a) > 0}. A multiset is empty (respectively,
finite) when its support is empty (respectively, finite).

Some basic operations may be defined for multisets. Let My, Ms : V — N
be two multisets. We say that M; is included in Ms, and we denote it
by My C My, if Mi(a) < Ma(a) for all a € V. The inclusion is strict,
M; C My, if M; C My and My # Ms. The union of M; and M; is the
multiset My U My : V — N defined by (M; U Ms)(a) = Mi(a) + My(a) for
all @ € V. The difference is the multiset M; — M> : V' — N defined by
(M1 — M>)(a) = Mi(a) — Ma(a) for all a € V; obviously, M; — My is defined
only when M, is included in Mj.

Ifne Nand M : V — N is a multiset, then the scalar product of M by
n is the multiset n ® M : V — N defined by (n ® M)(a) = n - M(a) for all
acV.

A compact notation can be used for finite multisets: if M = {(a1, M(a1)),

27

(ag, M(a3)),...,(an, M(ay))} is a multiset of finite support, then the string
w = aiw(al)ag/l(”) ...a% (an) (and all its possible permutations) precisely
identifies the symbols in M and their multiplicities. Hence, given a string
w € V*, we can assume that it identifies a finite multiset over V defined by
M(w) = {(a,|w|s) | a € V}. Moreover, given two strings wy, ws represent-
ing two multisets, the concatenation wywsy denotes the multiset obtained by
the union of multisets represented by w; and wa.

2.1.2 Chomsky Grammars

A Chomsky grammar, (23], is a quadruple G = (N, T, S, P), where N,T
are disjoint alphabets of non-terminal and terminal symbols, S € N is the
axiom and P is a finite set of rewriting rules (or productions) of the form
u — v, withu € (NUT)*,v € (NUT)*, with the condition that u contains
at least one non-terminal symbol.

Given a string w = wjuwsg for wi,wy € (N UT)* and a production
u — v in P, we can rewrite u by means of v and we obtain the string
z = wyvwse. This operation is called a direct derivation in G and it is
denoted by w = z. The reflexive and transitive closure of the relation
= is denoted by =>*, meaning that we have w ==* z if either w = z, or
W => 2] = 29 => ... = 2 = 2z for some z1,...,2, € V* k > 1. Each
string w € (N UT)* such that S =* w is called a sentential form.

The language L(G) generated by G is the set of sentential forms over
the terminal alphabet, that is, L(G) = {z € T* | S =" z}.

If in the derivation w = z above we have that w; € T*, then the
derivation is leftmost. If we € T*, then the derivation is rightmost.

According to the form of the rules in the set P, the Chomsky grammars
can be classified as follows:

e Type-0 grammar: the productions are of the form u — v, where u €
(NUT)t,v € (NUT)* and u contains at least one non-terminal
symbol.

e Type-1 (context-sensitive) grammar: the productions are of the form!
u — v, where u = ujAug,v = uizus, with uj,ug € (NUT)*, A €
N,z € (NUT)". The form of the productions of a context-sensitive
grammar can equivalently be given in terms of the length of the string:
for all w — v in P, the condition |u| < |v| must hold.

e Type-2 (context-free) grammar: the productions are of the form A —
v, where A € N,v € (NUT)*

IThe production § — X is also allowed, providing that the axiom S does not appear
in the right-hand member of any rule in P.

28"

o Type-3 (regular) grammar: the productions are either of the forms
A — wB, A — w (right regular) or of the form A — Bw, A — w (left
regular), where A, B € N,w € T*.

The families of languages generated by context-sensitive, context-free,
and regular grammars are denoted by CS,CF, REG, respectively, and are
naturally called context-sensitive, context-free, and regular languages. The
languages generated by type-0 grammars are called recursively enumerable
languages and their family is denoted by RE.

We can have next informal definitions.

Definition 2.1 We call a language L recursively enumerable iff there is an
effective procedure of listing only the words in L with or without repetitions.

By an effective procedure (equivalently, algorithm or mechanically executable
process) we mean a finite set of instructions which describe in an unambigu-
ous and detailed way how the task is performed. There are no restrictions
on space or time needed to carry out the procedure, although the amount
of information available at each step of the procedure is finite.

Definition 2.2 We call a language L recursive iff there is a terminating
algorithm which decides, for any word w, whether or not w belongs to L.

We also denote by FIN the faniily of finite languages. Among these
families, the following strict inclusions (describing the Chomsky hierarchy)
hold:

FINCREGCCFCCSCRE.

Theorem 2.1 (Chomsky normal form) For each \-free context-free
grammar G an equivalent context-free grammar G' = (N,T,S, P) can be
effectively constructed, where the rules in P have the forms A — BC or
A —a, with A,B,Ce€ N andacT.

Theorem 2.2 (Greibach normal form) For each A-free context-free
grammar G an equivalent context-free grammar G' = (N,T, S, P) can be

effectively constructed, where the rules in P have the forms A — aX with
A€ N,aeT, and X € N*.

Theorem 2.3 (Kuroda normal form) For each type-0 grammar G there
exists an equivalent type-0 grammar G' = (N, T, S, P) where the rules have
the form A — BC,A — a,A — \,AB — CD, with A,B,C,D € N and
acT.

29

2.1.3 Regulated Rewriting

The idea of regulated rewriting consists in restricting the application of the
rules in a context-free grammar, in order to avoid some derivations and hence
obtaining a subset of the context-free language generated in the usual way.
The computational power of some context-free grammars with regulated
rewriting turns out to be greater than the power of context-free grammars.

We recall here matriz grammars.

A matriz grammar with appearance checking (ac) is a construction G =
(N,T,S,M, F), where N, T are disjoint alphabets of non-terminal and ter-
minal symbols, S € N is the axiom, M ‘is a finite set of matrices, which are
sequences of context-free rules of the form (A — z1,...,4, = x,), n > 1,
(with A; € N,z; € (NUT)* in all cases), and F' is a set of occurrences of
rules in M.

For w,z € (NUT)* we write w = z if there are a matrix (4; — z3,
.oy Ay — zy) in M and strings w; € (NUT)*,1 < ¢ < n+ 1, such that
w = Wi, Z = W41, and, for all 1 <¢ < n, either

(1) w; = wAw!, wip1 = wizyw!, for some wj, w € (NUT)*,

or
(#) w; = wi41, A; does not appear in-w;, and A; — z; appears in F'.

The rules of a matrix are applied in order, possibly skipping the rules
in F if they cannot be applied (one says that these rules are applied in the
appearance checking mode). The family of languages generated by matrix
grammars with appearance checking is denoted by M ATg.. G is called a
matriz grammar without appearance checking if and only if F = (). In this
case, the generated family of languages is denoted by M AT.

The following results hold:

Theorem 2.4

CF C MAT C MAT,. = RE.
CS — MAT # 0.

e MAT is closed under the operations of union, concatena-
tion, intersection with regular languages.

Each language L € M AT over the one-letter alphabet, L C
{a}*, is regular. '

A matrix grammar G = (N, T, S, M, F) is said to be in the binary normal
form if N = Ny U Ny U {S,#} with sets N1, No, {5, #} mutually disjoint,
and the matrices in M are of one of the following forms:

1. (S — XA) with X € Ny, A € Ny;

30

2. (X -Y,A—z) with XY € N;, A € Ny,
z € (NoUT)* |z| <2

3. (X Y, A— #)with X,Y € N1, A € Ny;
4. (X > \A—-z)with X e Nj,Ae€ Ny,z € T, |z| < 2.

Moreover, there exists only one matrix of type 1, F exactly consists of
all rules A — # appearing in matrices of type 3, and # is a trap-symbol
(once introduced, it can never be removed). Finally, each matrix of type 4
is used only once, at the last step of a derivation.

The corresponding normal form for appearance checking does not use
matrices of type 3 and the symbol #.

Theorem 2.5 For each matriz grammar (with or without appearance check-
ing) there exists an equivalent one in the binary normal form.

There exists even a more restricted normal form for matrix grammars with
appearance checking. We say that a matrix grammar G = (N, T, S, M, F)
is in the Z-binary normal form if N'= N; U Ny U {S, Z,#} is the union of
mutually disjoint sets, and the matrices in M are of one of the following
forms:

1. (S — XA) with X € N1, A € No;

2. (X -Y,A—z) with XY € Nj, A € Ny,
z € (N2UTH |2 <2

3. (X =Y, A—-#)with X € M, Y e NqU{Z}, A € Ny;
4. (Z—))\).

Moreover, there is only one matrix of type 1, F' consists exactly of all
rules A — # appearing in matrices of type 3 (# is a trap-symbol, if it is
introduced, then it cannot be removed) and, if a sentential form generated by
G contains the symbol Z, then it is of the form Zw, for some w € (TU{#})*.
The matrix of type 4 is used only once, in the last step of a derivation.

Theorem 2.6 For each L € RE there is a matriz grammar with appearance
checking in the Z-binary normal form such that L = L(G).

In several proofs in the P systems area (and also in this thesis) matrix
grammars in the binary normal form or in the Z-binary normal form are used.
To simplify the use of these grammars we introduce a standard notation
usually used in the area. A matrix grammar with appearance checking
in the binary normal form is always given as G = (N, T, S, M, F) with
N = N{UNaU{S, #}, and with n+1 matrices in M, injectively labeled with
Mo, M1, ..., My; the matrix mg : (S — XipitAinit) is the initial one, with
Xinit a given symbol from Ny and A;n: a given symbol from Na; the next

31

k matrices are without appearance checking rules, m; : (X — a, A — z),
1<i<k,where X € Nj,a € NyU{)\}, and A € Ng,z € (NoUT)*, |z| <2
(if @ = A then z € T™*); the last n — k matrices have rules to be applied in
the appearance checking mode, m; : (X — Y, A — #),k+1 < ¢ < n, with
X, Y € Ni, A€ Ns.

The non-terminal matrices m;,1 < ¢ < k, are called matrices of type
2, the matrices m;, k + 1 < ¢ < n, are called matrices of type 3, and the
terminal matrices m; : (X — A\, A — z),1 < i < k, are called matrices of
type 4.

In the case of grammars in the Z-binary normal form, we have N =
Ny UNyU{S, Z,#}, the matrices m;, k+1 < i < n, can also be of the form
mq: (X — Z, A — #), and the only terminal matrix is mpy1 : (Z — A).

2.1.4 Parallel Rewriting

The literature is rich of parallel rewriting devices, where the rewriting of the
current sentential form is done in a parallel way (and not in the sequential
way like for Chomsky grammars).

Lindenmayer systems (or L systems, in short) are the most known par-
allel rewriting systems. They have been introduced in 1968 to the aim of
modeling the development of simple multicellular organisms. The peculiar
characteristic of L systems is their parallelism: at each step of the rewriting
process, all symbols of the current string have to be rewritten, in contrast to
the sequential rewriting of phrase structure grammars, where only a specific
part of the string is rewritten at each step.

A OL (zero-interaction Lindenmayer) system is a construction G =
(V,w,h), where V is an alphabet, w € V1 is the axiom, and h is a fi-
nite set of rules of the form a — v, with a € V,v € V* such that for
each a € V there is at least one rule a — v in h (we say that P is
complete). For wi,we € V* we write w1 = wq if w1 = a1...a, and
Wo = Vy...Vp, for a; — v; € h,1 < i < n. The language generated by G is
LG)={z e V" |w="1z}.

If for each a € V there is exactly one rule a — v in P, then G is said to
be deterministic. If for each rule a — v € h it holds v # A, then the system
G is said to be propagating (or non-erasing). If we distinguish a subset T'
of V and we define the generated language as L(G) = {z € T* | w =" z},
then G is said to be extended.

The family of languages generated by 0L systems is denoted by 0L, and
we add the letters D, P, E in front of 0L if the systems are also deterministic,
propagating or extended, respectively.

A tabled OL system (TOL) is a construction G = (V,w, h1, ..., hy) such
that each triple (V,w, h;),1 < i < n, is a OL system; each h; is called a table.
The language generated by G is L(G) = {z € V* | w =>h;, W1 =,

C=h, Wy = z,m > 0,1 < 5 < n,1 < i < m}, that is, at each

Jm

32

derivation step only the rules from the same table can be applied. A TOL

system is deterministic when each table is deterministic, it is propagating if

none of its tables contains an erasing rule, it is extended if there exists an

alphabet of terminal symbols. The family of languages generated by TOL

systems is denoted by TOL, and the letters D, P, E in front of TOL are added

if the systems are also deterministic, propagating or extended, respectively.
It is known that:

Theorem 2.7

e CF C EOL C ETOL C CS,
e EDOL C EDTOL C ETOL;
e EDOL C EOL.

A very useful normal form for ETOL systems is the following:

Theorem 2.8 For each L € ETOL there exists an ETOL system G =
(V,T,w, hy, ha) with only two tables, such that L = L(G).

Moreover, the following stronger normal form for tabled Lindenmayer
systems can be obtained.

Theorem 2.9 For each L € ETOL there is an ETOL system G = (V,T,w,
hi, ha) generating L, such that the terminals are only trivially rewritten: for
each a € T, if (a — &) € hy U hg, then a = a (these productions are called
trivial). :

2.1.5 The Splicing Operation

We first introduce the splicing operation and the splicing systems in the
formalization considered in [87].

Consider an alphabet V and two special symbols, #,$, not in V. A
splicing rule (over V) is a string of the form

r = wy FugSusHus,

where u1, ug, u3, ug € V*. (For a maximal generality, we place no restriction
on the strings u, uo, u3, u4. The cases when ujus = A or ugus = A could be
ruled out as unrealistic.)

For a splicing rule r = uj #us$us#uy and strings z,y, z € V* we write

(z,y) br 2z iff == z1uiusms,
Y = Yy1uzuqy2,
Z = T1U1U4Y2,

for some z1,z9,y1,y2 € V*.

33

We say that we splice x,y at the sites uius, ugug, respectively, and the result
is z.
A splicing (H) scheme is a pair

o =(V,R),

where V' is an alphabet and R C V*#V*$V*#V™ is a set of splicing rules.
For a given H scheme o = (V, R) and a language L C V*, we define

o1(L)y={z€V*|(z,y) by 2, for some z,y € L,r € R}.

Actually, in [44], a different formulation is used. Specifically, in [44],
a splicing scheme is a pair R = (V,~) where V is an alphabet and ~ a
pairing relation, ~C V3 x V3. Then, having two strings z, y and two triples
of nonempty words (a,p,3), (¢/,q,8) in relation ~ (we write (a,p,3) ~
(,q,8"), if z = 2’ apBzr” and y = y'a’qB'y", and p = ¢, then we allow the
recombination operation; the strings obtained by recombination are z; =
z'arBy” and zg = y'o'rBz", where r = p =gq.

When having a pair (o,p,3) ~ (¢/,q,0) and two strings z and y as
above, x = 2’apfBz” and y = y'o/qB'y"”, we can consider only the string 2; =
x'ar'y"” as a result of the recombination, because the string 2o = 3'a’r8z",
is the result of the one-output-recombination with respect to the symmetric

pair, (a,y%ﬂ/) ~ (a,p, ﬂ)

2.1.6 Automata Theory

Automata are computing devices which work as accepting devices: they can
decide whether a string given as input belongs to a specified language.

The basic families of languages of the Chomsky hierarchy are charac-
terized by different kinds of recognizing automata. We present here several
types of automata for languages of finite strings.

A (non-deterministic) finite automaton is defined by the construction
A=(Q,V,q,0, F), where Q is a finite set of states, V' is a non-empty finite
set of input symbols (such that Q NV = 0), gy € Q is the initial state,
F C @ is the set of final states, and § : Q x V — P(Q) is the transition
function. We denote by (g, a) the set of all states p € @ such that there is
a transition from ¢ to p on input a. If card(é(q,a)) < lforallg€ Q,a €V,
then the automaton is said to be deterministic. In one move, if the finite
automaton is in the state ¢ € @ and it is reading the input symbol a € V,
then it enters one of the next states in 6(g, a) and moves its head one symbol
to the right.

To formally describe the behavior of the finite automaton on an input
string and not only on an input symbol, we must consider an extension of
the transition function, namely d : Q x V* — P(Q), such that

34

1. g(q, A) =g,
2. g(q, za) = Uq,eg(q’m) 5(¢',a), where x € V*,a € V, and ¢,¢' € Q.

The first condition disallows a change in state without any input, the case
when the head is reading an empty cell on the tape. The second condition
indicates that, starting in state ¢ and reading the string x followed by the
input symbol a, the finite automaton can be in any of the states which are
reachable from the state ¢’ after reading the symbol a.

A string w € V* is said to be accepted (or recognized) by the finite
automaton if, starting with the finite control in the initial state gy and with
the head reading the first symbol in w, the automaton reaches a final state
after the last symbol in w has been scanned. Hence, the language recognized
by A is the set of strings L(A) = {w € V* | 5(qo, w) N F % 0}.

Non-deterministic and deterministic finite automata are known to be
equivalent in the following sense: they both characterize the family of regular
languages, REG.

A Turing machine is a computational device consisting of a finite state
control, an input tape (which is infinite to the right), and a read/write head
which can read symbols from the tape and also rewrite the scanned symbols.

Turing machines characterize the family of languages generated by type-0
grammars and, in addition to being language acceptors, they may be viewed
as computers of functions from integers to integers. Actually, they are able to
compute any partial recursive function. The importance of Turing machines
is a direct consequence of the Church-Turing thesis: the intuitive notion
of “computable functions” is identified with the class of partial recursive
functions. Thus, the model of Turing machine is computationally complete.
Many other formalisms of computation have been defined, but none of them
have been shown to be strictly more powerful than Turing machines.

Another relevant characteristic of Turing machines is that there exists
a Turing machine U that simulates the computation of an arbitrary Turing
machine M on any of its input. Such machine is called a universal Turing
machine. Thus, we can say that Turing machines are both complete and
universal computing devices. A rewriting system M = (S,X U {#}, P) is
called a Turing machine, (98], iff:

(i) S and U {#} (with # ¢ ¥ and T # 0) are two disjoint alphabets
referred to as the state and tape alphabets.

(i) Elements so and sy of S, and U of ¥ are the initial and final state,
and the blank symbol, respectively. Also a subset T of ¥ is specified
and referred to as the terminal alphabet. It is assumed that T is not
empty.

(¢43) The productions (rewriting rules) of P are of the forms

35

(1) sia — s;b (overprint)

(2) siac — asjc (move right)

(3) sia# — as; U# (move right and extend workspace)
4) cs;a — sjca (move left)

5) #sia — #s;Ua (move left and extend workspace)

(
(
(6) spa — sy
(7) asy — sy

where s; and s; are states in S, s; # ’Sf, s; # sy, and a,b,c are in 3. For
each pair (s;,a), where s; and a are in the appropriate ranges, P either
contains no productions (2) and (3) (resp. (4) and (5)) or else contains both
(3) and (2) for every c (resp. contains both (5) and (4) for every c). There
is no pair (s;,a) such that the word s;a is a subword of the left side in two
productions of the form (1), (3), (5).

A configuration of the machine M is of the form #wj s;we#, where wjwo
represents the contents of the tape, #s are the boundary markers, and the
position of the state symbol s; indicates the position of the read/write head
on the tape: if s; is positioned at the left of a letter a, this indicates that the
read/write head is placed over the cell containing a. The TM changes from
one configuration to another according to its rules. The Turing machine
M halts with a word w iff there exists a derivation that, when started with
the read /write head positioned at the beginning of w eventually reaches the
final state, i.e., if #sow# derives #ss# by successive applications of the
rewriting rules (1) — (7). The language accepted by M is defined as follows:

L(M)y={weT"| #sbw# =p #sr#}.

The machine M is deterministic if at each step of the rewriting process, at
most one production can be applied.

There is an equivalent mode of defining the language accepted by a
Turing machine: one considers the set of strings w € T™ such that the
machine, starting from the initial state and with w as input, reaches a
configuration where no further moves are possible (we say that the machine
has reached an halting state). Note that it is also possible that a Turing
machine never reaches a halting state on some input, as its head is allowed
to move both directions on the tape. Hence, given an input string w, it
may happen that the Turing machine reaches a final state, or it halts in a
non-final state, or it never halts (it enters an infinite loop). In the last two
cases, the input string w is not accepted by the Turing machine.

Observe that, given a non-deterministic Turing machine M and an input
string w, usually there are many different computations of M on input
w. Each computation corresponds to a path in the tree associated to M,
which can be naturally defined as follows: the root corresponds to the initial

36

configuration of M; each node corresponds to a configuration of M, and
an arc between two nodes corresponds to a direct transition between the
configurations of M associated to such nodes; the leaves are (final or non-
final) halting configurations of M. Note that there also might be infinite
paths in the tree, corresponding to the possible non-halting computations
of M. '

It is well-known that the power of deterministic and non-deterministic
Turing machine is equivalent, they both characterize the family of recursively
enumerable languages (RE).

Having presented Turing machines we can recall the definition of recur-
sive languages. A language L over the alphabet V is recursive if there exists
a Turing machine that, when receives as input a string w over V, halts and
accepts if the string w is the language L, otherwise halts and rejects.

Theorem 2.10 Let L be a given language. Then the following conditions
are all equivalent:

o L is recursively enumerable;

o L is accepted by a deterministic Turing machine,

e L is accepted by a non-deterministic Turing machine;
e there is a grammar G such that L=L(G).

When working on an input string a Turing machine is allowed to use
as much tape as it needs. Note that finite state automata use (in the read
manner) only the cells where the input string is written. A Turing machine
allowed to use only a working space linearly bounded with respect to the
length of the input is called linearly bounded automaton. These machines
characterize the family of context-sensitive languages (CS).

We also recall the definition of other Turing universal computing devices
largely used in the P systems area: register machines.

An n-register machine is a construct M = (n, B, ly, lp, I), where n is the
number of registers, B is a set of labels, and I is a set of labeled instructions
of the form I; : (op(r),;,1x), where op(r) is an operation on register r of M,
and l;, l;, i are labels from the set B; [y is the label of the initial instruction,
and [, is the label of the halting instruction. The machine is capable of the
following instructions:

1. I; : (add(r),1;,1x): Add one to the content of register 7 and proceed, in
a non-deterministic way, to instruction with label [; or to instruction
with label li; in the deterministic variant we demand /; = [}, and then
the instruction is written in the form ; : (add(r), ;).

2. I; = (sub(r),l;,1;): If register r is not empty, then subtract one from
its contents and go to instruction with label [;, otherwise proceed to
instruction with label Ij.

37

3. Iy + halt: This instruction stops the machine and can only be assigned
to the final label .

A deterministic n-register machine can analyze an input m € N, intro-
duced in register 1, which is accepted if and only if the machine finally stops
by the halt instruction with all its registers being empty. If the machine
does not halt, then the analysis was not successful. We denote by N (M)
the set of numbers accepted by the register machine M. If @) is a Turing
computable set, then there exists a deterministic register machine M with
at most three registers, such that N(M) = Q, [67].

2.2 Computational Complexity

We give only some basic elements of computational complexity.

After defining a class of computing models, two fundamental questions
should be answered: (1) how powerful these models are, in comparison with
Turing machines and other classic models of computing, and (2) how ef-
ficient these models are. It is not enough that a problem can be solved
algorithmically, it is necessary that the solution comes in a reasonable time
and using reasonable computing resources. Defining what “reasonable time
and resources” means and classifying problems from these points of view are
the main tasks of computational complexity.

A complexity class is defined with respect to functions f : N — N in
the following way: the complexity class md-res;s(f) consists of all problems
which can be solved in mode md by devices D from class M such that for
any input z, device D needs at most f(|z|) units from the resource res. Let
M be a deterministic Turing machine that halts on all inputs. The running
time or time complexity of M is the function ¢ : N — N, where t(n) is the
maximum number of steps that M uses on any input of length n. If t(n) is
the running time of M, we say that M runs in time ¢(n) and that M is a
t(n) time Turing machine. The time complexity class TIME(¢(n)) is defined
as TIME(t(n))={L | L is a language decided by an O(t(n)) time Turing
machine}.

In time complexity theory polynomial differences in running time are
considered to be small, whereas exponential differences are considered to be
large. Polynomial time algorithms are fast enough for many purposes, but
exponential time algorithms rarely are useful. All reasonable deterministic
computational models are polynomially equivalent, that is, any of them can
simulate another with only a polynomial increase in running time.

The most important complexity classes are DTIME(t), DSPACE(f),
which contain the problems which can be solved in a deterministic mode
in a time, respectively, a space bounded by the functions ¢ and f, and
NTIME(t), NSPACE(f), which contain the problems which can be solved

38

in a non-deterministic mode in a time, respectively, a space bounded by the
functions t and f.

Now, the important step is to chose the function ¢t. The most investigated
complexity classes are the constant, logarithmic, linear, polynomial, and
exponential functions. The union of all classes DTIME(n*), k > 1, is usually
denoted by P, while the union of all classes NTIME(n*), k > 1, is usually
denoted by NP. These are the classes of problems which can be solved in a
deterministic polynomial time, respectively of problems which can be solved
in a non-deterministic polynomial time.

The problems can be reduced to other problems. For most natural com-
plexity classes, P and NP included, there are problems such that all prob-
lems from that class can be reduced to them. Such problems are called
complete for the respective classes. Of particular interest are the problems
which are NP-complete. The NP-complete problems are “the most diffi-
cult from NP”. This means, in particular, that they cannot yet be solved
in real-time by electronic computers running known algorithms.

2.3 Membrane Computing Preliminaries

Membrane systems (referred also as P systems) are a class of distributed
parallel computing devices of a biochemical type, which can be seen as a
general computing architecture where various types of objects can be pro-
cessed in parallel by various operations. By membranes, a system is divided
into compartments where chemical reactions can take place. These reac-
tions transform multisets of objects present in the compartments into new
objects, possibly transferring objects to neighboring compartments, includ-
ing the environment.

Generally, there are two standard ways of investigating the influence of
various features of P systems: (1) to consider their computational power/
competence e.g., are P systems using given features computationally uni-
versal (hence equivalent to Turing machines)?, and (2) to consider their
computational complexity (are P systems able to make use of their intrinsic
parallelism and solve hard problems, e.g., NP-complete problems, in feasible
time?).

In this section we give a general (and short) overview of membrane sys-
tems recalling the definitions of two important and well-studied classes of
this model of computation, the one with symbol-objects and multiset rewrit-
ing rules, the one with computational complexity classes of P systems. We
also recall the main results of universality and efficiency of the classes.

2.3.1 Membrane Systems with Symbol-Objects

We recall now the classical definition of a membrane system with symbol-
objects that can be considered a basic model where only the basic elements

39

of a P system are present: membranes arranged in an hierarchical structure
(as in the cell) and operations (called evolution rules) to process multisets
of symbol-objects. In the structure of a membrane system with symbol-
objects an unique external membrane is present called the skin membrane.
An elementary membrane is a membrane without any membrane inside. The
region enclosed by a membrane is the space between a membrane and the
immediately inner membranes (if any). To each membrane is associated
a label. Because there is a one-to-one correspondence between membranes
and (enclosed) regions we can also say that membrane (with label) 4 encloses
region (with label) 4. The entire system is surrounded by the environment.
An illustration of these notions appears in Figure 2.1.

skin membranes environment
1
2 4
3
5 6 7
P 8

elementary membrane

regions

Figure 2.1: A membrane structure and its corresponding tree representation.

Definition 2.3 A P system with symbol-objects, of degree m > 1, is defined
as

= (Oauawla"' awm,Rlv"' 7Rmai0)7

where:
o O is an alphabet and its elements are called objects;

e 1 is a membrane structure consisting of m membranes arranged in an
hierarchical structure; the membranes (and hence the regions that they
delimit) are injectively labeled with 1,2,--- ,m;

e w;, 1 <1i < m, are strings that represent multisets over O associated
with regions 1,2,--- ,m of p;

e R;, 1 <1< m, are finite sets of evolution rules over O; R; is associated
with the region i of u; an evolution rule is of the form u — v, where u
is a string over O and v is a string over {Ghere; Gout | @ € O} U{ain; |
a€0,1<j<m}.

40

o i € {0,1,2,--- ,m}; if io € {1,--- ,m}, then it is the label of an
elementary membrane that encloses the output region; if ig = 0, then
the output region is the environment.

For any evolution rule w — v the length of u is called the radius of the
rule and the symbols here, out, in;,1 < j < m, are called target indications.
To simplify the notation the target indication here is omitted. According to
the size of the radius of the evolution rules we distinguish between coopera-
tive systems (if the radius is greater than one) and non-cooperative systems
(otherwise).

A special class of cooperative systems is that of catalytic systems, where
a subset C C O of special symbol-objects (called catalysts) is fixed.

In case of catalytic systems, the system is of the form

II= (0707M7w17"' 7w’maR17"' 7Rm7i0)‘

In such systems the evolution rules can be of two different kinds: a — v
and ca — cv (catalytic rules) where ¢ € C, a € O —C, and v is a string over
{ahere; Gout | @ € O-C}U{ain; |la€ O—-C;1<j<m}.

The initial configuration of the system II is constituted by the membrane
structure x4 and the multisets represented by the strings w;,1 <7 < m. In
general, we call configuration of the system the membrane structure and the
tuple of multisets of objects present in the regions of the system.

A transition between configurations is executed using the evolution rules
in a non-deterministic mazimally parallel manner (we suppose that a global
clock exists, marking the time for the whole system). This means that the
objects are assigned to the rules in such a way that, after this assignation,
no other rules can be applied to the objects that have been not assigned and
this procedure is applied in parallel in each region of the system, at each
step. If an object can be used by several evolution rules, then the choice is
made in a non-deterministic way.

The application of an evolution rule © — v in a region ¢ means to remove
the multiset of objects identified by u from region i, and to add the objects
specified by the multiset v, in the regions specified by the target indications
associated to each object in v. In particular, if v contains an object a with
target indication here, then the object a will be placed in the region 4 where
the evolution rule has been applied. If v contains an object a with target
indication out, then the object a will be moved to the region immediately
outside the region 7 (this can be the environment if the region where the
rule has been applied is the skin membrane). If v contains an object a with
target indication in; then the object a is moved from the region ¢ and placed
into the region j (this can be done only if such region j is immediately inside
region i; otherwise the evolution rule u — v cannot be applied).

It is also possible to use target indications of the forms here, out, in,
with in being a weaker version of in;; in such a case, an object a having the

41

target indication in goes to any lower level membrane, non-deterministically
chosen (if no inner membrane exists, then the rule cannot be applied).

In other words, by using the evolution rule u — v in a region ¢ that
contains a multiset identified by w, we subtract the multiset identified by
u from the multiset identified by w, and then we add the objects specified
by v to the multiset of the region ¢ and to the multisets of adjacent regions
according to the target indications specified. In this way, at each step, all
the multisets associated to the regions of the system evolve and the system
passes from some configuration to a new one; this passage is called transition.
A sequence of transitions between configurations of a system II is called a
computation; a computation is successful (or halting) if and only if it halts
and this means that there is no rule applicable to the objects present in the
last configuration.

The output of a successful computation is defined as the number of ob-
jects present in the output region in the halting configuration of II; the set of
numbers computed (or generated) in this way by the system II, considering
any successful computation, is denoted by N(II).

It is possible to consider as result of a successful computation the vector
of numbers representing the multiplicities of objects from the output region
in the halting configuration. In this case Ps(II) denotes the set of vectors
of numbers generated by II, considering all the successful computations.

We denote by NOPp,(«a, tar) [(PsOPny(a,tar)] the family of sets of the
form N(II) [Ps(II), resp.] generated by P systems of degree at most m > 1 (if
the degree is not bounded, then the subscript m becomes %), using evolution
rules of the type a.

We can have @ = coo and this indicates that the systems considered use
cooperative evolution rules, & = ncoo that indicates that the systems use
only non-cooperative rules, and a = caty that means that the systems use
catalytic and non-cooperative rules; the number of catalysts used is at most
k. Moreover, the symbol tar indicates that the communication between
the membranes (and hence the regions) is made using the target indication
in; in the way specified before. If the degree of the system is 1 (only one
membrane is present) then the only possible target indications that can be
used are here and out and in such case the notation is NOP;(a).

We recall now some basic results obtained for P systems with symbol-
objects. There results concern the sets of type N(II) but similar results are
also true for the sets of type Ps(II). The computational power of symbol-
objects P system using only non-cooperative evolution rules, is rather low.
Such systems can only generate the family of length sets of context-free
languages (hence the family of semilinear sets of numbers).

Theorem 2.11 NOP,(ncoo,tar) = NOP;(ncoo) = NCF.
On the other hand, as expected, a symbol-object P system with cooper-

ative rules is more powerful. In particular, even with only one membrane,

42

symbol-object P systems can generate all recursively enumerable sets of
numbers.

Theorem 2.12 NOP,(coo,tar) = NOPy(coo,tar) = NRE for allm > 1.

This last theorem has been improved: in fact, it is possible to get uni-
versality even by using only catalytic evolution rules and two catalysts.

Theorem 2.13 NOPs(cats,tar) = NRE.

A special class of objects are the bi-stable catalysts that are catalysts
having two states ¢ and ¢ and the rules involving them may switch between
these two states. Let denote by C the set of bi-stable catalysts. The allowed
rules are of the forms: ca — cv,ca — ¢v,éa — ¢v, and ¢éa — cv with ¢ € C,
a € O—C, vis astring over {apere, out | @ € O—C}U{aim; |a € O-C,1 <
j<m}.

Notice that if the two states coincide, then c¢ is a usual catalyst.

We indicate the use of such bi-stable catalysts by writing 2cat instead
of cat. So, by the definition, bi-stable catalysts are at least as powerful as
catalysts.

Actually, universality can be obtained by using only one bi-stable cata-
lyst and one membrane.

Theorem 2.14 NOP,(2cat;, tar) = NRE.

2.3.2 Computational Complexity in P Systems

A rigorous framework for dealing with complexity matters in our area is
that of recognizing P systems, which we introduce here following [88].

Definition 2.4 A recognizing P system is a P system such that:

1. The alphabet O of I1 contains two distinguished elements,
YES, NO.

2. All computations of the system halt.

3. If C is a computation of I1, then either the object YES or the
object NO (but not both) is sent out to the environment, and
only in the last step of the computation.

We say that C is an accepting (respectively, rejecting) computation if the
object YES (respectively, NO) appears in the environment in the halting con-
figuration of C.

In order to assure that a family of recognizing P systems solves a decision
problem, two main properties must to be proved: for each instance of the
problem,

43

(a) if there exists an accepting computation of the membrane system pro-
cessing it, answering YES, then the problem also answer YES for that
instance (soundness);

(b) if the problem answers YES, then any computation of the system pro-
cessing that instance, answer YES (completeness).

If we demand that the family of membrane systems is sound and complete,
then it satisfies a condition of confluence: every computation of a system
from the family has the same output.

Next, we formalize these ideas in the following definition.

Definition 2.5 Let X = (Ix,0x) be a decision problem. Let I = (II{w))werx
be a family of recognizing membrane systems without input.

o We say that the family I1 is sound with regard to X if the following
is true: for each instance of the problem w € Ix, if there exists an
accepting computation of Il(w), then Ox(w) = 1.

o We say that the family TI is complete with regard to X if the following
is true: for each instance of the problem w € Ix, if Ox(w) = 1, then
every computation of Il{(w) is an accepting computation.

The soundness property means that if we obtain an acceptance response of
the system (associated with an instance) through some computation, then
the answer of the problem (for that instance) is YES. The completeness
property means that if we obtain an affirmative response to the problem,
then any computation of the system must be an accepting one.

These concepts can be extended to families of recognizing P systems with
input membrane in a natural way, but in this case a P system belonging to
the family can process several instances of the problem provided that an
appropriate input, depending on the instance, is supplied to the system.

Definition 2.6 A P system with input is a tuple (II, V, i), where:
— II is a usual P system, with the alphabet of objects O and initial mul-

tisets wi, ..., wn (associated with membranes labeled by 1,...,m, re-
spectively).
— V' is an alphabet strictly contained in O and such that wn, ..., wy, are

multisets over O — V; V is called input alphabet.
—ig € {1,2,...,m} is the label of a distinguished membrane (of input).
If w is a multiset over V, then the initial configuration of (II, V,ig) with
input w is (g, w, ..., w,), where wj = w; for i # ip, and wj, = wi, Uw.
The computations of a P system with input are defined in a natural way,

the only change is that the initial configuration is obtained by adding the
input multiset w over V to the initial configuration of the system IIL.

44

Definition 2.7 Let X = (Ix,0x) be a decision problem. Let II = (II(n))nen
be a family of recognizing membrane systems with input. A polynomial en-
coding of X in Il is a pair (cod, s) of polynomial time computable functions
over Ix such that for each instance w € Ix, s(w) is a natural number and
cod(w) is an input multiset of the system II(s(w)).

Definition 2.8 Let X = (Ix,60x) be a decision problem. Let II = (II(n))nen
be a family of recognizing membrane systems with input. Let (cod,s) be a
polynomial encoding of X in II. '

o We say that the family TI is sound with regard to (X, cod,s) if the
following is true: for each instance of the problem w € Ix, if there
exists an accepting computation of II(s(w)) with input cod(w), then
Ox(w)=1.

e We say that the family I1 is complete with regard to (X, cod, s) if the
following is true: for each instance of the problemu € Ix, if 0x(u) =1
then every computation of II(s(u)) with input cod(w) is an accepting
computation. '

The soundness property means that if given an instance we obtain an
acceptance response of the system associated with it (and individualized
by the appropriate input multiset) through some computation, then the
answer of the problem (for that instance) is yes. The completeness property
means that if we obtain an affirmative response to the problem, then any
computation of the system associated with it (and individualized by the
appropriate input multiset) must be an accepting one.

Next, we consider different polynomial complexity classes in the frame-
work of recognizing membrane systems.

We define polynomial complexity classes in recognizing membrane sys-
tems without input. In order to solve a decision problem we need, then,
to associate with each instance of the problem a system which decides the
instance. We impose these systems to be confluent in the following sense:
an instance of the problem will have a positive answer if and only if every
(or, equivalently, there exists a) computation of the corresponding system
is an accepting computation.

We also demand that every computation is bounded, in execution time,
by a polynomial function. This is because we do not only want to obtain
the same answer, independently of the chosen computation, but that all the
computations consume, at most, the same amount of resources (in time).

Definition 2.9 Let R be o class of recognizing P systems without input
membrane. A decision problem X = (Ix,0x) is solvable in polynomial time
by a family I1 = (II(w))wer,, of P systems of type R, and we denote it by
X € PMCY, if the following is true:

45

e The family TI is polynomially uniform by Turing machines; that is,
there erists a deterministic Turing machine working in polynomial
time which constructs the system II(w) from the instance w € Ix.

o The family 11 is polynomially bodnded; that is, there exists a polyno-
mial function p(n) such that for each w € Ix, all computations of
II(w) halt in at most p(|w|) steps.

o The family T1 is sound and complete with regard to X.

We say that ITI provides a semi—-uniform solution to the problem X.

Note that in this complexity class we consider two different tasks: the
first one is the construction of the family, which we require to be done in
polynomial time (sequential time by deterministic Turing machines). The
second one is the execution of the systems of the family, in which we imposed
that the total number of steps performed by their computations are bounded
by the function g (parallel time by non-deterministic membrane systems).

As a direct consequence of working with recognizing membrane systems
is the fact that these complexity classes are closed under complement.

Now we define another polynomial complexity classes in recognizing
membrane systems with input.

A computation of a Turing machine starts when the machine is in the
initial state and we “write” a string in the input tape of the machine. Then,
the machine starts to compute according to the transition function. In the
definitions of basic P systems that have been initially considered, there is
no membrane in which we can “introduce” input objects before allowing the
system to begin to work. However, it is easy to consider input membranes
in this kind of devices.

In the framework of recognizing membrane systems with an input mem-
brane, we propose to solve hard problems in an uniform way in the following
sense: all instances of a decision problem that have the same size (according
to a prefixed polynomial time computable criterion) are processed by the
same system, to which an appropriate input, that depends on the specific
instance, is supplied.

Now, we formalize these ideas in the following definition.

Definition 2.10 Let X = (Ix,0x) be a decision problem. We say that
X is solvable in polynomial time by a family of recognizing membrane sys-
tems with input IT = (II(n))pen, and we denote it by X € PMCx, if the
following is true:

e The family TI is polynomially uniform by Turing machines; that is,
there erxists a deterministic Turing machine that constructs in polyno-
mial time the system II(n) from n € N.

o There exists a polynomial encoding (cod, s) of X in II such that:

46

— The family I is polynomially bounded with regard (X, cod, s); that
is, there exists a polynomial function p(n) such that for each w €
Ix every computation of the system II(s(w)) with input cod(w)
is halting and, moreover, it performs at most p(|w|) steps.

— The family I1 is sound and complete with regard to (X, cod, s).

We say that II provides a uniform solution to the problem X.

Note that in the above definition and in order to decide about an in-
stance, w, of a decision problem, first of all we need to compute the natural
number s(w), obtain the input multiset cod(w), and construct the system
II(s(w)). This is properly a pre-computation stage, running in polynomial
time expressed by a number of sequential steps in the framework of the
Turing machines. After that, we execute the system II(s(w)) with input
cod(w). This is properly the computation stage, also Tunning in polynomial
time, but now it is described by a number of parallel steps, in the framework
of membrane computing. As mentioned above, these complexity classes are
closed under complement.

2.3.3 P Systems with Active Membranes

In membrane computing, P systems with active membranes have a special
place, because they provide biologically inspired tools to solve computation-
ally hard problems. Using the possibility to divide or separate membranes,
one can create an exponential working space in linear time, which can then
be used in a parallel computation for solving, e.g., NP-complete problems
in polynomial or even linear time. We give below the definition of P systems
with active membranes following [80].

Definition 2.11 A P system with active membranes (and electrical charges)
s a construct

1= (O,H,u,@l,...,wm,R),
where:
1. m > 1 (the initial degree of the system);
O is the alphabet of objects;

H is a finite set of labels for membranes;

W is a membrane structure, consisting of m membranes, labeled (not
necessarily in o one-to-one manner) with elements of H;

5. wi, ..., wn are strings over O, describing the multisets of objects placed
in the m regions of u;

6. R is a finite set of developmental rules, of the following forms:

47

(@) [a—]},
forhe Hye € {+,—,0},a € O,v € O*
(object evolution rules, associated with membranes and depending
on the label and the charge of the membranes, but not directly
involving the membranes, in the sense that the membranes are

neither taking part in the application of these rules nor are they
modified by them);

() al T = [8l3
for he H ey, es € {+,—,0},a,b€ O
(communication rules; an object is introduced in the membrane,
possibly modified during this process; also the polarization of the
membrane can be modified, but not its label);

(¢) [aly =1y
for h € H,ej,e5 € {+,—,0},a,b € O
(commaunication rules; an object is sent out of the membrane,

possibly modified during this process; also the polarization of the
membrane can be modified, but not its label);

@) [al; b,
forhe Hee {+,-,0},a,b€ O
(dissolving rules; in reaction with an object, a membrane can be
dissolved, while the object specified in the rule can be modified);

(e) Laly = (0]l
for h € H,ey,eq,e3 € {+,—,0},a,b,c € O
(division rules for elementary membranes; in reaction with an ob-
ject, the membrane is divided into two membranes with the same
label, possibly of different polarizations; the object specified in the
rule is replaced in the two new membranes by possibly new ob-
jects);

07 N P I el N P O Vol o

B PSR I Vd Vol B U Y S o o

for k> 1,n>kh; € HO0<i<n, and ag,...,as € {+,—,0}
with {ay,as} = {+,—}; if the membrane with the label hy con-
tains other membranes than those with the labels hq, ..., hy spec-
ified above, then they must have neutral charges in order to make
this rule applicable; these membranes are duplicated and then are
part of the contents of both new copies of the membrane hg
(division of non-elementary membranes; this is possible only if a
membrane contains two immediately lower membranes of opposite
polarization, + and —; the membranes of opposite polarizations
are separated in the two mew membranes, but their polarization
can change; always, all membranes of opposite polarizations are
separated by applying this rule).

48

The rules of type (a) are applied in the parallel way (all objects which can
evolve by such a rule should do it), while the rules of types (b), (), (d), (e), (f)
are used sequentially, in the sense that one membrane can be used by at
most one rule of these types at a time. In total, the rules are used in the
non-deterministic maximally parallel manner (all objects and all membranes
which can evolve, should evolve) and in a bottom-up manner (for instance,
first rules of type (a) are used, and after that the membrane can be divided
by rules of types (e), (f); thus, the result of using evolution rules is replicated
in the newly produced membranes). The skin membrane can never divide,
although, as the rest of membranes; it can be electrically charged. Only
halting computations give a result, in this form of the multiset of objects
sent into the environment during the computation; non-halting computa-
tions give no output.

2.3.4 Spiking Neural P Systems

A spiking neural P system consists of a set of neurons placed in the nodes
of a graph, and communicating through signals (spikes) emitted along the
synapses (edges of the graph) and controlled by firing and forgetting rules.
Within the system the spikes are moved, created, or deleted (we consider
only one type of objects in the system).

Definition 2.12 A spiking neural P system of degree m > 1 is a construct
of the form Il = (O, 01, ...,0m, Syn, i), where:

1. O = {a} is the singleton alphabet (a is called spike);
2. 01,...,0m are neurons, of the form o; = (ni, R;),1 <i<'m, where:

a) n; > 0 is the initial number of spikes present in the neuron;
b) R; is a finite set of rules of the following two forms:
(1) E/a" — a;d, where E is a regular expression over O, r > 1,
and d > 0; '
(2) a® — X, for some s > 1, with the restriction that a® ¢ L(E)
for any rule E/a" — a;d of type (1) from R;;

3. syn € {1,2,...,m} x {1,2,...,m} with (i,i) ¢ syn for 1 < i < m
(synapses among cells);

4. 90 € {1,2,...,m} indicates the output neuron.

The rules of type (1) are firing (we also say spiking) rules, and they are
applied as follows. If the neuron o; contains k spikes, and a* € L(E),k > c,
then the rule E/a® — a;d can be applied. The application of this rule means
consuming (removing) ¢ spikes (thus only k£ — ¢ remain in o0;), the neuron is

49

fired, and it produces a spike after d time units (a global clock is assumed,
marking the time for the whole system, hence the functioning of the system
is synchronized). '

If d = 0, then the spike is emitted immediately, if d = 1, then the spike
is emitted in the next step, etc. In the steps before emitting the spike,
the neuron is closed, it cannot use any rule and cannot receive spikes from
other neurons. The delay in sending the spike along the synapses models
the refractory period of the neuron from neurobiology — more details on its
formalization can be found in [49].

A spike emitted by a neuron o; (is replicated and a copy of it) goes to
each neuron o; such that (4,7) € syn.

The rules of type (2) are forgetting rules and they are applied as follows:
if the neuron o; contains exactly s spikes, then the rule a® — A from R; can
be used, meaning that all s spikes are removed from o;.

If a rule E/a® — a;d of type (1) has E = a°, then we will write it in the
simplified form a® — a;d.

In each time unit, if a neuron o; can use one of its rules, then a rule
from R; must be used. Since two firing rules, E;/a* — a;d; and E2/a®? —
a;dy, can have L(E1) N L(Ey) # 0, it is possible that two or more rules
can be applied in a neuron, and in that case only one of them is chosen
non-deterministically. By definition, if a firing rule is applicable, then no
forgetting rule is applicable, and vice versa.

The initial configuration of the system is described by the numbers
Nn1,N2, . .., Ny, of spikes present in each neuron, with all neurons being open.
During the computation, a configuration is described by both the number of
spikes present in each neuron and by the state of the neuron, more precisely,
by the number of steps from now on until it becomes open (this number is
zero if the neuron is already open). Thus, (r1/¢1,...,"m/tm) is the config-
uration where neuron ¢;,¢ = 1,2,...,m contains r; > 0 spikes and it will
be open after ¢; > 0 steps; with this notation, the initial configuration is
CO = <’rL1/0, ,nm/O).

Using the rules as described above, one can define transitions among
configurations. A transition between two configurations C1, Cs is denoted by
C1 = Cs. Any sequence of transitions starting in the initial configuration
is called a computation. A computation halts if it reaches a configuration
where all neurons are open and no rule can be used.

In the spirit of spiking neurons, see, e.g., [62], as the result of a compu-
tation, in [49] and [83] one considers the distance between two consecutive
spikes which exit the output neuron of the system. Then, in [18] one consid-
ers as the result of a computation the so-called spike train of the computa-
tion, the sequence of symbols 0 and 1 obtained by associating 1 with a step
when a spike exits the system and 0 otherwise. Languages over the binary
alphabet are computed in this way.

50

Chapter 3

Using Cell Interaction
Operations in P Systems

Cell division is a well-known phenomenon in cell biology. The cell division
operation in P systems plays in a crucial role for generating exponential
work space in linear time, hence, it is a useful tool to solve computationally
hard problems. Tom Head suggested in [46] other membrane handling rules
that can be considered in membrane systems, such as merging or separating
membranes, etc. Several operation with membranes also appear in Brane
calculi, see [13].

Here we consider the following cell membrane interaction operations to
formalize in P systems area:

Membrane merging: Membrane fusion (merging) is a well-known phe-
nomenon of cell biology. It means that two membranes can be merged
into a single membrane, the contents of the former membranes being
put together in the new membrane. In order to perform a merging
operation two membranes must be adjacent, both of them placed in
the same immediately upper membrane.

Membrane separation: Membrane fission (budding, separation) is also
a well-known phenomenon in cell biology, with interesting applications
in bio-technology being developed. To separate the contents of a mem-
brane into two membranes, some of its objects are placed in the first
membrane (according to a given property), and the objects which do
not have the given property are placed in the other membrane.

Membrane release: Chemicals release into cleft of connected neuronal
synapses in vesicle formation.

Replication and distribution: The neural impulse is replicated in the
cleft and distributed into the connected dendrites. Moreover, in the
axon of the neuron, chemicals are replicated at the so-called Ranvier

51 Y

nodes and transmitted to the adjacent nodes in opposite directions
through the axon (see Subsection 1.2).

The operations abstracted from the cell interaction processes mentioned
above are formalized in the framework of P systems with active membranes.
We investigate their computational power and efficiency in both maximally
and minimally parallel way of using the rules. The results are as expected:
P systems using the combinations of the new operations with old types of
operations have computational generative and accepting power of universal
Turing machines, and provide efficient algorithms for solving NP-complete
problems in polynomial time (see [4, 73, 72, 71, 50]). We also see that the
membrane separation operation plays an important role in generating an
exponential work space in linear time in P systems.

3.1 Polarizationless P Systems

We define now polarizationless P systems with active membranes following
[5]. A P system with active membranes (without electrical charges) is a
construct ‘

II=(0,C H,p,wi,..., wn,R),

where:

e m > 1 is the initial degree of the system;

O is the alphabet of objects;

C C O is the set of catalysts;
e H is a finite set of labels for membranes;

e 1 is a membrane structure, consisting of m membranes, labeled (not
necessarily in a one-to-one manner) with elements of H;

® wi,...,wp are strings over O, describing the multisets of objects placed
in the m regions of p;

R is a finite set of developmental rules, of the following forms:

(ev) [a—v],, for he Hyae O,ve O*
(object evolution rules; associated with membranes and depend-
ing on the label, but not directly involving the membranes, in the
sense that the membranes are neither taking part in the applica-
tion of these rules nor are they modified by them);

(cat) [ca — cv], forc€ C,ac O-C,ve (O-C) he H
(catalytic rules; the catalyst c is never modified, it only assists
the evolution of other objects);

52

(pro) [a — v|p], fora,b€ O,v € O*,he H
(evolution rule with promoter; the rule is applied only if the pro-
moter object b is present in the region);

(cev) [v — u], for u,v € O*
(evolution rules of radius greater than one; a particular case is
that of catalytic rules);
(in) a[], — [b]), for h€ H,a,b€ O
(communication rules; an object is introduced in the membrane
during this process);

(out) [a], — [],b, for h€ Hya,b€ O
(communication rules; an object is sent out of the membrane
during this process);

(dis) [a], — b, for h€ H,a,b€ O
(dissolving rules; in reaction with an object, a membrane can be
dissolved, while the object specified in the rule is modified);

(ediv) [a], — [b],[c];, for h € H,a,b,c € O
(division rules for elementary membranes; in reaction with an
object, the membrane is divided into two membranes with the
same label; the object specified in the rule is replaced in the
two new membranes by possibly new objects; and the remaining
objects are duplicated);

(ndiv) [a], — [b],]]}, for h € H,a,b,c € O
(division rules for non-elementary membranes; in reaction with
an object, the membrane is divided into two membranes with the
same label; the object specified in the rule is replaced in the two
new membranes by possibly new objects; the remaining objects
and membranes contained in this membrane are duplicated, and
then are part of the contents of both new copies of the membrane);

The rules of types ev, in, out, dis, ediv, and ndiv are the polarizationless
version of the corresponding rules in Section 2.3.3 and [81] with the mention-
ing that we use now rules for division of non-elementary membranes of the
same form as for dividing elementary membranes (note that we no longer
use polarizations of membranes).

When the rules of a given type () are able to change the label(s) of the
involved membranes, we denote that type of rules by (o). For instance, a
rule of type (in’) is of the form

a[1, — [, for b,k € H,a,b € O.

The rules of type ev are applied in the parallel way (all objects which
can evolve by such rules have to evolve), while the rules of types in, out,
dis, ediv, ndiv are used sequentially, in the sense that one membrane can be

53

used by at most one rule of these types at a time. In total, the rules are
used in the non-deterministic maximally parallel manner (all objects and all
membranes which can evolve, should evolve) and in a bottom-up way (first
we use the rules of type ev, and then the rules of other types; in this way,
in the case of dividing membranes, in the newly obtained membranes we
duplicate the result of using first the rules of type ev).

Only halting computations give a result, in the form of the number (or
the vector) of objects expelled into the environment during the computation.
The set of numbers generated by a system II is denoted by Nge,(II) and
the family of such sets is denoted by Ny, O P(types-of-rules), with types-of-
rules indicating the allowed types of rules. A P system can be also used
in the accepting mode: we introduce a number in the system in the form
of a multiset a”, for some a € O, in a distinguished region hg and start
computing; if the system halts, then the number n is accepted. The set
of all numbers accepted in this way by II is denoted by Ng..(II), and the
family of such sets is denoted by N,..OP(types-of-rules), with the obvious
meaning of the used parameters. A P system is called deterministic if for
every input there is a single computation. A P system is called confluent
if all of its computations reach the same halting configuration. When using
systems with at most r catalysts, we write cat, for the respective type of
rules.

3.1.1 Formalization of Membrane Merging, Separation, and
Release Operations

We mathematically catch the behavior of the cell interaction operations
and formalize them in the framework of P systems with active membranes
without polarizations in the following way.

Membrane merging:

(mer) [1,[], =[]}, forhe H
(merging rules for elementary membranes; the two mem-
branes are merged into a single membrane under the con-
trol of the label; the objects of the former membranes are
put together in the new membrane).

Membrane separation 1:

(sep) [Ql, — [K],[@ —Kl,, for h e HQC 0K C Q,
Va € Supp(K) (K(z) = Q(z))
(separation rules for elementary membranes; the membrane
h, containing objects from @, is separated into two mem-
branes with the same labels; the objects from K are placed
in the first membrane, those from @ — K are placed in the
other membrane; we request that both K and Q — K are

54

not empty and also that both membranes [K],, [@ — K],
are non-empty — the rule is not applied otherwise).

Membrane separation 2:

(sep2) [al), — [O1],] Ozl

forhe H a€0,01U0;=0,0,N02=10

(separation rules for elementary membranes; in reaction
with an object, the membrane is separated into two mem-
branes with the same label; at the same time, the object a
can evolve by an evolution; the objects from O; are placed
in the first membrane, those from O are placed in the sec-
ond membrane).

Membrane release:

(rel) [[Ql4l, — [1,Q, for he H, Q C O
(release rule; the objects in a membrane are released out
of a membrane, surrounding it, while the first membrane
disappears).

The label changing versions of merging and separation rules are of the fol-
lowing forms:

(mer') [1,,[14, = [14, for hi,ho,hs € H.
(Sepl) [Q]h1 - [K]hz[Q_K]h39 for h17h27h’3 € H:Q - O*aK - Q

3.1.2 Two Universality Results

The following theorem shows that by using membrane separation rules (of
type 1) to change the labels of the membranes, the universality can be
reached. Here Ps(II) denotes the set of vectors of natural numbers describing
the multiplicity of objects expelled into the environment by the various
halting computations in system II; by PsOP(types-of-rules) we denote the
family of sets Ps(II) computed by P systems using the types of rules specified
by types-of-rules.

Theorem 3.1 PsOP(caty,out,sep’) = PsRE.

Proof. Consider a matrix grammar G = (N, T, S, M, F') with appear-
ance checking, in the binary normal form, hence with N = Ny UNoU{S, #}
and with the matrices of the four forms introduced in Section 2.1.3. Assume
that all matrices of forms 2, 3, and 4 are injectively labeled with elements of
a set B (without loss of generality, suppose 0 ¢ B), B = By U Ba, B for the

55

matrices of forms 2 and 4, and B; for the matrices of form 3. Replace the
rule X —)\ from matrices of type 4 by X — f, where f is a new symbol.
We construct the P system of degree 2

I = (O, C, H,[[]Xinit]:l’wl = A7innit

O = TUNyU{co,c1,c2,c3,¢4,#},

C = {c},

H = NU{Xn X,]XeNl, e Byu{o,1, f},

= ccodAinit, R),

and the set R containing the following rules. We present them in blocks as
used for simulating matrices of G, thus also having clear the way the system
II works.

The simulation of a matrix m : (X — Y,A — z), with X € N1,Y €
NiU{f}, A€ Ny, and z € (N2 UT)*, |z| < 2, is done in four steps, using
the next rules:

L. [co — creacs] -

2. [Olx = [H{all[0 —{allx,,-

3. [cA—ca]y ,
[3 — coca] x
[Cd_)c#]xma
[O]Xm — | {02}10[0 - {62}])(

4. [0lx, — [{eallol O - fealy-

In the membrane labeled with the nonterminal X we evolve ¢y into
the auxiliary objects ci1, co, c3, then, using ¢; we separate the objects, also
guessing the matrix m to simulate. All relevant objects are placed in the
membrane with label X,,. In step 3, in this membrane we both simulate
the second rule of the matrix (if no copy of A is present, hence the rule
[cA — cz]y cannot be used, then the trap object is introduced by the
rule [ed — c#] x,,» hence the simulation of the matrix should be complete)
and evolve c3 to ¢o and c¢4. At the same time, the membrane is separated
again, with all relevant objects placed in a membrane with label X/, . In the
fourth step, this last membrane is separated again, by using the “separator”
c4, and thus the membrane with label Y is introduced; it contains again the
object cg, hence we return to a configuration as that we have started with.

The simulation of a matrix m : (X — Y, A — #), with X,Y € N; and
A € Ny, is done in a very similar way, using again four steps and the same
rules as above (of course, with X,,, X/ associated with the new matrix),
the only differences being that (i) the rule [cA — cz], used in step 3 is
now replaced with the rule [A — #] , and (ii) the rule [cd — c#]
no longer provided. In this way, if any copy of A appears in membrane Xm,

56

then the trap object is introduced and the computation never halts. If A is
not present, then both ¢ and d waits unused, then the simulation of the rule
X — Y of the matrix is completed.

These procedures can be iterated.

We also consider the following rules:

5. [A—>#]f,forallA€N2.
6. [# — #],, for all h € H.

7. [a]; —[];a, foralla € T.
8. [a]; = []ia, forallacT.

The equality ¥ (L(G)) = Ps(Il) easily follows from the above explana-
tions.]

Remark 3.1 In the above proof, the rules of type out are only used for
sending the result of a computation out of the system. Therefore, rules of
types ev and sep’ are sufficient to reach universality for membrane systems
with internal output.

The following theorem shows that the universality can be reached also by
using membrane separation rules of type 2 to change the labels of the mem-
branes.

Theorem 3.2 PsOP(caty,out,sepy’) = PsRE.

Proof. Again we consider a matrix grammar G = (N,T,S,M, F)
with appearance checking, in the binary normal form, hence with N =
N1 U Ny U {S,#}. Assume that all matrices are injectively labeled with
elements of a set B. Replace the rule X — X from matrices of type 4 by
X — f, where f is a new symbol.

We construct the P system of degree 2

I = (0707 H7[[]Xim.t]pwl = >‘, WX it — COAinit,R)a

O = 01UO0y, -
01 = TUNyU/{co,c1,co,c39Y,
Oy = {d},

C = {c},

H = NMU{X,|XeN,meB}u{0,1,f},

and the set R containing the following rules.
The simulation of a matrix m : (X — Y, A — z), with X € N;,Y €
N1 U{f}, is done in three steps, using the next rules:

57

—t

. [A]X - [Ol]ym[O2]o~

2. [cA > zczd]y, .

3. [c3]ym — [O1]y[04,
[C3—>d]Ym.

4. [a =y,

[c2 — coly, -

The first rule of the matrix is simulated by the change of the label of the
inner membrane (the “dummy” object d and membrane 0 play no further
role). Note that if X € Nj also appears in a matrix of type 3, then when
A activates separation, ¢y can evolve to ¢1d by the second rule of type (5),
then to cz and cp by the rules of type (4). The correctness of the simulation
is obvious, because one cannot simulate one rule of the matrix without
simulating the other rule.

The simulation of a matrix m : (X — Y, A — #), with XY € N; and
A € Ny, is done also in three steps, using the next rules:

5. [C()]X - [Ol]ym[02]()’
[co — Cld]X.

6. [cp — CQ]Ym,

[A— #]Ym'

7.1 c2]ym = [O1]y[02,
[Co — Cod]Ym

While the membrane with label X is used by object cg, no other rule can
be used. In the next step, if any copy of A is present, then it introduces the
trap-object # and the computation never stops. If no A is present, then the
objects c; evolve, returning the label of the membrane to Y and introducing
the auxiliary object ¢, for iterating the procedure.

We also consider the following rules:

8. [A—)#]f, for all A € Ns.
— #],, for all h € H.

[
10. [a]f—>[] sa.
11. [a], = []ya, foralla e T.

The equality ¥1(L(G)) = Ps(II) easily follows from the above explana-
tions. a

58

3.1.3 Two Efficiency Results

Theorem 3.3 A uniform family of P systems with rules of types ev, in, out,
sep’ can solve SAT in linear time with respect to the number of variables and
the number of clauses in a confluent way.

Proof. Let us consider a propositional formula in the conjunctive normal
form:

o = CiA---ANCp,
Var((P) = {a“l""amn}a
Ci = %1V Vyy, 1 <i<m, where
yix € {xj,-z;|1<j<n}, 1<i<m1<k<l.

The instance ¢ of SAT (to which the size (m,n) is associated) is encoded
as a multiset of objects x;;; and Z; ; ;, where x; ; ; represents the variable
z; appearing in the clause Cj, and where Z; ;; represents the literal —z;
appearing in the clause C;. Thus, the input multiset is

cod(w) = {zij;le;€{yir|1<k<L}L1<i<m,1<j<n}
U {Zijj |~z €{ip | 1<k <L} 1<i<m,1<j<n}
For a given (n,m) € N2 being (n,m) = (n+m)(n+m+1)/2, a recognizing
P system (II((n,m)), £({n,m)), 1) is constructed as follows:

O((n,m)) = (O((n,m)), H, u, wy, w1, ws, R), with
O((n,m)) = {e;|1<i<m,1<j<n+1}

U {¢;|1<i<m,1<j<n}u/{t YES,NO}
U {di]|0<i<n+m+T7U{d}|1<i<n+1}
U {ZitjTig; |1<i<m,1<j<n,0<t <5}
U {2,;,%:;|1<i<m,1<j<n0<t<j—1},
E((n,m)) = {1, Tir;|1<i<m,1<j<n,0<t <)
po= [1lhle
ws = A wy = wi = dyg,

H = {s5,0,1,---,m+2},

The set R of rules of P systems II({n,m}), to which we also give explanations
about, are the following:
Generation phase:

gl. [0]1_’[U]1[0"U]17
U={2];;%,;;11<i<m1<j<n0<t<j-1}U
{ci;11<i<m,1<j<n}u{d;|1<i<n+1}

59

82. [@ity — @it 1,szt 1,3]17
[xltj_)xzt 15%i 5 1501

[5 — i 1,J$zt Lil

[xztj—’xzt Lszt 1,]]1’

1<i<m, 1<t<5,1<5<n.

g3. [@ios — ¢l
[51707] - A] 1
=/
[Tioj Ci,jcé,j] 1

[Zig; 2 A, 1<i<m, 1<j<n

g4 [G5 — Ci,j'ﬁ‘lc;,j'f‘l] 12
/

[Civj'—> ci7j+lcg,j:f—1] 1°

1<i<m,1<j<n~1
g5. [cin = Cintaly,

[c;,n - Ci,n+1]1> 1 S 1 <m.
g6 [df — di+1d§+1]1, 0 < 7, < n,.

[d; — d1+1dz+1]1> 1<e<n,

[7Z+1 - dn+2]1,

[n+l dn+2]1

In n + 1 steps, 2" membranes with label 1 are created by rules of types
gl-g4. These membranes correspond to-all the possible 2" truth assignments
of the variables z1, z9, ..., Z,. During this process, every object z; ;; of the
input evolves to z;0; and mlo 4 in j steps. Then, they evolve to ¢;; in
membranes where true value was chosen for z; (recall that z;;; = true
satisfies clause C;) and they are erased in membranes where false value was
chosen for z;. In the next n — j steps, ¢;; evolves to ¢, or ¢ . It takes
one more step for ¢; , and Cé,n to evolve to Cin+1 by rules of type gb, which
means the system is ready for the checking phase. Similarly, #; ;; changes
to i1 if ©; = false and it is erased if x; = true. Note that at step n + 2,
each membrane with label 1 contains the object dp42.

Checking phase:

cl. [O]l-ﬁ[U]l[O——-U] U={Ci’n+1},1§i§m.

10
Starting with ¢ = 1, in membranes with label 4, objects ¢; n41 Will be sep-
arated from the other objects, and the label of the membrane with objects
from O — {¢;n+1} will become ¢ + 1. The membranes which do not contain
the objects ¢j+1n+1 Wwill evolve nomore. If all objects ¢jpny1,1 < 2 < m,
are present in a certain membrane, then, after m steps, this membrane will
evolve into a membrane with label m + 1, containing object dn12, by the
rules of type cl.

c2. [dn+2] m+1 had []m+1dn+2'

60

c3. [dn+2 — tt]s

If ¢ has solutions (that is, truth assignments making true the formula), then
at step n + m + 3, every membrane corresponding to a solution of ¢ ejects
dn42 to the skin region, then d, o will be rewritten into ¢£, by using rules
¢2 and c3.

cd. t[1,— [,

e5. [mer = [nra-

6. [O)g = [U yys O = U], U' = {8},
0<i<n+m+5.

c?. [dntm+6 — dn+m+7] m+2

At step n + m + 5, one copy of ¢t enters the membrane with label 0, and
(suppose ¢ has s solutions, 1 < s < 2™) s copies of ¢ enter the s membranes
with label m + 1. At step n +m + 6, s — 1 copies of ¢ enter the membranes
with label m 4 1, or s — 2 copies of t enter the s — 2 membranes with label
m + 1, and 1 copy of ¢ enters the membrane with label 0. Using rule c6,
the membrane with label 0 is separated into two membranes, which contain
object t and object dpimy6 OF dnym+7, respectively. If ¢ has no solution,
then no object enters the membrane labeled 0 and rule c6 is not applied.

Output phase:
ol. [t— Al .,
02. [dn+m+7]0 —> []OND

03. [dn+m+7] m+2 — []m+2YES
od. [NO]_ — [],NO.
o5. [YES]_ — [],YES.

If © has solutions, then at step n + m + 8, object dp+m+7 in the membrane
with label m + 2 ejects YES to skin and then into the environment. If ¢ has
no solution, then after n + m + 8 steps object dp+m+7 €jects object NO into
skin and then into the environment.

From the previous explanation of the use of rules, one can easily see how
the P system designed in the above construction works, and it halts at step
n+m+9. It is easy to prove that the designed P system is uniform, because
it uses n?m + 4nm + 2n + 2m + 12 objects, 3 initial membranes containing
in total at most nm + 2 objects, and 6mn + 4n + 2m + 20 rules. The length
of any rule is bounded by 2|0| = 2(4n?m + 4nm + 2n + 2m + 13).

But if ¢ has at least two solutions, then the behavior of this system is
not deterministic: at step n + m + 6 either one of the rules of types either
c4 or c6 can be applied to the membrane with label 0 (applying c4 in step
2n + 2m + 6 results in an extra copy of ¢ in that membrane, and a copy

61

of ¢ missing in some membranes with label m + 1). However, the system
is confluent: in either case mentioned above, after three further steps, the
system produces the output YES and halts in the same configuration (in the
membranes with label m + 1, the objects ¢ are erased). a

An example

Let us consider the formula ¢ = (z1 V 22) A (-2 V —z2). The initial config-
uration of the P system (I1((2,2)),V({(2,2)),1) is:

p=1[[11,1%122, T2,1,1, T2,2,2do] ;[do],] -

Generation phase:

Step 1:

82. [Z1,1,1 = 21,0121 0,1] 15
[T1,22 = 1,1,2T1 1 2] 15
[Z211 — 9_02,0,153"'2,0,1} L
[Z222 — 5132,1,257'2,1,2] 1’

g6. [do — didy],,

The objects in membrane 1 evolve by rules from g2 and g6, in a parallel
way.

gl. [z101]ys [2101]4
[951,1,2]17 [95/1,1,2]1
[x2,0>1] 1 ['(Z.,2,0,1] 1

[Z21.2]4, [Z510)4
[di],, [di],

Membranes with label 1 are separated by rule gl in the bottom-up manner.

Step 2:
g3. [z101 — cr1€1 1]y [%101 — Al
g2. [z112 — ml,O,ZfE,l,o,z] v | 33/1,1,2 - z51,0,295'1,0,2]1
g3. [%201 — Ay, [Z501 — €2,1651];

= = =/ .~ = =/
g2. [Z212 — 332,0,29”2,0,2] 1 [To1,2 x2,0,2$2,0,2]1

g6. [dl — deIQ] 19 [d1 — dzdé] 19

gl. [er1]y, | cl},l]p [2102l | wlll,0,2]1
[%1,0’2] vl -7_;,1,0,2] 1 [2] 1 [C_2’,1] 1
[Z2,0,2] ol x/z,o,z] 1’ [Z2,0,2] b [$/2,0,2] 1
[d2]1’ [dz]p [d2]1> [d2]1

62

Objects evolve according to the rules g2, g3 and g6. Meanwhile, membranes
1 are separated by rules from gl.

Step 3: using rules g3, g4, and 96..

[c11— e12€ia]ys [€11 — €12¢) 9],

[z102 = c12¢1 0]y [%102 = €1,2¢1 0] 15
[Z202 — Al [Z502 — c22€30]1)
[d2 — dadj) v [dy - d3ds] 1

[z1,02 — 01,2011,2] 1 [3:,1,0,2 — A 17

[c21 — co2chalys, [h1 = €a2¢h]5,

[Z202 — Ay, [57/2,0,2 — 02,20'2,2]17
[d2 — dsdj] 4, [dy — dsds]y,

The objects in membrane 1 are evolved according to rules g3, g4 and g6;
this time no separation happens.

Step 4:
g5 [C1,3, 01,3] 13 [C1,3, 61,3] 1’
[C1,3, 01,3] 1 [1,3, C1,3] 1
[Al [c23,c23] s

[d47d4]17 [d47d£1]]_7

[ci3e13]y, [2323,
[co3,c23],, [c23,¢23]4s
[d47d4]17 [d41d4]1a

Rules g5: [ci2 — ¢i3]q, | 0272 — ¢ 3] 1., and g6 are applied to the membranes
with label 1.

Checking phase:

Steps 5,6:
cl. [Ci,?)] 1’ [dZ]ga
[01,3] 1’ | dic%,3]27
[ciges]y, | dica3, c2,3] 55
cl. [63,3]27 [dz]y
[03,3]2’ [di]y

At the 5th step, three membranes containing the objects ¢; 3 are separated
from the former membrane 1 by rule c1, and rule cl repeats in the next step
separating two membranes with label 2 containing cp 3 from the membranes
2.

At the 7th step, two objects ds are sent out from the membranes 3 by
using rule c2. Each one of those objects evolves to ¢t in the skin membrane
by rule ¢3, in step 8. The counter object d; was evolving in membrane 0.

63

The configuration of interest is now [[dg],[|5[|5tttt],. By using rules
c4 and c5, the next configuration is reached: [[dgt],[t],[t]4t],. Rules c4,
¢5, and c6 are applicable now. Then, one of the two following configurations
is obtained at the end of step 10: [[t]4[d1o],[tt] 5] t]5], by rules ¢5 and c6,
or [[diott]y[t]4] t]5], by rule c4. In the last case, the separation rule c6
is applied to membrane 0 for the next time. In both cases, the YES answer
will be sent to the environment after three steps.

Several efficiency results using membrane separation rules of type 2, with
polarization or without polarization of membranes, are represented in [73];
we present here only the next result for the case of polarizationless systems.

Theorem 3.4 Polarizationless P systems with rules of types ev,out’, seps
can solve SAT in linear time with respect to the number of variables and the
number of clauses in a uniform and deterministic way.

Proof. Let us consider a propositional formula in the conjunctive normal
form:

o = CiNA---ACp,
Var(p) = {z1,...,zp},
Ci = %1V---Vyiy, 1 <i<m, where
Yik € {xj,—‘:cj|1§j§n}, 1<i<m,1<k<l;.
As in the previous proof, the instance ¢ is encoded as a multiset
cod(w) = {zij|z;j€{yip|1<k<L}1<i<m,1<j<n}
U {Zi; |~z € {yp | 1<k <LH1<i<m 1 <5 <n}.
For a given (n, m) € N2, we construct a recognizing P system (II((n, m)), Z((n, m)),
2), with
I({n,m)) = (O((n,m)), H, p, w1, ws, R),

O({n,m)) = 01UO;,
O1 = {zi;%i;|1<i<m,1<j<n}
U {e,&|0<i<n—-1}U{co,¢1,c2]|0<3<m}
U {d;|0<i<4n+2m+2}U{a,u,a,v,7,t,\ YES, NO},
Oy = {zi;,Z;|1<i<m,1<j<n}
U {&|0<i<n—-1}u{fu, v},
Z({n,m)) = {zi;,Z;|1<i<m,1<j<n},
Ho= [[]2]1;
w1 = wz = dy,

H = {1,2,3,4,5,6,7},
and the following rules:

Generation phase:

64

gl. [d; — ejau),, 0<i<n—2,
[dno1 — en_109],.

g2. [a]2 - | 01]2[02]27
[a— tf]2,
[e; — &el,, 0<i<n—1,
[u— au'],,
[v — 97'],.

g3. [ty = [13A
[f]z_’[h)‘

gd. [éi—> i+1]3,0_<_i§n—2,
[é;—>d,-+1]4,0§i§n~'2,
[én——l - dou]37
[€1 — dou],-

g5 [,a]3_>[]2)\’
[al]4——) []2)‘7
[2]3 = []5A,
[7],— []5A

In 4n steps, 2" membranes are created, corresponding to the truth as-
signments of the variables x1,...,T,. During this process, object d; inside
the membrane with label 3 corresponds to the true value of variable x; 1,
and object d; inside the membrane with label 4, corresponds to the false
value of variable z;4;. Object a is used to choose the truth assignment of
variables, and objects v and v are used to change the membrane label back
to 2. At step 4n, labels 3 and 4 of internal membranes are changed to 5 by
objects v and v/. The membranes with label 5 represent all possible truth
assignments of the variables in . Every such membrane will contain dy, u,
and the objects represent that the clauses are satisfied.

gb. [wz,j_’wmw,] 1<i<m,1<j<n,
[xzj—’ngxw]z,1§i§m,1§j§n.

g7 [zi1 — ciplg, 1 <0 <m,
[i:i,1—>)\]3,1§i§m.

g8. [Z;; — ciply, 1 <i<m,

[leA]471<Z<m

A mig = ziga]s 1<i<m, 2< 5 <n,

[Zij — Tij-1]3, 1 <i<m,2<5<n,

[a:”-—>a:” p 1<i<m,2<5 <n,

[z, = Zij-1],, 1<i<m,2<j<n.

The label of the created membranes is 2 and then changes to 3 or 4 at
steps 4i + 3, 0 < i < n. Every object z;; of the input evolves to z;,1 or z;

65

in 4(¢ — 1) steps. Then, it evolves to ¢;p in membranes where true value
was chosen for z; (recall that z; ; = true satisfies clause C;) and is erased
in membranes where false value was chosen for x;. Similarly, Z;; changes
to ¢; 0 if z; = false, and is erased if z; = true.

glO. [G0 — Ci’1]2, 1 <) <m.
gll. [e1— c,-,gcg,Q]z, 1<i<m.

g12 [Ci2 — ci70]3’ 1< < m,
[y — cioly L<i<m.

Rules of types gl0, gl1, and gl2 represent that if the clause C; is sat-
isfied in an internal membrane, then, it is also satisfied in the new created
membranes.

Checking phase:
cl. [0 — cim10]5, 1 <3 <m.
2. [uly — []eA
c3. [copolg — [15A
cd. [d; — dip1u)g, 0 <d<m — 1.
5. [dm-1 — dnlg

By expelling object u, the label of the membrane changes from 5 to 6.
At the same time, the subscripts of all objects ¢; are decremented by one.
A membrane with label 6 where object cpo appears will change the label
back to 5. In addition, the subscript of d; is incremented by one and u is
reproduced (except for i = m — 1).

If at the beginning of the checking phase cip,...,¢; o are present (1 <
i < m), but ¢jy1,0 is absent, then, after 2¢ + 1 steps, rule ¢3 will no longer
be applicable and the membrane will have label 6, no object ¢, and will
never change the label again. After m + ¢ + 1 steps, the membrane will
stop evolving from the beginning of the checking phase. If all objects c; o,
1 < i < m, are present at the beginning of the checking phase, then after
2m steps they will all be erased, dy will evolve into d,, and the membrane
label will be 5.

Output phase:
ol. [dp]s — [];YES.
02. [YES], — [],YES.
03. [di — diy1],,0< i < 4dn+2m + 1.
od. [d4n+2m+2] 1 — []1N0.

66

At step 4n + 2m + 1, every membrane corresponding to a solution of
¢ expels YES in the skin region, and in the next step one copy of YES (if
any) is ejected into the environment, changing the label of the skin from 1
to 7. If ¢ has no solutions, then after step 4n + 2m + 2 the skin membrane
remains with label 1 and then rule o4 is applied, ejecting the object NO into
the environment.

The P system I1({n,m)) can be constructed by a deterministic Turing
machine working in polynomial time because it uses at most 4nm + 7n +
5m+ 18 number of objects, 2 initial membranes with at most nm+ 2 objects
and 6mn + 9n + 12m + 17 rules. The length of any rule is bounded by
dnm 4+ Tn + 5m + 18. ' i

We give the following two theorems without proofs; they improve the
corresponding theorems in [4], and are not difficult to be proved by using the
generation phase in the proof of Theorem 3.4 and in the proofs of Theorems
2 and 3 in [4].

Theorem 3.5 A uniform family of P systems with rules of types ev, out,
mer, sep’ can solve SAT in linear time in a confluent way.

Theorem 3.6 A uniform family of P systems with rules of types ev, mer,
sep’, rel can solve SAT in linear time in a confluent way.

3.2 Minimal Parallelism

An interesting problem concerning the application of developmental rules
under different constraints is minimal parallelism, introduced and investi-
gated in [24], which relaxes the condition of using the rules in a maximally
parallel way. More precisely, the rules are used in the non-deterministic
minimally parallel manner: in each step, from each set of rules R; (associ-
ated with a membrane i of a P system) we use at least one rule (without
specifying how many) provided that this is possible. The rules to be used,
as well as the objects to which they are applied, are non-deterministically
chosen. As usual for P systems with active membranes, each membrane and
each object can be involved in only one rule, and the choice of rules to use
and of objects and membranes to evolve is done in a non-deterministic way.

The set of numbers generated by a system II (see Section 3.1) work-
ing in the minimally parallel way is denoted by Ng’g;‘,"(n) and the family of
such sets, generated by systems having initially at most n; membranes and
using during the computation configurations with at most np membranes
is denoted by N, ;;%"OPMM(types-of—rules), with the subscript “min” indi-
cating the “minimal parallelism” used in computations, and types-of-rules
indicating the allowed types of rules. The set of all numbers accepted by a
P system II working in the minimally parallel way is denoted by NZ%*(II),

67

and the family of such sets is denoted by NJWOP,, n, (types-of-rules), with
the obvious meaning of the used parameters. When the number of mem-
branes does not increase during the computation we use only the subscript
n1, denoting the number of membranes initially present in the used systems.

In what follows we give several accepting and generative universality
results, as well as efficiency results for polarizationless P systems working in
the minimally parallel mode.

3.2.1 Computational Completeness Results

The Accepting Case When we remove polarizations from active mem-
branes, additional features are in general necessary in order to reach the uni-
versality. There are several such features, for instance, cooperative rewriting
rules, changing membrane labels, using promoter/inhibitor objects, priori-
ties among rules, etc. Some of these tools will be also used in what follows.

In the proofs we will simulate register machines. In all constructions,
with each register r of a register machine we associate a membrane with
label r, and the number stored in register r is represented by the number of
copies of object a present in membrane r.

Theorem 3.7 N™nOP,(caty, pro,in,out) = NRE,n > 7.

acc

Proof. Let us consider a deterministic register machine M = (3, B, lg, Iy, I)
accepting an arbitrary set N(M) € NRE. We construct the P system

I (O,C, H, p, (W)rer, (Rn)ner, 1) with

O = {a,c}U{L, LV 1" 1™ "I I"|] e B},
¢ = {c,

H = {0,1,1,2,2,33},

po= [[]]1/]1[[]2/]2[[]3/]3]07
wy = lo,w; =wy = w3 = c,w ZwézwézA’

and with the following rules in Ry, h € H. (Remember that the number to
be analyzed is introduced in region 1 in the form a™.)

An instruction {; : (add(r),lz) is simulated by means of the following
rules: '

step l Ry R,

1. - ‘ll[]r_>[l1]'r
2. | — [11 — lya],
3. | — [la], = [152
4 [,2_’12]0 -

68

The label-object I, enters the correct membrane r, produces one further
copy of a and the label Iy, primed, inside membrane r, then the label I} exits
to the skin region, loses its prime, and the process can be iterated.

For the simulation of a SUB instruction l; : (sub(r),ls,l3) we use the
next rules:

step | Ro R, R

1. | [1=0 — —

T iy — la|pi]r or [— Iy r lifi_[.]r' — [t
_ [l2]r — lz[]r or [l3]r — l3[]r U'im s)‘]r’

2. [—=0% Ul —Wl e

8. | =1 [ea— calyl Gl = Pl
4 | — 1) — [(17 =

5. | — [= Dolar)s [= 'l

6. o [a/ =)‘Il_z]r . [lqln]r; — lqlﬂ[|
7.

8.

We start the computation by producing a couple of objects] and I{ in
the skin region by rule 1. Then I} evolves to I{ in the skin region, while
object I{ enters into membrane r. In the third step, while I{” changes to the
next primed version /% in the skin region, object I{ enters into the inner
membrane 7' — this happens in both cases irrespective whether object a
exists or not in membrane r. If an object a was present, it evolves to a’
in the presence of promoter object I by means of the catalytic evolution
rule [ca — ca’|y],. and the promoter leaves the membrane r. The catalyst
¢ is used to prevent more objects a to evolve in the same step. At the
fourth step, object I} evolves to I¥ in membrane r' and object I{¥ enters
into membrane r, respectively. Since no object remains in the skin region,
this region will stay idle until the end of the computation. In the step five,
object IV evolves to [}*, which will be sent out of the membrane 7' in the
following step; in membrane r, if a promoter object a’ is present, then object

@ produces the object I3. Otherwise, there is no rule to be applied here in
this or the next step. In step 6, object {{* arrives into membrane r, where
the object Iy promotes the deletion rule [a’ — Alf,]» and removes the object
a' previously produced. In membrane 7, object [{* promotes either object I3
or 1%, to introduce the corresponding label-object Iz or I3, respectively. The
correct label-object o or I3 is moved to skin region at the 8th step of the
computation. The object {¥* enters membrane 7’ and is removed.

Note that in the simulation of instructions add and sub of M in each
computation step at most one rule from each set Rj has been used, hence
the system works both in the minimally and in the maximally parallel mode.
The starting configuration of the system is restored after each simulation,
hence another instruction can be simulated. If the computation in M halts,
hence [, is reached, this means that the halting label-object I is introduced

69

in the skin region, and also the computation in IT halts. Consequently,
N(M) = NI™(TI), and this concludes the proof. o

In the next theorem we use context-free evolution rules, move-in and
move-out rules, as well as the possibility of changing membrane labels.

Theorem 3.8 N™"OP, (ev,in’,out’) = NRE,n > 4.

acc

Proof. Let us consider a deterministic register machine M = (3, B, ly, lp, I)
accepting an arbitrary set N(M) € NRE. We construct the P system

I = (O7H7 ,LL,’LU(),TU1,’lU2,w3,R0,R1,R2,R3, 1) with
0 {a} U {l,I5, 1", 1" 1™ I’ |l € B},

H = {0yu{rs " " |r=1,23},

uo= [[]1[]2[]3](),

wp = lo,w1 =we = w3 =A,

and with the following sets of rules.

In the simulation of M, membrane labels associated with register r are
changed during the computation.

An instruction [; : (add(r),l2) can be simulated in the same way as in
the proof of Theorem 3.7, hence we skip the details.

The simulation of an instruction I; : (sub(r),l2,l3) uses the following
rules:

step | Ry R,
Lo [h—-}if]y, —

2[5~y 6], — [,

3. [lzln — lllv]o ['a‘]TO - []r’a i

4. |Ta—=Ay [10— [ls]wor I°[], = [1a],n
9. _ [lll] r! - []r”’l’i]

6. [lil) —)\]0 [l2]'r”’ - []Tl2 or [l3]7-/// - [],,,lg

In the first step of the computation, objects I} and [i¢ are produced by
object [; in the skin region (there are no applicable rules associated with
other membranes). In the next step, object Ii evolves to I{# in the skin
region, and in the meantime object [¢ enters into membrane r changing its
label to 0. At the third step, if any copy of object a exists in membrane
70, it leaves the membrane, changing its label to r/; this makes sure that no
other a can leave the membrane. Simultaneously, object ¥ is introduced
in the skin region. This object enters into membrane with label 70 or 7/
present in the skin region, introduces the correct object Iy or I3 inside it,
and changes the label of the membrane to 7”. In step 5, object I¢, which has
waited here since step 2, introduces object [7 into the skin region, changing

70

the label of membrane r” to r’”. In the meantime no rule is applicable in
the skin region. Finally, the correct label-object I3 or I3 is moved in the skin
region, and the membrane label is changed from r”” to the initial 7, in the
sixth step. Object 1} is erased from the skin region. Thus, the simulation is
completed and the system is set up for the next iteration. a

In the next theorem we use the rather strong tool of cooperative evolution
rules (with radius at most 2), but the membrane labels will not be changed
during the computation.

Theorem 3.9 N“"OP,(cev,in,out) = NRE,n > 4.

acc

Proof. Let us consider a deterministic register machine M = (3, B, lo, s, I)
accepting an arbitrary set N(M) € NRE. We construct the P system

I = (O,H, u,lo, A\, A\ A\ Ry, Ry, Re, R, 1) with
O = {a}U{l},1% 1" 1™ Y |1 € B},

H = {0,1,2,3},

no= [[]1[]2[]3]()7

and with the following rules.

We again skip the simulation of an instruction {3 : (add(r),l2) since it
can be done in the same way as in Theorem 3.7.

The simulation of an instruction /; : (sub(r),ls,l3) uses the following
rules:

step | Ry R,
T | (oA, —
[=1l al
[=1, |

o J, — (4], .

— [= 1g], or [{1} — l3],

— [L], = [Jdzor [ls], — [.03

> v w
=a

Again we start by producing two different objects It and /%" in the skin
region, while no rule is applied in membrane r. In the second step, object
Ii enters in the membrane r, and object 1!V is produced in the skin region.
After that, object l'{” evolves to {Y in the skin region. If there is an object a
present in membrane r, then it interacts with object I and introduces object
1if* reducing the number of as, otherwise object {¢ remains here. Object I}
enters membrane r at step 4 and reacts either with object l’l“ or with 1i;
the corresponding object Iy or I3 is introduced in step 5. Thus, the correct
label-object 5 or I3 is introduced into skin membrane at step 6. In steps 4
— 6, the skin membrane is idle. The simulation of instructions from I can

71

be iterated. Obviously, the system works in both minimally and maximally
parallel mode. g

The Generative Case We consider now P systems working in the gener-
ative mode.

The next universality result is based on the simulation of a matrix gram-
mar. Catalytic evolution rules, the dual pair of operations of membrane
merging and separation, also changing membrane labels, are used in the
proof.

Theorem 3.10 Nggfl"OPg,g,(catl,sep’, mer’) = NRE.

Proof. Let us consider a matrix grammar G = (N, T, S, M, F') with appear-
ance checking, in the binary normal form, hence with N = NyUN,U{S, #},
T = {a}, and with the matrices of the forms as mentioned in Subsection
2.1.3.

Assume that all matrices are injectively labeled with elements of a set
B.

We construct the P system of degree 2

II = (O,C,H, p,wo,ws, (Rp)hem,0) with

0O = N]_U{X/|X€N]_}UNQU{C,Cl,CQ,Cl,f,#},

¢ = {c} ‘

H = {m,my,ma,my,m{,my mi my | me B}u{0,0,0" s},
no= [[]0]37
wg = XAccico,ws = A,

and the sets Rj, containing the rules below.

The simulation of a matrix m : (X - Y, A — z), with X € N1, Y € Ny,
and A € Ny, z € (N2UT)*, |z| < 2, is done in four steps, using the following
rules (the matrix with label m is encoded in the labels of the membranes
created by the separation operation; we start from a configuration of the
form [[Xweceyeg]), for some w € (No.UT)*):

step | (X =Y, A — z)
L [0, =[{X},, [0-{X}],,, —
2. [X—"X/]ml [O]m2_’[{CvA}]mé[O_{C’A}]mQH

or [er = #l,.,, [#—#,,

3. | [X' =Y, [cA—>cav]m,2
ol T o Lo
4.1]m’l[]mg_’[lo -

The initial multiset from membrane 0 is X Accico. We start the simula-
tion of matrix m by separating membrane 0 under the control of object X.

72

After separation, object X takes place in a new membrane m;, and other
objects (including c,c1,co) are placed in a membrane mo. In the second
step, object X evolves to X’ while objects A, ¢ makes membrane mgy sep-
arate. At the third step, X’ introduces Y in membrane mj, one copy of
object A evolves to z in the new membrane mj (thus, the rules of matrix m
have been simulated), and membranes with labels m; and m{ are merged
into a new membrane labeled m/. At the fourth step, objects Y, z,c,c1, o
returns to membrane 0, obtained by merging membranes m} and mj (the
rule [cA — cz] m), CANNOY be used again in step 4). If the object X is
present, hence membrane 0 is separated, but object A not, then in step 2
one introduces the trap object # by the rule [¢; — #],,, which must be
used, because [O], — [{c, A}] m’z[O — {c, A}] my cannot be used.

Thus, the matrix m is correctly simulated, and the system can pass to
the simulation of another matrix.

The simulation of a matrix with appearance checking m: (X — Y, A —
#), with X,Y € Ny, and A € Ny, is done in four steps using the following
rules:

step | (X =Y, A — #)
L | [0l = [{X e}, [O—{X,ci}],,
2. 1[0, = [H{X},, [O—{X}.m [0],,, = [{4}, [O —{A}]
3. [X—)Y]m,1 [A—>#]m,2
P O P R [# = #
4. []mll[]m,z,,——>[Jo

The computation starts with objects X, ¢; making membrane 0 to sepa-
rate. At the second step, if membrane mg includes an object A, then it will
separate into membranes m), including A and mj including the auxiliary
object cp. If A existed, then the computation never stop. At the same time,
objects X and c; take place in the membranes m) and m/, respectively. In
the third step, X evolves to Y, and if membrane my is still present, then

membrane m/ merges with it, creating a new membrane m5’. Finally, mem-

branes m/ and mJ}’ are merged into membrane 0 including all correct objects

and the system returns to a configuration as the starting one.

The simulation of a matrix m : (X — A\, A — z), with X € Nj, A € Ny,
and z € T*,|z| < 2, is done in six steps. We omit here the detailed expla-
nation for the first 4 steps, because they are the same as in the simulation
of matrix m : (X — Y, A — z). At step 5, membrane (' is separated into
membranes with labels 0 and 0”. The former one includes the terminal ob-
jects and the special object f. Object f evolves to A at step 6. If there are
objects Z from Ns in membrane 0”) then the rule [Z — #] - is applied and
the computation will never halt. Thus, the simulation is correctly completed
using the following rules:

73

step | (X — f, A—x)
L [0, = [{X}],, [0-{X},, —
2. | [X=X, [0, = [{e, A}, [O = {c, A},
or (€1 #] s | # = #,,
3| [X = fl,., [cA—>cx]m;
[el g =
4. []m;[] /2'—’[]0/ -
5. [O] '_’[U]o[O_U]oN e
for U= {f}urT
6. | [f— A, [Z — #]gZ € N2
[# — #]on
O

3.2.2 Computational Complexity Results

We present here both uniform and semi-uniform linear time solutions to
SAT based on polarizationless P systems working in the minimally parallel
mode. Three results are given, with the following features (types of rules,
label changing, type of construction):

no. | evolution | division | infout | label change | construction
1 cooper. elementary move out no semi-uniform
2 | non-coop. | non-element. | move in, out yes uniform
3 cooper. non-element. | move in, out no uniform

Theorem 3.11 P systems working in the minimally parallel mode with
rules of types cev,ediv,out and constructed in a semi-uniform manner can
solve SAT in linear time with respect to the number of variables and the
number of clauses.

Proof. Let us consider a propositional formula in the conjunctive normal
form, ¢ = C1 A -+ A Cy, with Var(p) = {z1,...,z,}, such that each clause
Ci,1 <4 < m, is of the from C; = y;1 V -+ V yik;, ki > 1, where y; ; €
{zg, 7z | 1 <k <n}. For each k =1,2,...,n, let us denote

t(zk) = {e; | there is 1 < j < k; such that y; ; = 4},
f(xk) = {ei] there iS 1 S ,7 S kl Such that f‘/i,j = _lmk:}‘

These are the sets of clauses which assume the value true when z; is true,
and false when z; is false, respectively.

74

We construct the P system

I = (O,H,p,wy,ws, Ry, R1, Ra, Rs), with

O = {ajbi,c|1<i<n}U{ee;|1<i<m}
U {d;i|0<i<2n+m}U/{e h,YES,NO},

H = {0,1,2,s},

p o= [[I]0[]2]1157

wy = a1, = h7w2 = dO,ws' =)‘7
The rules of P systems are described below.

The truth assignments are produced by using the rules from the following
table:
L [ag]y— [bi]yl el 1 << m,
2. [ereg — e, | €ieir1 — € 4]g,2 < i <m -1,
3. [bi = t(@i)aita] g, [e = f(=i)air]o,
4. [by = t(zn)] g, [en = flzn)]p1 <i<n—1
Ry : 9. [dz — di+1]2,0 <i<2n+m.

Ry

In odd steps, we divide the elementary membrane 0 by using rule 1 (with
b;, ¢; corresponding to the truth values true, false, respectively, for variable
zi); in even steps we introduce the clauses t(z;) and f(z;) satisfied by x;,
and —x;, respectively, by using rules 3 and 4. Simultaneously to a division
step of membrane 0, when the clauses C; and C;,; are satisfied by the
previously expanded variables, the corresponding objects €] and e;;; may
interact with each other, and that produces a primed object €] ; by rule 2.
In a single step, if rule 2 can be applied, then it must be applied at least
once. For instance, if we have a multiset of objects {e1, €2, €5, e3}, then we
can have either a multiset of objects {e}, €5} or {e},e1,ea} or {eh,e3,€5} in
the next step. When we divide a membrane, all inner objects are replicated
and presented in the new membranes. The division process lasts 2n — 1
steps. At the end of this phase, all 2" truth assignments for the variables
zi,...,%n, are generated in 2" membranes with label 0.

At the same time, the counter object d;, 1 < ¢ < 2n 4+ m, is counting the
computation steps in membrane 2 by means of rule 9.

In the next phase we check whether the formula is satisfiable, by means
of the next rules:

Ry : 5. [e;n]0—>[lo€m
6. [hel, — €] L
Ry 7. [edonym — YES],, [hdonyn — NOJ,,
8. [YES], — [],YES, [NO], — [],NO
Ry : 10. [d2n+m—1]2 - []2d2n+m

R, : 11.[YES] — [| YES, [NO], — [] NO.

75

If the formula is satisfiable, copies of object e/, appear in some mem-
branes with label 0 in steps between 2n—1 and 2n+m—2 (by rule 5). When
object e}, is produced, it can leave membrane 0. This is done in the first
2n+m— 1 steps of the computation. Then, object €/, (non-deterministically
chosen if there are several) interacts with object A (which initially stayed at
membrane 1) and produces object e. Object e will wait here for a while. At
step 2n +m, the counter object dap4y, enters into membrane 1 by using rule
10, and interacts here with the object e or h which is available. An object
YES or NO is, thus, introduced (rule 7). The correct answer will be sent to
the environment in the next two steps by rules 8, 11. The computation stops
in at most 2n + m + 3 steps.

Note that the system has a polynomial size in n and m: it uses 5n+3m+>5
objects and 5n + m + 9 rules, all rules being of a length linearly bounded
with respect to m. O

Theorem 3.12 P systems constructed in a uniform manner and working
in the minimally parallel mode using rules of types ev, ndiv, in,out’ can solve
SAT in linear time.

Proof. Let us consider a propositional formula in the conjunctive normal
form, p = Cy{ A -+ - A Cy, with Var(p) = {z1,...,z,}, such that each clause
Ci,1 <@ < m, is of the foom C; = y;1 V-V yik,, ki > 1, where y;; €
{zg,zi |1 <k <n}.

The instance ¢ is encoded as a set whose objects z; ; represent the vari-
able z; appearing in the clause C; without negation, and objects :cg’j rep-
resent the variable z; appearing in the clause C; with negation. The input
multiset will be

codlw) = {mij|ae;e{y;|1<k<L},1<i<m,1<j<n}
U {zi;|aje{y; | 1<k<L}1<i<m,1<j<n}

For a given (n,m) € N2, we construct a recognizing P system
(II({n,m)), ({n,m)), 0) with:

H(<n7 m)) = (O((’)’l, m>)7 H’ H, (wh)hGHa (Rh)hGH)7 where
O((n,m)) = A{zij, 2}t fii|1<i<m,1<j<n}

U {bi,ci,ai,al,al |1 <i<n}ul{d, YES,NO}

U {f|10<i<n}u{l,e,|1<i<m}

U {g;10<i<n+2}U{d;|0<i<6n+m+8},
((n,m)) = A{mij,zi;|1<i<m,1<j<n},
H = [[[[]m[]2[]1]0]a[]d]sa
we = ag,wqg =do,wo =1, ws =w; =\ 1<i<m,

H {s,a,b,d,y,n}U{i |0<i<m}u{d,s" |0<i,i" <n},

76

The set R of rules of P systems II({n, m)), to which we also give explanations
about, are the following:

1. [di—>di+1]d7 0§i§6n+m+8.
Object d; counts the computation steps in membrane d.
Initialization phase:

2. wi,j[Ii = [@il

[]—>[x 1<i<m,1<j<n.

il

We re-encode the instance of the problem ¢ into m membranes in n steps.

3. [ai — aiq1],,0<i<n42.
4. [l —=11]150<i<n~1
Simultaneously to the use of rule 2, evolution rules 3 and 4 are applied in
membranes a and 0, respectively.

5. [, = lla...ln],

6. L]]je[li]j,lgi,jgm.

7. [li]j-—>[lgd, 1 <d,5 <m.

8. anya| o — [a1],-
At step n + 1, object I, evolves to l1,1a,. .., l,. Each object [; (1 < j <m)
enters into an is sent out membrane j in two steps, by means rules 6 and 7,

allowing the change of membrane label from j to 0. Thus, the initialization
phase has been completed in n + 3 steps.

Checking phase:
9. [ailg = [bi]glcilg, 1 < i <.
10. [bz — tl,itz,i SN tm,ia;]o,
[ci = frifei. fmiai]g, 1 <i<n.
We generate 2" membranes with label 0 by using non-elementary membrane
division rule 9. In each step, b; and ¢; correspond to the truth values true

and false, respectively, for variable z;. By rule 10, objects b; and c; evolve.
Rules 9 and 10 are performed in 2 steps.

11. t,J[G-ty — [t = 1)/’01'
bigl Tgoryr = [tigl gy

]
I
Figl Vgory = Ufigl ooy o
fisl 1

G-1) i [finj](j—l)”’ 1<i<m,1<j<n.

77

12. [aj — af],.

The groups of objects t1 j,%2 5,...,tm j and fi;, foj,..., fm,j, corresponding
to variable z;, are introduced into inner membranes with labels (j — 1)’ or
(7 = 1)” by rule 11. At the same time, object a; evolves to aj by rule 12.
These two rules are applied simultaneously.

13. [tiaj] G-1y — []j’d’ [ti,j] G-n" []j/da
[fz,]] -1y - []j”d7 [f’L,]] (G—-1)" - []j"d’
1<i<m,1 <5< n.
14. [a] — af'],.
By using rule 13, objects t; ; and f; ; (corresponding to the truth value true
and false for variable x; of a clause C;) leave membranes with labels (j — 1)’
or (j — 1)” and change the labels to j' and j”, respectively. Object aj’ is
produced in membrane 0 by rule 14. We will check which clauses are satisfied
by truth values using rules from 15.

15. [Zigj — ei]j,,
[xé’j—»ei]j,,,l <i<m,1<j<n.
16. [a] — aj41],-

It is important to bear mind that single and double primes of the labels
j' and j” indicate true and false values respectively. By rule 15, object
x;; in membrane j' and object z; ; in membrane j” evolve to e;. More
precisely, the object without negation has to evolve to object e;, because the
membrane label &’ has a single prime and this indicates the true value. The
subscript of e; must be the same with the first subscript of the object x; .
Similarly, the object with negation has to evolve to e; because of k" which
is double-primed and indicates the value false.

In membranes labeled by 0, the objects a.” lose their primes and increase
the subscript a;11 (rule 16). In this way, the true values corresponding to
the next variable x;; can be assigned (rules 9 and 10). There are five steps
between two consecutive membrane divisions. Thus, we need 5n division
processes in order to obtain all possible 2" truth assignments. Then, the
checking process the satisfiability of all clauses ends at the (6n + 3)th step
of the computation. At (6n + 4)th step, objects a,y1 are removed from
membrane 0 changing its label to 1, by means of rule 17.

17. [an+1]0 — []1d
Recognizing phase:

After the 6n + 4 steps, there are 2" membranes with label 1 and each of
them contains m membranes labeled by n’ or n”.

78

18. [e, — [1,&:

led,r = [],6,1<i<m.

By rule 18, objects ¢;,1 < i < m, are introduced into membrane 1 chang-
ing the former membrane labels from n’ and n” to n. The presence of all
objects eq,es,...,e, in a membrane labeled by 1 means that all clauses
C1,Cs,...,Cy, are satisfied.

19. [e]; = []85l <i<m.

Objects e;,1 < i < m, leave membrane i one by one increasing the label. In
m steps, we can get objects e, to appear in membrane a. One of them is
non-deterministically chosen and expelled out of membrane a, which changes
the label to b, by means of rule 20.

20. [em], = | lpem-
21. [em — YES]_.
22. [YES|, — [],YES.

If an object e, had appeared in the skin membrane, then it will evolve to
YES; this object will be sent to the environment, changing the skin membrane
label to y by using rules 21, 22, in the 6n + m + 8th step of the computation.

23. [dentmt7lg — []ygd6ntm+s-
24. [d6n+m+8]s — []nND

If the formula is not satisfiable, the object NO is sent to environment in the
step 6n + m + 9 by rule 24.

Thus, the problem is solved in a uniform manner, in a linear time, with
the system working in both the minimally parallel and the maximally par-
allel modes.

The system II({n,m)) can be constructed by a deterministic Turing ma-
chine working in polynomial time, because it uses 4nm + 13n + 3m + 14
objects, m + 4 initial membranes containing mn + 3 initial objects, and
12mn + 14n + 8m + 26 rules. the length of any rule is bounded by 7?7. O

An Example

Let us take the formula ¢ = (z1) A (-2 V 22) A (—z2). Then the multiset
encoding is code(p) = z1124; X2225,, and the membrane structure with initial
data is: [[do] 4 aol m112% 122273500 15[1ol 1104l s see Figure 3.1

We explain the computation steps of the example following the “pro-
gram” of Theorem 3.12 simultaneously looking at the diagram representa-
tion from Figure 3.1. In the initial data, a counter object dp is placed in the

79

membrane with label d, a couple of auxiliary objects ag and Ij, are placed
in membranes a and 0, respectively, and the input multiset is introduced in
the input membrane 0 — see diagram 0.

The computation steps are the following:

st. 1,2: diagram 1 — rules 1,2, and 3 are simultaneously performed,
so that, in two steps, the input multiset is re-encoded into
membranes 1,2, and 3, while the counter increases its sub-
script until 2 in membrane d, and the objects I and ag are
evolved to l; and ag, respectively.

step 3: diagram 2 — object I evolves to the multiset l;l5l3 by rule

5 while the counter increases and a9 evolves to ag by rule
3.

step 4: diagram 3 - besides, using rules 1 and 3, objects 11, [,
and I3 enter into membranes 1, 2, and 3, respectively, by
applying rule 6.

step 5: diagram 4 — using rule 7, the objects I, l5, and I3 are sent
out their membranes while the membranes change their la-
bels to O; object aj is introduced into membrane 0 from
outside by rule 8 too.

step 6: diagram 5 — the counter indicates that this is the 6th step
(dg); object a; divides its surrounding membrane into two
new membranes with labels 0, while the object itself evolves
to the objects by (true) and ¢; (false), which are placed in
the new membranes (rule 9).

step 7: diagram 6 — object by evolves to tiitoitz; and object cy
evolves to fi1 fo1f31, respectively, by rule 10.

step 8: diagram 7 — by rule 11, the truth values ¢;; and f;; are
introduced into membranes with label 0/, and also af are
introduced in membranes 0 by rule 12.

step 9: diagram 8 — while the counter still grows, af’ are introduced

from af's by rule 14; the objects t; ; are sent out the sur-
rounding membranes changing their labels to 1/, resp., fi;
are sent out and change the membrane labels to 1” by rule
15.

step 10: diagram 9 — object z1; evolves to e; in membrane 1’ while
object 5, evolves to es in membrane 1”, by rule 15; the
next “divider” object ay is introduced by rule 16.

step 11: diagram 10 — the division operation is repeated by rule 9.

st. 12-15: diagram 11-14 — the operations performed by rules 1,10-16
are repeated.

80

step 16:

step 17:

st. 18,19:

st. 20-22:
step 23:

step 24:

In the following theorem, we use cooperative rules, division for non-
elementary membranes, and objects move in and out, but this time we do

diagram 15 — objects ag from membranes 0 are sent out and
the labels of those membranes are changed to 1, by rule 17.

diagram 16 — in a single step, objects e;,1 < ¢ < 3, are
introduced into membranes 1, changing their label to 2 by
rule 18.

diagram 17 — objects e; and ey leave the surrounding mem-
branes one after the other and increase their label in one;
there is no object e3 in membrane a, hence, rules 20-22 will
not be used any longer.

diagram 18 — the counter object evolves until dyy in three
consecutive steps.

diagram 18 — object do3 is introduced into the skin mem-
brane by rule 23.

diagram 18 — the answer NO is sent out into the environment.

not use the label changing.

Theorem 3.13 P systems constructed in a uniform manner, working in
the minimally parallel mode using rules of types cev,ndiv,in,out can solve

SAT in linear time.

Proof.

We start from a propositional formula in the conjunctive normal
form, «, as in the previous proofs. We encode it as in the proof of Theorem
3.12, in form of a multiset w, and we construct a recognizing P system

(II{(n, m)), X((n, m)), 0) with:

{(n,m)) = (O((n,m)), H, p, (wn)ner, (Rn)nen),
O({n,m)) = {&ij 25t fia |1 <i<m,1<j<n}U{YES,NO},
U {ri,aj,a] |0<i<n}u{d;|0<i<5n+m+7}
U {a;]0<i<n+1}U{e,e,|1<i<m},
S({n,m)) = {mijri;11<i<m,1<5<n},
po= [[II]m[]z[Jlolals
wo = ro,ws=dp,wg =€}, w; =A1<i<m,

The set (Rp)nen of rules of P system II((n,m)), to which we also give

H = {s,a}U{i]|0<i<m},

explanations about, are the following:

1.

[di—»di+1]s,0§i§5n+m+5.

81

)

0. Initial confzguratwn 1. rules:1,2,3 2 rules:1,3,5
)
[a] [

3. rules:1,3,6
input : T11,5, T2, Thy |

4. rules:1,7,8

6. rules: 1,10 7. rules:1,11,12 8. rules: 1,13,14 9. rules:1,15,16

Z

f@ BN

b 0

0

c2

TN

10. rules: 1,9 11. rules: 1,10

82

13. rules:1,13,14

15. rules: 1,17

17. rules : 1,19

18. rule: 1 : : rule : 23 rule : 24

Figure 3.1: An example of solving SAT in linear time. The pictures are read

left to right.
83

This time counter objects take place in the skin region.
Initialization phase:

2. il 1; = [zigle
gl 1, = [zl 1<i<m,1<j<n,
[7“,' — T‘i+1]0,0 S 1 S n— 1,

[— ao]o.

As above, the input set of « is re-encoded in m membranes in n steps.

3. [ai]g = [tig1lgl fir1]0<i<n—1.

We generate 2" membranes with label 0 by using the division of non-
elementary membrane (rule 3). In each step, t; and f; correspond to the
truth values true and false, respectively, for variable x;.

4. [t; = tintio. . timai] o,
[fi— firfiz . fimaily,1 <i <.

Objects t; and f; produce m copies of objects t and f, as well as an object
al, in each membrane 0.

5. tigl I; = [tigly
fisl ;= [figlj 1<i<m,
[@i — ailo
Newly produced objects t;; and f;; (1 < j < m), associated with variable
x;, are introduced into the corresponding membranes j (1 < j < m) by rules

5 in a single step. In each membrane with label 0, the rule [aj — aj], is
simultaneously performed.

6. [xjiti; — €5,

[}:fij —€jl;1<j<m1<i<n,

[@i — ajt1],
If some clauses C;,1 < j < m, are satisfied by a truth value for variable
x; then, the corresponding objects x;; and ¢; ;, (w;’l and f; j, respectively),
interact in the corresponding membranes j,1 < j§ < m, and introduce the
objects e;,1 < j < m, by rules 6, indicating clauses which are satisfied.
In this step, the object a] evolves to a;41 in each membrane 0. Four steps

elapse between two division operations, hence 4n steps are needed to exhaust
variables x1,...,Z,.

Checking phase:

84

7. [an+1 —r ...’I'm]o.

8. ’I‘i[]

9. [rie; — €], 1 <i<m.

Z—)[Tz]z,lngm

In each membrane 0, m copies of object r are produced by rule 7, and then,
they are introduced into each membrane i,1 < ¢ < m, by rule 8. Using rule
9, objects e;,1 < i < m, are produced by means of an interaction of objects
e; and r;, in each membrane 7,1 < i < m, in one step.

10. [e), — [l,e,1 <i<m.

Then, in a single step, each membrane ¢,1 < i < m, expels the corresponding
object e;, indicating that clause C; is satisfied in membrane 3.

11. [e1eq — 6’2]0,

[ejeir1 — €j]p2<i<m—1

By the application of rule 11, in m — 1 steps, we check whether all clauses
are satisfied in a membrane 0. After these operations, if the formula « is
satisfied, we get an object €], in some membranes with label 0. Up to now,
we have made 5n + m + 4 computation steps.

12. [en]o = [lo€m-

Membranes 0 expel object e, if such an object exists, by rule 12. Then,

one of €,s, non-deterministically chosen if there are several, interacts with
object €] (which has been waiting here from the beginning) in membrane a
(rule 13), and produces the object aj. If no object ey, is presented here, no
rule is applied in this step, and object €] remains unchanged.

13. [elel — ab)]..

14. dsnimis[1, = [dsntm7],-

15. [agdsnyms7 —YES], or
[€idsntms7 —NO], .

In the next step, the counter object dsy 17 enters into membrane a, where

it interacts with the objects aj, or €] present here producing thus, one of the
objects YES or NO, by means of rules 14 and 15.

16. [YES], — [|,YES or [NO], — [],NO.
17. [YES], — [],YES or [NO], — []NO.

85

Either YES or NO will be introduced into the skin region, and from here sent
to environment. Thus, the problem is solved in 5n 4+ m + 10 steps. The
observation that the system is of polynomial size completes the proof. O

The main contribution of this section is the use of the minimal parallelism
in the framework of P systems with active membranes, without using mem-
brane polarizations. Both universality and efficiency results were proved in
this framework, for various combinations of types of rules.

Besides possible improvements of the previous theorems, it should also be
investigated the possibility to obtain similar results concerning universality
and efficiency results for other classes of P systems working in the minimally
parallel mode, especially, when rules of the types ev,out, sep are available.

3.3 Replicative-Distribution Rules

The biological motivations of replicative-distribution operations are men-
tioned in Section 1.2. Mathematically, we capture the idea of replicative-
distribution rules as following:

(rds) a[],,[15, = [uly, [0], for hi,he € H,a € O,u,v € OF
(replicative-distribution rule (for sibling membranes); an object is repli-
cated and distributed into two adjacent membranes);

(rdn) [a[]4,]p, = [[ulp,]p,vs for ha,he € Hyia € O,u,v € O7
(replicative-distribution rule (for nested membranes); an object is repli-
cated and distributed into a directly inner membrane and outside the
directly surrounding membrane).

The rules are applied non-deterministically, in the maximally parallel
manner. Note that the multisets u and v might be empty.

The label changing versions of replicative-distribution rules are of the
following form:

(rds') a[], [1,, = [ul,[0], for hie H1<i<4
(the label of both or only one membrane can be changed);

(rdn’) [allp,]n, = [uly,]p, v for by € H 1 <i<4
(the label of both or only one membrane can be changed).

3.3.1 Computational Universality

In the previous sections we have seen that P systems with active membranes
and with particular combinations of several types of rules can reach univer-
sality. Here, we show that P systems with only one type of rules, namely
rdn’, are Turing complete. The proof is based on the simulation of matrix
grammars with appearance checking.

86

Theorem 3.14 PsOPy(rdn’) = PsRE.

Proof. 1t is enough to prove that any recursively enumerable set of vectors of
non-negative integers can be generated by a P system with active membranes
using rules of type rdn’ and four membranes.

Consider a matrix grammar G = (N, T, S, M, F') with appearance check-
ing, in the binary normal form, hence with N = N; U Ny U {S,#} and with
the matrices of the four forms introduced in Section 2.1.3. Assume that all
matrices are injectively labeled with elements of a set B. Replace the rule
X — A from matrices of type 4 by X — f, where f is a new symbol.

We construct the polarizationless P system of degree 4

o = (O)Hvﬂvw07w17w2awkimtaR)’
O = TUNU{A,, | A€ Nyyme BYu{c,d, " " A\ +#},
H = NU{X,|XeN,meB}u{0,1,2, f},

po= [Tl lhlx,, Jo
wo = CAinit, WX, = W1 = W2 = A

and the set R containing the rules below.

The simulation of a matrix m : (X — Y,A —), with X € Nq,Y €
Ny U{f}, and A € Ny, is done in two steps, using the following replicative-
distribution rules:

L LA 1l = [Amly, I
2. [Aml Ly, = [[A]ye.

The first rule of the matrix is simulated by the change of the label of mem-
brane X, and the correctness of this operation is obvious (one cannot sim-
ulate one rule of the matrix without simulating at the same time also the
other rule).

The simulation of a matrix m : (X —» Y, A — #), with X,Y € N;, and
A € Nj, is done in four steps, using the rules:

3. []X]o—’[[cl]ym]o)‘- .
4. []]1]ym = [C”]1]y7/n>"
5

[0 1]y = [T ALl e
6. [Tily, = [T Alilye.

By using rule 3, object ¢ replicates to ¢ and A which are distributed, in the
same time, as follows: ¢’ enters membrane X changing its label to Yy, and A
is send out of the skin membrane. The second step (rule 4) makes ¢’ to evolve
to A and ¢’; ¢’ will be sent to membrane 1 and X gets out of membrane Yy,
changing it to Y. In the next step, if any copy of A is present, then, it

87

introduces the trap-object # and the computation never stops. Otherwise,
¢ following the same replicative-distribution rule transforms into A and ¢/,
which enter membranes 1 and Y., respectively. The last computational step
produces the result we were looking for by replicating ¢/ to A and ¢ and
distributing A to membrane 1 and ¢ to the skin membrane, changing label
Y to Y. Now, the process can be iterated having c in the skin membrane
as in its initial configuration.

We also consider the following rules (applicable in the case A is present
in the skin membrane):

7 (#00), — [
8. [#]]f]o_+ [[#]f]ﬂ)"

Finally, we consider the rules
9. [Af]f]o — [#]f]o)\ for all A € Na.

which checks that when using the matrix of type 4 of G, the derivation is
terminal.

The equality ¥ (L(G)) = Ps(II) easily follows from the above explana-
tions. O

3.3.2 Computational Efficiency

We use again the most investigated way to obtain exponential work space-
membrane division. The following theorem shows that SAT can be solved in
linear time by P systems with polarizationless active membranes using the
rules of types ndiv and rdn’. We recall here the propositional formula ¢ from
the proof of Theorem 3.11.

Theorem 3.15 P systems with rules of types ndiv and rdn’, constructed in
a semi-uniform manner, can deterministically solve SAT in linear time with
respect to the number of variables and the number of clauses.

Proof. Let us consider a propositional formula in the conjunctive normal
form:

o = C1/\"'/\Cm7
Var(p) = {z1,...,zp},
Ci = yia1V---Vyin, 1 <i<m, where
Yik {iEj,—\:Bj|1San},1§i§m71§kgli-

m

88

We construct the following P system which is associated to the formula ¢:

I = (O,H,p,wp,: - ,wr,R), with

O = {di|1<i<m}U{a;|1<i<n}
U {c|1<i<m}u{b|0<i<n}
U {ei|0<i<2n+m+4}U{YES,NO}
U {t fil1<i<n},
o= [LT1 Taladol T lel7lslos
we = aj---apbo,ws =eg,Wp = we = W3z = Wq = Wg = W7 = A,

H = {i|0<i<9},

The rules of the P system II, to which we also give explanations about, are
the following:

Global control:

EL [&] 175 = [[ewl s
E2. [ei[]6]7 — [[)\]6]7€i+1,0 <i<2n+m+1.

The “nested” membranes with label 5,7, and 6 are used only for the global
control of the computation. Rules E1 and E2 are used to count the compu-
tation steps. v

Generation phase:
Gl1. [(J,i]2 — [tl]g[fi]g, 1 S 1 S n.

Using rule G1, with a; non-deterministically chosen, we produce the
truth values true and false assigned to variable z;, which are placed in two
separate copies of membrane 2. In this way, when we assign truth values
to all variables in n steps, we get all 2" truth assignments, placed in 2"
separate copies of membrane 2.

G2. [bi] I4lp = [[bira]] oA

[0 154 = [[Mg)ybigr, forall 0 <i<n—1.
G3. [bn[1514 = [[Al5]1 A
G4. [ba] J4ly = [[Al]

Initially, object by is placed in membrane 2. Rule G2 works simultaneously
to division and increases the subscript of b; in one in each step. If in the
nth step of the computation, object b, takes place in membrane 2, then n
was an odd number. If it was an even number, then object b, takes place
in membrane 4. At the next step, rules G3 or G4 can be applied, and
they change the label of membrane 4 to 1, while object b,, disappears. This
ensures that rule G5 can be used.

89

G5. [t@[]1]2 - [[Uz’]1]2>‘7 .
[fil Iido = [[vii]eA 1<i<n.

Checking phase:
C1. [Ci[]3]1 — [[Ci]3]i+1di71 S 1 S m.

In the checking phase, by using rule C1, object ¢;,1 < ¢ < n, is placed in
membranes labeled by 4n+5—m of level n+1, and it is replicated into object
¢; and counter object d;. Object ¢; is sent into the direct inner elementary
membrane with label d, which is on the deepest level (n+2) of our membrane
structure, and object d; is sent out the surrounding membrane on nth level.
Meanwhile, the label of the surrounding membrane is increased in one. If
at the beginning of the checking phase cy,...,¢; are present (1 < i < m),
and c;y; is absent in the membrane, rule C1 will no longer be applicable
after i + 1 steps, and the membrane will never change the label again. If all
objects ¢;, 1 < i < m, are present in some membranes, then after m steps,
objects d,, are produced into the membranes 2n + 1 and 2n + 2 of level n.

Output phase:

O1. [dpl]m+1]2 — [>‘]m+1]gdm-
02. [dn]]8]0 -])\]B]QYES.

If ¢ has solutions, after 2n + m + 2 steps, objects d,, appear in the skin
membrane using rules O1, and again one object d,,, non-deterministically
chosen, object YES is sent to the environment. At the same time, the skin
label changes to 9 using rule O2 in order to prevent further output. Thus, the
formula is satisfiable and the computation stops. That was the (2n+m+3)th
step of the whole computation.

E3. [€2n+m+2(3)[]7]5 - [[Al 7]5€2n+m+3(4)'
E4. [e2n+m+3(4)[]5]0 — [[A] 5] oNO.

If ¢ has no solution and if 2n + m + 2 is an odd step, after two more
steps the counter object eni+mt4 Will expel the correct answer NO to the
environment. Otherwise, after one more step object espm+3 will perform
this operation. Since rule O2 did not apply (the case in which ¢ has no
solution), the label of the skin membrane is still 0, so rule E4 is applicable. O

A computation in a P systems with active membranes always starts from
a given initial configuration, and we usually create an exponential workspace
in linear time by membrane division, membrane creation, string replication,
or membrane separation. One can also use a different strategy (which will be
also used in Section 5.5): starting from an arbitrarily large initial membrane

90

structure, without objects placed in its regions, we trigger a computation
by introducing objects related to a given problem in a specified membrane.
We use object replicative-distribution rules, as discussed in above. In this
way, the number of objects can increase exponentially. Two results of this
type were given in [52], but we skip them here.

The considered replicative-distribution operations rds and rdn are moti-
vated from biological cell functioning and they are proved to be computa-
tionally powerful and efficient tools in P systems. In the next chapter, we
will reconsider these operations.

91

Chapter 4

Membrane Systems with
Neural-Like Operations

In the present chapter, we mainly focus on the behavior of a single neural
cell, considering both its structure and some functions in the aim of modeling
them in the area of membrane systems.

We have explored some biochemical operations of the neural cells (neural-
operations): impulse transmission and propagation, and excitation/inhibition
impulses.

Using Neural-Operations in P. Systems

Although we have mentioned the biological backgrounds of the our neural
operations in Section 1.2, let us be a bit more precise in order to make the
connection to P systems.

A neuron has a body, the dendrites, which form a very fine filamentary
bush around the body of the neuron, and the azon, a unique, long filament,
which in turn also ends with a fine filamentous bush; each of the filaments
from the end of the axon is terminated with a small bulb. It is by means of
these end-bulbs and the dendrites that the neurons are linked to each other:
the impulses are sent through the axon, from the body of the neuron to the
end-bulbs, and the end-bulbs transmit the impulses to the neurons whose
dendrites they touch. Such a contact junction between an end-bulb of an
axon and dendrites of another neuron is called cleft.

In what concerns the operations that can be performed in a neuron, the
proposed models of computation in P systems are based on various com-
binations of the primitive neural-operations of excitation/inhibition. There
are two basic types of impulses: excitatory impulses increase the membrane
potential, whereas inhibitory impulses decrease the membrane potential. If
different impulses reach at the same time a certain node, then it might hap-
pen that the combined effects of the excitation and inhibition may cancel
each other or excite new impulses. Once the threshold of the membrane

93

potential is reached, an impulse is propagated along the neuron or to the
next neuron.

4.1 Exciting/Inhibiting (On/Off) Operation

It is possible to introduce the impulse excitation and inhibition mechanism
in the P systems area by using evolution rules equipped with the ability
to send excitatory/inhibitory signals. An inhibited rule is formally written
as r : 7(u — v), and the meaning is that the rule cannot be applied. An
evolution rule can de-inhibit an inhibited rule allowing it to be applied. To
this aim, we also consider rules of the form 7 : (u — v){r1,...,7x}, which
say that, when the rule is applied, u evolves into v and the rules r1,...,7%
are inhibited or de-inhibited, changing their previous states.

We now pass to introduce a new class of P systems with an inhibiting/de-
inhibiting mechanism which controls computations and we explore the com-
putational power of the class considering catalytic and non-cooperative in-
hibiting /de-inhibiting rules. In particular, we prove that universality can
be obtained (in generative and accepting cases) by using one catalyst. If we
use only non-cooperative rules, then the systems can generate at least the
Parikh sets of the languages generated by ETOL systems, but we omit this
result to present here.

A P system with inhibiting/de-inhibiting rules (in short, an ID P system),
of degree m > 1, is a construct

II=(0,C H,u,wy,...,wn,R,...,Rn,i),
where:
e m > 1 is the degree of the Systelh;
e O is the alphabet of objects;
e (' C O is the set of catalysts;

e To each rulein R = Ry URy U---U R,,, a unique label is associated.
The set of all rule labels is H = {ry,--- ,7x}. We denote ~H = {—w; |
r; € H}. For a set @ of rules we indicate with lab(Q) the set of labels
of the rules that compose Q.

e 4 is a membrane structure, consisting of m membranes, labeled
1,2,...,m; :

® wi,...,wy, are strings over O, describing the multisets of objects
placed in the m regions of u;

e R;is a finite set of developmental rules, associated with region ¢. The
rules in R; are of the forms:

94

rj:=(a—-w)S, rj:(a—w)S,
;i : 2(ca — cw)S, rj:(ca — cw)S

where 7; € Hia € O — C,w € ((O—-C)xTAR)*,c € C,S C H, for
TAR = {here,out,in}; when S = 0, we omit writing it, and we also
omit the parentheses around the rule;

e iy is the output region.

A configuration of an ID P system is described by using the m-tuple
of multisets of objects, present in the m regions of the system. To each
region a finite number of objects is associated together with a finite number
of rules. The m-tuple (wg,ws, -+ ,wp,) is the initial configuration of the
system. Some of the rules are initially inhibited (if the symbol — is written
immediately before the rule). A transition between two configurations is
governed by the application in a non-deterministic and maximally parallel
way of the rules that are not inhibited.

When a rule r; : (¢ — w)S is applied, the object a is rewritten with the
objects in w (as in standard P systems) and the rules from S are de-inhibited
(if they were inhibited) or inhibited (if they were de-inhibited). In the same
way is defined the application of catalytic rules.

For simplicity, each element in S is called a switch.

If simultaneously a rule r is subject of two or more switches, then the
effect is that if a single switch, hence a change from inhibited to de-inhibited
or conversely.

The system continues the application of the rules in maximally parallel
way until there remain no applicable rules in any region of the system. Then
the system halts (the computation is successful) and we consider the number
of objects contained in the output region iy as the result of the computation.

We use the notation

PsgenI DPp (), a € {ncoo} U {caty | k > 0},

to denote the family of sets of vectors of natural numbers generated by ID
P systems with at most m membranes, evolution rules that can be non-
cooperative (ncoo), or catalytic (cat), using at most k catalysts (as usual,
* indicates that the corresponding number is not bounded). When using
systems in the accepting case, the subscript gen is replaced by acc.

An Example We now illustrate the functioning of an ID P system with an
example that show how the simple mechanism of inhibiting/de-inhibiting
rules can be very powerful.

We consider the ID P system of degree 1,

o= ({A?a}’ 0, {1"1,7'2,7‘3}, []I,A,R, 1),

95

where:
R= {7‘1 :A— AA, 1y (A — AA){"'I,T%TB}, T3 : ﬁ(A — a)}

When the computation starts in the initial configuration with the object
A in the skin region, the rules r; or ro can be applied but the rule r3
cannot be applied since it is inhibited. We use the rule r; m — 1 times and
then we apply the rule ro. In this way, we produce 2™ copies of object A.
Simultaneously the rules r; and ry are inhibited (so they cannot be used
any more), and the rule r3 is de-inhibited. We have used context-free and
inhibiting/de-inhibiting rules to obtain a2", hence

{(2™) | m > 1} € PsIDPi(ncoo)

and this set is not in PsCF.

4.1.1 Using One Catalyst: Two Universality Results

In this paragraph we prove the universality of P systems using catalytic
rules (one catalyst) and one membrane.
We first consider the generative case.

Theorem 4.1 PsgenIDPi(cat;) = PsRE.

Proof. Consider a matrix grammar G = (N, T, S, M, F') with appearance
checking, in the binary normal form, hence with N = Ny U Ny U {S, #}
as introduced in Section 2.1.3. Assume that all matrices are labeled in an
injective manner with m;, 1 < i < n, and each terminal matrix (X —=>NA—
z) is replaced by (X — f, A — z), where f is a new symbol. We define the
set of rules Ry = {X — # | X € N; UNa}.

We construct the P system of degree 1,

II (O,C, H, i, w1, Ry, o), where:

O = NUTUNyU{p, 99", 09", c,d,d,d" d",f,#},

C = {c},

H = {ri|1<i<13}U{ry;,rsi, 784,794,712, |1 <@ <}

U {7"4,1, 7”5:,, ré} U LabH(R#),

no= []1’ '
w1 = cpXinitAinit,

o = 0,

and the set R; is constructed in the following way.

e The simulation of a matrix of type 2, m; : (X; — Y;, 4; — x;), with
Xi € N1,Y;, € N1, A; € Nayz; € (N2 UT)*, |x;| < 2, is done by using
the following rules added to the set R;:

96

r1: (10 - P’P”){Tz,i,T:z,i}
roi s ~(Xi = Yi){rs,ms, 7.}
T3,i N —|(CAZ' — C:L'id/){’l‘é,re,’r‘g,i}

ro: d —d

r3: (d — p){rs, 75}
re:p —p

ri:p’ = p”

r5: (0 — N{rs, L}
i p — #

re 1 —(p" — A){re,r5}
6 P o #

The idea is the following one. The rule r; chooses the matrix ¢ to apply
and this is made by the simultaneous de-inhibition of rules ro; and r3; (all
other rules of other matrices remains inhibited). The execution of both rg;
and 3 ; inhibits the rules r; and r§ that are used to trash the computation in
the case the matrix chosen is not correctly applied. If the matrix is applied
in the correct way (both the rules are executed), then d is changed to p
and the process can be iterated (the original configuration of inhibited /
de-inhibited rules is re-established).

e The simulation of a matrix of type 3, m; : (X; — Y;, A; — #), with
X;,Y; € Ny and A; € Ny, is done by using the following rules, added
to the set of rules R;: '

r7: (p— P){rsiro}

rgi: (X — Yid"){rf, 5,784,704}
rg:p —p

ro;: (A — #)
T,g . d// N d/”

rio: d” —p

The idea of the simulation of this kind of matrix is the following one. The
rule r7 de-inhibits the rules corresponding to the matrix i to be simulated.
If the rule rg; is not applied, then the rule r§ is not inhibited and then the
computation never halts.

e The simulation of a terminal matrix m; : (X; — f,4; — x;), with

X; € Ny, A; € N3, and x; € T*, |z;| < 2, is done using the following
rules (added to the set Ry):

ri1 ¢ (p — A)(Labn(Ry) U {riz;:})

97

T2, 0 (cA; — cxi){rig,i}
Ry ={~(X—->#)| X € NLUN;.

These rules are used to simulate a terminal matrix and then to halt the
computation. In fact, p is deleted and the rule r12; is executed; the rules in
Rj; are de-inhibited and they guarantee that, when the computation halts,
only terminal objects are present.

R, also contains the following rules:

r12 ¢ a — (a,out)
T3 # o #

The result of the computation is collected in the environment; from the
above explanation follows that the set of vectors generated by II is exactly
the Parikh image of L(G). _ O

We consider now the accepting case. We can notice that, in the following
proof, the switches are used only by non-cooperative rules.

Theorem 4.2 Psq..IDP;(cat,) = PsRE.

Proof. In order to prove this assertion we will simulate an m-register ma-
chine M = (m,B,ly,l,I) (see Section 2.1.6). At each time during the
computation, the current contents of register r is represented by the multi-
plicity of the object a,.

Formally, we define the P system of degree 1,

I = (0,CH,[];,wi,R,ip), where:

o = {a,5,5.,S,S"|1<r<m}U{ceé, F,ply}UB,
¢ = {c},

H = {r|1<i<15)},

w = Clo,

o = 0,

and R is defined as follows.
e for each instruction /; : (add(r),l;,1;) € I, we add to R the rule:
r1: i — apl;
e for each instruction /; : (sub(r),l;,l;) € I, we add to R the rules:

ro: l; — €S,

r3:e—e

98

r4: (Sr — S){r7}

r5: —(car — cF)

re: S, — S,

r7: (F— M){r7,r12}
rg: Sy — SV

ro: (Sy — A){ris}
rio: —(e’ — ip){riz}
ri1 s (e = L){rs, 7}
r12: (p— A){ris}

T3 : lh — A

The system works as follows. We start by introducing in the system the
objects a’fl, ...,akm (representing the input to be accepted). We also have
inside the catalyst ¢ and and the label Iy of the first instruction of the
register machine. The vector (ky,- -, kp) represents the vector that has to
be accepted by our P system.

The addition instructions are directly simulated by the corresponding

rules r1.

If a subtraction instruction (I; : sub(r),l;,1x) € I has to be simulated
then the rule {; — €S, is executed. In the following step the object S, is
used to de-inhibit rule r5, and to produce object S, in rule r4, while the
object e evolves into €.

In the next step, if the number of objects a, in register r is greater than
0, then the execution of the de-inhibited rule ca, — cF decreases the number
of objects a, by 1, and produces object F' for the next step.

Meanwhile, the object S. evolves into S; as shown in rule 7.

The object F used in rule r7 to inhibit the de-inhibited rule r5 guarantees
that 75 is applied only once. The rule r1q is also de-inhibited by the execution
of the rule r7.

The execution of the rio generates the label [; of the next register ma-
chine instruction (it is executed only once because it is inhibited by itself)

In the other case (i.e., if there is no object a, in region) the rule a, — F'
cannot be executed, therefore the object F' is not produced and rule r7
cannot be applied.

On the other hand, object S evolves into S;’ by the execution of rule
rg and at the next step S de-inhibits rule r1;, so € evolves to label I
(notice that the object ¢’ still appears, because rule r1p has not been applied
in the previous steps and then rule r1; can generate label [of the next
register machine instruction); rule 711 must also inhibit rule r5 that has
been previously de-inhibited by rule r4.

In the next step the rule 15 is executed and then the rule r1; in again
inhibited (in the case that the rule has not been used because the rule r1o has

99

been applied). When the label of the next instruction has been generated
then the entire process can be iterated. The simulation stops (and then
the input is accepted) when label I;, (which stands for halt instruction) is
generated. O

4.1.2 Using Non-Cooperative Rules and One Switch

We give here the next result without proof. ID P systems using non-
cooperative rules are able to generate (at least) the family of Parikh images
of languages in ETOL. The proof is made by simulating an ETOL system
by using a very restricted ID P system with at most one switch for each
non-cooperative evolution rule, [15].

Theorem 4.3 PsIDP;(ncoo) O PsETOL.

4.2 Inhibiting/De-inhibiting (AID) P Systems with
Active Membranes

As above, the basic idea of the AID P systems model is that, when a rule
(acting on the membranes or on the objects) is inhibited, then it cannot
be applied until another rule de-inhibits it. The application of a rule can
inhibit other rules (and in particular might inhibit itself).

A P system with active membranes and inhibiting/de-inhibiting mech-
anism, in short, an AID P system, without electrical charges and without
using catalysts, is a construct

= (O,H,I,M,’U)l,-..,wm,R),
where:

e m > 1 is the initial degree of the system;
e O is the alphabet of objects;

e H is a finite set of labels for membranes;

I is a finite set of labels for rules;

e 4 is a membrane structure, consisting of m membranes, la-
beled with elements of H;

e wi,...,wy, are strings over O, describing the multisets of
objects placed in the m regions of u;

R is a finite set of developmental rules of various usual
forms. Here are some examples:

100

(in) r:a[J]n— [bpS, forrel,he Ha,beO,5§C1I
(communication rules; an object is introduced in the mem-
brane during this process);

(out) r:[alp—b] JpS,forre,he Habe0,SCI
(communication rules; an object is sent out of the mem-
brane during this process).

The rules in R are written as r; : (-r)S or as r; : (r)S, where r; € I and
r is a rule of P systems with active membranes from Chapter 3 and S is a
subset of I. The AID P systems works like general P systems with active
membranes. The only difference consists in the fact, that, at each step, only
the non-inhibited rules can be used. When a rule r; : (r)S is applied, the
rules whose labels are specified in S are inhibited (if they were de-inhibited)
or de-inhibited (if they were inhibited). Now, starting from an initial config-
uration, the system evolves according to the rules and objects present in the
membranes, in a non-deterministic maximally parallel manner, and accord-
ing to an universal clock. The system will make a successful computation
if and only if it halts, meaning there is no applicable rule to the objects
present in the halting configuration. The result of a successful computation
is the number of objects present in the output membrane (or environment)
in a halting configuration of II. If the computation never halts, then we will
have no output.

We use the notation Psgen, AIDPy, (o) to denote the family of sets of
vectors of natural numbers generated by AID P systems with at most m
membranes (x if the number is not bounded) and developmental rules of
types described by «.

A system II as above can be also used in the accepting mode in the
following way. Given a vector v of natural numbers, let be z a string over the
alphabet O such that ¥p(x) = v; the occurrences of objects corresponding
to the multiset described by the string x are inserted in a specified region
and the vector v is accepted by the system II if and only if the computation
halts.

We use the notation PsgecAIDPy(a) to denote the family of sets of
vectors of natural numbers accepted by AID P systems with at most m
membranes (x if the number is not bounded) and developmental rules of
types a.

We first investigate the possibility of simulating Boolean circuits by
means of AID P systems.

Boolean Functions and Circuits

An n-ary Boolean function is a function f{true, false}™ — {true, false}.
- (negation) is a unary Boolean function (the other unary functions are
the constant functions and the identity function). We say that the Boolean

101

expression ¢ with variables x4, ..., x, expresses the n-ary Boolean function
f if, for any n-tuple of truth values t = (¢1,--- ,tn), f(t) is true if T & ¢,
and f(t) is false if T ¥ ¢, where T'(z) =t; fori=1,...,n.

There are three primary Boolean functions that are widely used: The
NOT function — this is a just a negation; the output is the opposite of
the input. The NOT function takes only one input, so it is called a unary
function or operator. The output is true when the input is false, and vice-
versa. The AND function - the output of an AND function is true only if
all its inputs are true. The OR function — the output of an OR function is
true if at least one of its inputs is true. Both AND and OR can have any
number of inputs, with a minimum of two.

Any n-ary Boolean function f can be expressed as a Boolean expression
@y involving variables x1,..., 2.

There is a potentially more economical way than expressions for rep-
resenting Boolean functions—namely Boolean circuits. A Boolean circuit is
a graph C = (V,E), where the nodes in V = {1,...,n} are called the
gates of C. The graph C has a rather special structure. First, there are
no cycles in it, so we can assume that all edges are of the form (3,7),
where i < j. All nodes in the graph have the “in-degree” (number of
incoming edges) equal to 0, 1, or 2. Also, each gate i+ € V has a sort
s(i) associated with it, where s(z) € {true, false,V,A,~} U {z1,22,...}. If
s(t) € {true, false} U {z1,z2,...}, then the in degree of i is 0, that is, i
must have no incoming edges. Gates with no incoming edges are called the
inputs of C. If s(i) = -, then ¢ has “in-degree” one. If s(i) € {V, A}, then
the in-degree of ¢ must be two. Finally, node n (the largest numbered gate
in the circuit, which necessarily has no outgoing edges) is called the output
gate of the circuit.

This concludes our definition of the syntaz of circuits. The semantics of
circuits specifies a truth value for each appropriate truth assignment. We
let X(C) be the set of all Boolean variables that appear in the circuit C
(that is, X(C) = {z € X | s(¢) = z for some gate i of C}). We say that a
truth assignment 7" is appropriate for C if it is defined for all variables in
X(C). Given such a T, the truth value of gate i € V, T(i), is defined, by
induction on 4, as follows: If s(¢) = true then T'(i) = true, and, similarly, if
s(i) = false, then T'(i) = false. If s(i) € X, then T'(i) = T(s(¢)). If now
s(#) = -, there is a unique gate j < i such that (j,7) € E. By induction,
we know T(j), and then T'(3) is true if T(j) = false, and vice-versa. If
s(i) = V, then there are two edges (4,7) and (j',%) entering i. T'(7) is then
true if only if at least one of T(5), T(j') is true. If s(i) = A, then T'(7) is
true if only if both T'(j) and T'(j') are true, where (j,%) and (j’,¢) are the
incoming edges. Finally, the value of the circuit, T(C'), is T(n), where n is
the output gate.

102

4.2.1 Simulating Logical Gates

In this section we present AID P systems which simulate logical gates. We
will consider that the input for a gate is given in the inner membrane, while
the output will be computed and sent out to the outer region.

Simulation of AND Gate

Lemma 4.1 Boolean AND gate can be simulated by AID P systems with
rules of types in’ and out’, using two membranes and two objects (only the
input), in at most four steps.

Proof. We construct the AID P system

HAND - (O, H) Ia H, W, Ws, R), with

0 = {0,1},
po=[[lols
wo = ws= A,
H = {0,1,s},

and the set R consisting of the following rules:

r1: [0o — [10

9 . [0]1 hand []0)\{7‘2,1‘8}

r3: [1]o = [J1l{ra,ra, 75,76}
T4 : [1]1 i []0)\{1"2,7"8}

rs: 20y = [10{rs, 77}

Te - —|[1]1 — []1)\{7'4,7"6,7‘9}
r7: =1 J1 = [Mo{rs,re, 7,78}
rg: D[0ls = []s0{re,7s}

T9 : —1[1]3 — [131{1"2,7‘5,7‘9} _

We start by placing the input values z; and zs in the membrane with
label 0. Depending on the value of the initial variables 1 and x2, the rules
we apply for each of the four cases are:

for x1zo = 00 — 1,79, 78; for z129 € {01,10} — r1,74,78, OF 73,75,77,T8;
and for xyz0 = 11 — 73,76, 9. ,

More precisely, if two 1s are in membrane 0, in the first step, rule r3 is
applied, a 1 is expelled and membrane’s label is changed to 1. In the same
time according to the inhibition/de-inhibition concept, rules ro and r4 are

inhibited, while rules r5 and rg are de-inhibited and ready to be used. In
the second step we notice that only rule rg can be applied, thus, object 1,

103

placed inside membrane labeled 1 is transformed, in its way out, into A. One
may notice that rule rg, after is applied, restores the original status of rule
r4 and itself, and also de-inhibits rule rg. In the third step, rule r9 performs
and the right answer 1 is sent out the skin membrane, while rules rg, rs,
and rg come back to their original status.

In other words, after these three steps, our system sends out the skin
membrane the right answer (given the input 11) and comes back to its initial
configuration, thus being ready for a new input.

In the case when the input is 01 or 10, we can start by using r; or r3. Let
us examine the second case. Rule 73 sends 1 out of membrane 0 and changes
its label to 1. In the same time, rules ro and r4 are inhibited, while rules r5
and rg are de-inhibited. The only rule we can use in the second step is 75
which expels 0 out of membrane 1, inhibits itself and de-inhibits rule r7. In
this moment we have the following configuration of our system [[];01];.
We now apply rule r; which transforms object 1 to A on its way in the
inner membrane and changes its label from 1 to 0. Rule r7 de-inhibits the
inhibited rule r4, inhibits 76 and itself, and de-inhibits rule rg. The fourth
step is the one in which the right answer 0 is sent out skin membrane, while
the system gets back to its initial configuration. Thus, our system gives the
right answer, in four steps, when we have input 01. In the other two cases
(when we have the input 01 and we start by using first the rule rq, or the
input is 00) our system performs the rules mentioned above; the details are
left to the reader. : m|

Simulation of OR Gate

Lemma 4.2 Boolean OR gate can be simulated by AID P systems with rules
of types (by) and (cp), using two membranes and two objects (only the input),
in at most four steps.

Proof. We construct the AID P system

Ilor = (07 H, I, p, wo, ws, R)7Wlth

0 = {0,1},

po= L1 Jols
wy = Wg=)\,
H = {0,1,s},

I = {r|0<i<9},

and the following set of R of rules:

ri: [1o—[Jil
T9 [1]1 — []0A{T‘2,7’8}

104

r3: [0o — []10{r2,74,7s5,76}
rg: [0)1 = [JoA{re,rs}

rs: [1)1 —= [1 1{rs, 77}

re : —[0]1 = [Jir{ra,re,70}
r7: =0[]1 — [Mo{ra, e, 77,738}
rg: [1] = [Js1{r2,7s}

r9: 7[0]s = []s0{ra, 5,79}

As in the case of AND gate, we place initial values z; and z2 in the
membrane labeled 0 from the membrane structure. The succession of rules
we apply for each case is (as expected due to the duality of the system) the
following:

for z1xz9 = 00 — r3, 76, T,

for 129 € {01,10} - 3,75, 77,78, OF T1,74,78, and

for 19 = 11 - r1,79,T8.

We only give here the details of the case when z; and x2 are both 1. Our
system has the following initial configuration: [[11]g]s. As mentioned above,
the only rule we can apply is 71, and our system evolves to the following
configuration: [[1];1]s. The next rule we can apply is rp through which
the object in membrane 1 is transformed into A and the membrane label
changes to 0, the system evolving to [[]ol]s. After applying rule rg, rule rg
is de-inhibited while rule 79 is inhibited. We now can apply rg, which sends
out the skin membrane the answer 1 and restores the initial configuration
of the system inhibiting rule rg and de-inhibiting rule ro. We showed how
our systems expels, in three steps, the right answer, given the input 11. The
details of the behavior of the system in the other three cases are left to the
reader. a

Simulation of NOT Gate

Lemma 4.3 Boolean unary NOT gate can be simulated by AID P systems
with rules of type (by), in one step.

Proof. We construct the AID P system
lyor = (O7H757/J'awsaR)aWith

O = {0,1},
Ho= []sv
Wws = I172,
H = {s},
S = {ro,m1},
R = {ro:[0}s = Jsl,71:[1]s — []s0}
The correct computation of the NOT gate is obvious. |

105

4.2.2 Simulating Boolean Circuits

We give now an example of how to construct a global AID P system which
simulates a Boolean circuit, designed to evaluate a Boolean function, us-
ing sub-AID P systems in it, namely including Ilanp, llogr, and Ilyor
constructed in the previous section.

An Example

We take into consideration the example used in [17], we consider the function
f : {0,1}* — {0,1} given by the formula f(r1,z2,s,74) = (71 A 22) V
—(x3 A z4). Our circuit and its assigned membrane structure is represented
in Figure 4.1. As shown below, the circuit has a tree as its underlying

U
cy Cy) 0 s
C3 ¢
S 'S
Nt i
C4| K | 0
{)

Figure 4.1: A Boolean circuit and its associated membrane structure of
simulation by AID P systems.

graph, with the leaves as input gates, and the root as output gate. We
simulate this circuit with the P system I = (TT4) , Tk 1, TToh 1 TIS),
constructed from the distributed sub-AID P systems which work in parallel

in the global P system, and we obtain an unique result in the following way:

1. for every gate of the circuit with inputs from input gates, we have
an appropriate P system simulating it, with the innermost membrane
containing the input values;

2. for every gate which has at least one input coming as an output of a
previous gate, we construct an appropriate P system to simulate it by
embedding in a membrane the “environments” of the P systems which
compute the gates at the previous level.

106

For the particular formula (21 A z2) V —(z3 A z4) and the circuit depicted in
Figure 4.1 we will have: '

- qulz)\, p computes the first AND; gate (x1 A x2) with inputs z; and z».
HSI)VD computes the second ANDy gate (z3 A x4) with inputs z3 and

z4; these two P systems, HSI)\,D and HEfJ)VD, act in parallel.

|

- Hg\%T computes NOT gate —(z3 A z4) with input (z3 A z4). While
Hg\?)OT is working, the output value of the first AND; gate performs
the rules that can be applied (in H(O‘ll)z) and at a point waits for the
second input (namely, the output of Hg\?;)OT) to come.

— after the second input enters in the inner membrane of OR gate, P
system H(O41)‘2 will be able to complete its task. The result of the com-
putation for OR gate (which is the result of the global P system), is

sent into the environment of the whole system.

The idea we want to stress here is that, as can be noticed from the above
explanations, our system has a self-embedded synchronization. This means
that if any gate AND or OR receives only one (part of the) input from an
upper level of the tree, the gate will wait for the other part of the input to
come in order to expel the output. So, an extra synchronization system is
not needed in AID P systems as considered in [17].

Based on the previous explanations the following result holds:

Theorem 4.4 Every Boolean circuit a, whose underlying graph structure
15 a rooted tree, can be simulated by a P system, I, in linear time. 1l, is
constructed from AID P systems of type llanp, Hor and lnor, by repro-
ducing the structure of the tree associated to the circuit in the architecture
of the membrane structure.

Proof. The result follows from the previous considerations, with the obser-
vation that the simulation lasts at most four times the duration of evaluating
the Boolean circuit.]

CIRCUIT-SAT Efficiency

There is an interesting computational problem related to circuits, called
CIRCUIT-SAT. Given a circuit C, is there a truth assignment T' appropri-
ate to C such that T(C) = true? It is easy to argue that CIRCUIT-SAT is
computationally equivalent to SAT and hence, NP-complete.

We can now appeal to a well-known construction (see, e.g., [74]) to reduce
a CIRCUIT-SAT instance to a CNF formula. Given a circuit C, we will

107

construct a CNF formula ¢ such that there is an assignment to the inputs
of C producing a 1 output if and only if the formula ¢¢ is satisfiable. The
formula ¢ will have n + |C| variables, where |C| denotes the number of
gates in C if C' acts on inputs z1,--- ,2, and contains gates g1, -+, gc|s
then ¢ will have a variable set {x1,---,%n,g1,-* ,9/c(}- For each gate
g € C, we define a set of clauses as follows:

1. if ¢ = AND(a, b), then add (—cV a), (—c V b), (¢ V —a V —b),
2. if ¢ = OR(a, b), then add (cV —a), (¢ V —b),(-cV a V b),
3. if ¢ = NOT(a), then add (c V a), (—c V —a).

The formula ¢¢ is simply the conjunction of all the clauses over all the gates
of C.

We assume below that C consists of gates from a standard complete basis
such as AND, OR, NOT. Our results can easily be generalized to allow other
gates (e.g., with a larger fan-in); the final bounds are interesting as long as
the number of clauses per gate (and the maximum fan-in in the circuit) is
upper bounded by a constant. Recall that a circuit C is a directed acyclic
graph (DAG). We define the underlying undirected graph as follows:

Definition 4.1 Given a circuit C with inputs X = {z1,--- ,zn} and gates
S ={g1, - ,9s}, let Go = (V,E) be the undirected and unweighted graph
withV =X US and E = {{z,y} | T is an input to gate y or vice versa}.

Theorem 4.5 For a circuit C with gates from {AND, OR, NOT}, the
CIRCUIT-SAT instance for C' can be solved by an AID P system.

Proof. Here is the sketch of the proof.

We know that propositional formula ¢ in CNF is simply the conjunction
of all the clauses over all the gates of C. In our previous example, for the
Boolean circuit considered in Section 4.2.2, ¢ is:

oo = (mer V) A(-ner V) A(er V -z Voza) A(-ea Vas) A
(me2 V xg) A(cg V ozg V —zg) A (c2 Vez) A (meg V —ies) A
(—lcl \Y 64) A (—|63 \% 64) A (—‘04 Ve Vv 63).

There are already known algorithms which solve SAT (written as Boolean
propositional formula in CNF) with P systems with active membranes (see,
e.g., the previous Theorems 3.3, 3.4). Then our p¢ can be solved following
the proof ideas from the proofs of these theorems. |

108

4.2.3 Accepting and Generative Universality Results

P systems with active membranes and with particular combinations of sev-
eral types of rules can reach universality without using polarizations, but
only when additional features are used, for instance, the change of the labels
of membranes.

We show here that P systems with active membranes using the inhibit-
ing/ de-inhibiting mechanism are universal even without polarizations or
other additional features.

The first universality result follows from the one shown in Theorems 4.1
and 4.2. There has been shown that P systems with catalytic inhibiting/de-
inhibiting evolution rules are universal in the accepting and generative sense.
The same proofs works also for our model by using only one membrane and
catalytic developmental rules (with one catalyst).

Therefore

Theorem 4.6 Psg, AIDP;(cat1) = PsqecAIDPi(cat,) = PsRE.

The next universality result is for the generative case and its proof is
based on the simulation of matrix grammars with appearance checking.

Theorem 4.7 Psgen, AIDP)(rdn) = PsRE.

Proof. We construct the AID P system of degree 4

II = (0O,H,I,u,wp, wi,ws,ws, R),
O = TUNU{am |ae NaUT,me B}U{\ #},
H = {0,1,2,3},
I = {rim|1<i<10,m e B}U{ry,ri2U{r,|aeT},
uo= [[[]3]2]1]0:
w, = AX,wg= 1wy = w3 =M\

and the set R contains the following rules.

The simulation of a matrix m : (X — Y, A — z), with X € N,Y €
N1U{A}, and A € Ny, |z]| <2,z = 2'2",2',2" € NoUTU{A}, is done using
the following inhibiting/de-inhibiting rules added to the set R:

rim [X] Joi = [Ym]ol i Mram},

rom : 2L Al o]y = [2wl o)1 @m{rem, ram, rsm },
|zl < 1, |z] < 1,

T3m = Y lsly = [)‘]3]2Y{7"3m77"4m}a

Tam @ = Ty]3]2 - [/\]3]2517/{.7"4"‘}’

rsm : Tl 2l J1lo = [12" To{rsm}.

109

These rules simulate the matrices of the second and fourth type of M.

Initially, objects X and A are placed in the membrane with label 1. In
the first step, by using rule ry,, object X is replicated to Y;, and A, and
object Y;, sent to the inner membrane.

In the same step rule rop, is de-inhibited so it can be executed in the next
step. By using rule ry, the object A is replicated to object x}, and object
zh |z, < 1, |z] < 1, and these objects are distributed into membrane
2 and membrane 0, respectively, while the rule inhibits itself; moreover,
rules r3,;, and rs,, are de-inhibited. In the next step, objects Y and z”
are introduced in the membrane with label 1 simultaneously, while rule r4,,
is de-inhibited by rule rs3,,. Then object z’ enters into membrane 1 from
membrane 2. In this way the first rule of the matrix has been simulated.

The simulation of a matrix m : (X — Y, A — #), with X,Y € Ny, and
A € N,, is done using the rules:

Tom : [X[]2]1 — [Ym]g]l)‘{r7ma7'8m},
rim s [AL Joly = [T AL)4 #,

Tem @ [Yim[]3]2 — | [YM]3]2>‘{T8m},
Tom * [Yol]4]3 — [)‘]4]3Ym{7"10‘m}7

riom 7 Ym[]3]y = [[A] 3] oY {T10mTm }5
ri: [#l]1]0 — [#]1]())‘,

[#]]2]1 — [)‘]2]1#,

Te: [a]g— []ga, forallaeT.

Ti

SV

When object X is rewritten to the object Y,,, it enters to the inner
membrane with label 2 by using the rule rg,, and the rule 77, is de-inhibited.
If any object A appears in region 1, then the trap object # is produced and
so the computation cannot halt. If the rule r7, is not applied, after 4 steps,
the object Y come in the region where object X is present and the rule rv,,
will be inhibited again. Thus, also the matrix in appearance checking is
simulated in the correct way and the process can be iterated.

The result of the computation is collected in the environment; from the
above explanation it follows that the set of vectors generated by Il is exactly
the Parikh image of L(G). a

4.2.4 An Efficiency Result for AID P systems

We proved in Theorem 3.15 of Chapter 3 that P systems with rules of types
ndiv and rdn’, constructed in a semi-uniform manner, can deterministically
solve SAT in linear time.

The next theorem shows how to solve the SAT problem by using the
inhibiting/de-inhibiting mechanism without changing the labels of mem-
branes, still in linear time.

110

Theorem 4.8 AID P systems with rules of types ndiv and rdn, constructed
in a semi-uniform manner, can deterministically solve SAT in linear time
with respect to the number of variables and the number of clauses.

Proof. We construct the AID P system
I = (OJHalau,w07"' aw77R)7 with

O = {a;|1<i<n}U{¢|1<i<m}
U {di|1<i<m}U{e;|0<i<2n+m+3}
U {t, fi|1<i<n}U{YES,NO},
H = {i|0<i<6},
I {gil1<i<2n+m+2yu{h|1<i<4},
o= [[L1 Ialali LT Jelslalos
W] = Q1 0p, W4 = €, Wo = Wg = W3 = W5 = W = A

The rules of P system II are the following:
The global control rules are:

hi : [ei[]5]4 - [[ei+1]5]4>‘7 _
ha: [eillgls = [[Mgls€ir1,0 < i < 2n 4+ m.

The control variables e; counts the computing steps in nested control
membranes. As we shall see, after 2n + m + 2 derivation steps, the answer
YES appears outside the skin membrane if the given satisfiability problem
has a solution. However, in the case that no solution exists, in one or two
steps more, the answer NO appears in the environment.

Generation phase:

g1 [al]l - [t1]1[fl]1{92}a
g+ 2| ail, — [t fil {941}, 2 < i <.

At the first step of the computation, using rule g; with object a1, we
produce the truth values true and false assigned to the variable z;, placed
in two new separate copies of membrane 1. At the same time, rule go is
de-inhibited. Therefore, the previously de-inhibited rules g;,2 < ¢ < n, will
be executed in the next step. In this way, in n steps we assign truth values
to all variables, hence we get all 2" truth assignments, placed in 2" separate
copies of membrane 1.

Objects t; corresponds to the true value of variable x;, while object f;
corresponds to the false value of variable x;.

In the n-th step, after applying the rule g,, the rule g,11 can be executed.

Gn+it [4]2]1 — [Ui]g]l)\{gn—i-i—i-l}a
[fil Loy = [[v]a] i Mgntit}, 1<i<n

111

By using the rules g,1i, 1 < i < n, every object t; and f; evolves to
objects ¢; (corresponding to clauses Cj, satisfied by the true or false values
chosen for z;) and object A, respectively; they are also distributed into the
inner and surrounding membranes.

Checking phase:

gonti = [Gl Jsly = [[a5l adi{gonvivr, g2n4i}, 1 S i <

In the checking phase, by using rules ga,4i, object ¢;,1 < ¢ < n, is
placed in membranes labeled 2, and replicated into object ¢; and counter
object d;. Object ¢; is sent to the direct inner elementary membrane, and
object d; is sent to the surrounding membrane. Meanwhile, the rule gy
itself is inhibited and the rule go,411 is de-inhibited in order to check the
next object. If all objects ¢;, 1 < ¢ < m, are present in any membrane then,
object dy, is produced in membranes with label 1 after m steps.

Output phase:

92ntmt1 : 7 dm]2]1 - [)‘]2]1dm7
Gontm+2 ¢ [dm[11]g = [[Al1]oYES {g2n+m+2ha}.

If 8 has a solution objects d,, appears in the skin membrane after
2n + m + 2 steps, by using rules gop1m+1, and again, one object dy,, non-
deterministically chosen, will output object YES to environment, while the
rule is inhibited to avoid further output. This happens when the formula is
satisfiable and the computation stops (this step was the (2n+m + 3)th step
of the entire computation).

hs i [eantme1@)| lsla = [[Alsla€onseme203)s
hg: | e2n+m+2(3)[]4]0 — [)‘]4]0N0'

If 8 has no solution and if 2n + m + 1 is an odd step, then after two
more steps the counter object egpim+s will output the answer NO to the
environment. Otherwise, after one more step object eanym42 Will execute
this operation. O

Concluding, a mechanism to control computations in P systems and
inspired in neural-cells behavior was introduced and investigated in the P
systems with inhibiting/de-inhibiting rules. The mechanism is based on the
ability to inhibit and de-inhibit rules of the system during the computation.

We also have illustrated how this kind of controlling mechanism can
be introduced into P systems with active membranes. Boolean gates and
circuits are simulated by AID P systems. Then, we have shown that NP-
complete problems, in particular SAT, can be solved in linear time by using
this model. Moreover, universality (in the generative and accepting case)
can be obtained by using simple inhibiting/de-inhibiting rules and without
polarizations or changes of labels.

112

Chapter 5

Spiking Neural P Systems

Recently, ideas from neural computing based on spiking were incorporated
in membrane computing in the form of spiking neural P systems (for short,
SN P systems) in [49]. SN P systems proved [83, 84] to be Turing complete
as number computing devices and also complete modulo direct and inverse
morphisms in the case when they are used as language generators (see [18]).

In this chapter, we consider a couple of problems in the framework of
SN P systems, namely azon P systems and, the efficiency of SN P systems.

5.1 Axon P Systems

In SN P systems, the main “information-processor” is the neuron, while
the axon is only a channel of communication, without any other role —
which is not exactly the case in neuro-biology. In the present section we
introduce a class of SN-like P systems, where the computation is done along
the axon (this time we ignore the neurons). Actually, a sort of linear SN P
system is considered, corresponding to the Ranvier nodes of axons. Spikes
are transmitted along the axon, to the left and to the right, from a node to
another node, and an output is provided by the rightmost node. Specifically,
a symbol b; is associated with a time unit when 7 impulses (spikes) exit the
system, and thus a string is associated with a computation.

The relationships of the families of languages generated in this way with
families from Chomsky hierarchy are investigated, then axon P systems
with states are considered. Several open problems and research topics are
formulated.

We pass directly to considering the device we investigate, incorporat-
ing in the spiking neural P systems framework the way the axon processes
information, as described in Section 1.2.

An azon P system of degree m > 1 is a construct of the form II =
(0, p1,--.,pm), where:

113

1. O = {a} is the singleton alphabet (a is called spike);

2. p1,...,pm are (Ranvier) nodes, of the form p; = (n;, R;),1 < i < m,
where:

a) n; > 0 is the initial number of spikes contained in p;;

b) R; is a finite set of rules of the form E/a® — (a!,a"), where E is a
regular expression over a, ¢ > 1, and [,r > 0, with the restriction
that R, contains only rules with [= 0.

The intuition is that the nodes are arranged along an axon in the order
P, - -+ Pm, With pp, at the end of the axon, hence participating to synapses
(this is a way to say that p,, is the output node of the system).

A rule E/a® — (a',a") is used as follows. If the node p; contains k
spikes, and a* € L(E), k > ¢, then the rule can be applied, and this means
that ¢ spikes are removed from p; (thus only & — ¢ remain in p;), the node is
fired, and it sends [spikes to its left hand neighbor and r spikes to its right
hand neighbor; the first node, p; does not send spikes to the left, while in
the case of the rightmost node, p,,, the spikes sent to the right are “lost”
in the environment. The system is synchronized, a global clock is assumed,
marking the time for all nodes.

Ifarule E/a® — (a!,a") has E = af, then we will write it in the simplified
form a® — (a,a"). '

In each time unit, if a node p; can use one of its rules, then a rule from R;
must be used. Since two rules E1/a® — (al,a™) and Ey/a®? — (a'2,a™),
can have L(Ey) N L(Es) # 0, it is possible that two or more rules can
be applied in a node, and in that case, only one of them is chosen non-
deterministically. .

During the computation, a configuration is described by the number of
spikes present in each node. The initial configuration is Cy = (n1,...,nm).

Using the rules as described above, one can define transitions among
configurations. A transition between two configurations C, C5 is denoted by
C1 = Cs. Any sequence of transitions starting in the initial configuration
is called a computation. A computation halts if it reaches a configuration
where no rule can be used. With any computation (halting or not) we
associate a sequence of symbols by associating the symbol b; with a step
when the system outputs i spikes, with by indicating the steps when no
spike is emitted from p,, to the environment. When the computation is
halting, this sequence is finite.

Let us denote by L(II) the language of strings computed as above by
halting computations of the system II and let LAP,,(ruleg, consp) the family
of languages L(II), generated by systems IT with at most m nodes, each node
having at most k rules, and each of these rules consuming at most p spikes.
As usual, a parameter m, k, p is replaced with = if it is not bounded.

114

5.2 Examples

We consider here some simple axon P systems, given in the graphical form,
following the style of spiking neural P systems: we specify the nodes along
the axon, with two way arrows among them and with an arrow which exits
from the output node, pointing to the environment; in each node we give
the rules and the spikes present in the initial configuration.

Figure 5.1: The initial configuration of system II;

Figure 5.1 presents the initial configuration of the system II;. We have
two nodes, with node py containing one spike. This spike will circulate
among the two nodes as long as the second node uses the rule a — (a, a).
In this way, in every second step one outputs a spike, starting with the first
step of the computation. When node p; uses the rule a — (A, a) no spike
will remain inside and the computation halts. Therefore, L(II;) = (b1bo)*b1.

Consider also the system Il from Figure 5.2. This time each node starts
with a spike, hence the two nodes can interchange a spike as long as p; uses
the rule @ — (A,a) and p2 uses one of the rules a — (a,a), a — (a,A). If
at some moment the two nodes use simultaneously the other rules, then no
spike remains in the system and the computation halts. In this way, one
generates all strings in {bg, b1 }*, hence we have L(Ilz) = {bg,b1}".

Figure 5.2: The initial configuration of system Il

Clearly, this system can be extended to a system which generates the
language V* for any alphabet V with at least two symbols.

The third example, II3, from Figure 5.3, is slightly more complex. It has
n 4+ 1 nodes, for some given n > 2. The leftmost node has only one rule,

115

the rightmost node contains the rules a — (a2,a) and a — (A, a), and all
other nodes contain the rules a — (), a) and a® — (a2,)). We start with
one spike in node p,41. This spike is moved continuously to the left and to
the right along the axon, and always when it arrives in the rightmost node
a spike exits the system. The computation can be finished by the rightmost
node, by using the rule a — (A, a), which leaves the system without any
spike inside. Consequently, we have L(IT3) = {by(bg" 'b1)* | n > 1}.

n+1

Figure 5.3: The initial configuration of system II3

We do not present further examples, because the results in the next
section are also based on effective constructions of axon P systems.

5.3 The Generative Power of SN P Systems

5.3.1 A Characterization of FIN
Lemma 5.1 LAP;(rule,,cons,) C FIN.

Proof. In each step, the number of spikes present in an axon P system
with only one node decreases by at least one, hence any computation lasts
at most as many steps as the number of spikes present in the system at the
beginning. Thus, the generated strings have a bounded length. a

Lemma 5.2 FIN C LAP; (rule*,cons'*).

Proof. Let L = {z1,%2,...,2,} C V* n > 1, be a finite language for
some V = {by,..., bk}, k>1. Let i =xj1...Tip, 1 <i<n. ForbeV,
define index(b) = i if b = b;. Denote oy = Y7, |ay], for all 1 < j < m.

An axon P system that generates L is shown in Figure 5.4.

Initially, only a rule q@»t1/gontl=a; _, gindez(z;1) can be used, and in
this way we non-deterministically choose the string z; to generate. This
rule outputs the necessary number of spikes for x;;. Then, because a;

spikes remain in the neuron, we have to continue with rules a®~2/q —
aindez(zt) for ¢ = 2, and then for the respectlve t = 3,4,. —1; in
this way we introduce x;¢, for all t = 2,3, .. — 1. In the end the rule
a%i—Tit? aindez(xj,rj)
computation.

is used, which produces zjr; and concludes the

116

e ™

aan—i—l/aan—l—l—aj N az’ndem(mjyl)

1<j<n
aaj—t+2/a__)aindew(xj,t) I
2<t<r;—1,1<j5<n

a%i—Ti +2 _, aindex(xj,rj)

\ 1<j<n J

Figure 5.4: An axon P system which generates a finite language

It is easy to see that the rules which are used in the generation of a string
z; cannot be used in the generation of a string xx with k # j. Also, in each
rule the spikes consumed are not less than the spikes produced. 0

Theorem 5.1 FIN = LAP;(rule,, cons,).

5.3.2 Relationships with REG
Theorem 5.2 REG C LAPy(ruley,cons,).

Proof. For L € REG, consider a grammar G = (N, B, S, P) such that
L = L(G), where N = {A;,As,..., Ay}, n>1, 8 =A,, V={b1,...,bn},
and the rules in P are of the forms A; — byA;, A; = by, 1 <14,7<n,1<
k<m. .

Then L can be generated by an axon P system as shown in Figure 5.5.

2

2n

a
an+i/an+i——j — (an, a,k)
for A; — brA; € P
a™tt — (A, a¥)
for A, > b€ P

Figure 5.5: An axon P system which generates a regular language

In the first step, node ps fires by a rule a®*/a?"~7 — (a®,a*) (or a®® —
(X, a¥)) associated with a rule A,, — bpA;j (or A, — by) from P, and sends k

117

spikes to the environment. In this step node p; also fires and sends n spikes
to node py. It will send n spikes back to node p2 as long as it receives n
spikes from node ps.

Assume that in some step ¢, the rule a"**/a"**~J — (a", a¥), for 4; —
biA;j, or @™t — (X, a¥), for A; — by, is used, for some 1 < i < n, and n
spikes are received from node p;

If the first rule is used, then n spikes are sent to node p;, k spikes are
sent to the environment, n + i — j spikes are consumed, and j spikes remain
in node ps. Then in step ¢t + 1, we have n + j spikes in node py, and a rule
for A; — byA; or Aj — by can be used. In step ¢ + 1 node p; also receives
n spikes. In this way, the computation continues.

If the second rule is used, then no spike is sent to node p1, k spikes are
sent to the environment, all spikes in node py are consumed, and n spikes
are received in node p;. Then the computation halts.

In this way, all the strings in L can be generated. t

Actually, as we will see in the next section, the inclusion above is proper.

5.3.3 Beyond REG
Theorem 5.3 LAP,(ruleg,consp) — REG # 0 for allm > 2,k > 3,p > 3.

Proof. An example of a non-regular language generated by an axon P
system of the complexity mentioned in the theorem is presented in Figure
5.6. As long as the first rule of R; is used, no spike is output, and node
p1 accumulates continuously two more spikes. After n steps of this type,
node py will contain 2(n + 1) + 1 spikes. At any step, node p; can use
the rule a(aa)t/a® — (), a?). This both leaves an even number of spikes
in node p;, and sends two spikes to node ps. The number of spikes from
node p; becomes 2(n + 2) (it receives four spikes and consumes three). In
the next step, we do not output any spike, but from now on we begin to
output spikes in each step: node p; uses the rule (aa)*/a? — (,a®), thus
continuously decreasing by two the number of spikes it contains. This can
be done for n + 2 steps, hence the generated string is b8+2b71”'2, that is,
L(IT) = {bpb} | n > 2}. This is not a regular language. i

a(aa)t/a? — () a)
a(aa)t/a® — (A a?)
(aa)*t/a® — (A, a®)

Figure 5.6: An axon P system which generates a non-regular language

Also much more complex languages can be generated:

118

Theorem 5.4 The family LAPs(rules, conss) contains non-semilinear lan-
guages.

Proof. Consider the axon P system from Figure 5.7. Assume that we
start from a configuration of the form (3™ + 1,0); initially, this is the case,
with n = 1. As long as at least four spikes are present in node p;, the rule
a(aaa)®/a® — (A, a) is used and it moves all spikes to the second node,
multiplied by 3. When we remain with only one spike in node p;, we can
use one of the other two rules of R;.

If we use a — (), a), then in the second node we get a number of spikes
of the form 3m + 1, hence the first rule is applied as much as possible,
thus returning the spikes to node pl'. In the end, we have to use the rule
a — (a,A) € Rs, which makes again the number of spikes from node p; to be
of the form 3m + 1 (note that no rule can be applied in any node when the
number of spikes is multiple of 3). This process can be iterated any number
of times, thus multiplying by 3 the number of spikes present in node p;.

1
2
o
a(aaa)t/a® — (X, a%) a(aoa)t/a’ = (o)
o (\a) a— (a,\)
"o ()\,’az) aa(aaa)t /a3 — (A a)

Figure 5.7: An axon P system which generates a non-semilinear language

At any time, node p; can also use the rule a — (), a?) instead of a —
(A,a). This makes the number of spikes from node py to be of the form
3m + 2, hence the rule aa(aaa)* /a3 — (), a) should be applied. This rule
does not change the 3-arity of the number of spikes, hence it is used as
much as possible. In this way, a spike exits the system in each step, until
exhausting the spikes from the output node (when only two spikes remain
inside, no rule can be used). '

This means that after a number of steps when no spike is sent to the
environment, we output spikes for 3" steps, for some n > 1. Therefore, the
language L(II) consists of strings of the form b3, for some m,n > 1, and
for all n > 1 there is such a string in L(II). Thus, L(II) is not a semilinear
language. ‘ a

The previous language is not in M AT. However, as we will immediately
see, this kind of systems has strong limitations.

Lemma 5.3 The number of configurations reachable after n steps by an
azon P system of degree m is bounded by a polynomial g(n) of degree m.

119

Proof. Let us consider an axon P system II = (O, p1, ..., pm) of degree
m, let ng be the total number of spikes present in the initial configuration
of I, and denote o = max{l +r | E/a® — (a},a") € R;,1 < i < m} (the
maximal number of spikes produced by any of the rules of II). In each step
of a computation, each node p; produces some [and r spikes to be sent to
the left and right nodes of node p;, respectively. We have [+r < o. Each
node can do the same, hence the maximal number of spikes produced in
one step is at most am. In n consecutive steps, this means at most amn
spikes. Adding the initial ng spikes, this means that after any computation
of n steps we have at most ng + amn spikes in II, hence the number of
configurations are no more than (ng + amn)™. This is a polynomial of
degree m in n (a is a constant) which bounds from above the number of
possible configurations obtained after computations of length n in IL o

Theorem 5.5 If f : VT — V't is an injective function, card(V') > 2, then
there is no azon P system II such that Ly(V) = {« f(z) | x € V1} = L(II).

Proof. Assume that there is an axon P system II of degree m such
that L(II) = L#(V) for some f and V as in the statement of the theorem.
According to the previous lemma, there are only polynomially many con-
figurations of II which can be reached after n steps. However, there are
card(V)" > 2™ strings of length n in V. Therefore, for large enough n
there are two strings wy,wy € V¥, wy # wo, such that after n steps the sys-
tem II reaches the same configuration when generating the strings wy f(w;)
and wsy f(ws), hence after step n the system can continue any of the two
computations. This means that also the strings w; f(w2) and ws f(w;) are
in L(II). Due to the injectivity of f and the definition of L;(V') such strings
are not in L¢(V), hence the equality Ly(V) = L(II) is contradictory. O

Corollary 5.1 The following languages are not in LAP,(rules,cons,) (in
all cases, card(V) =k > 2):

Ly = {zmi(z) |z € VT,
Ly={zz|zeVT},
Ly = {z @ |z eV} c ¢ V.

Note that language L; above is a non-regular minimal linear one (gener-
ated by linear grammars with only one nonterminal symbol), Ly is context-
sensitive non-context-free, and L3 is non-semilinear.

Theorem 5.6 LAP,(ruley,cons,) C REC.

120

Proof. This is a direct consequence of the fact that a string of length
n is produced by means of a computation of length n; thus, given an axon
P system II and a string z, in order to check whether or not z € L(II) it is
enough to produce all computations of length |z| in IT and to check whether
any of them generates the string x. 0

5.4 Axon P Systems with States

In this section, we consider a way to control the rule applications by means
of node states. Specifically, the rules we are going to use are of the form
sE/a® — (s',dl,a"), where s,s’ are states, E is regular expression, and
c>1,1>0,r>0.

Formally, an axon P system of degree m > 1 with states is a construct
of the form '

I=(0,Q,p1,---,pm),

where:
1. O = {a} is the singleton alphabet;
2. @ is the finite set of states;
3. p1,-.., pm are (Ranvier) nodes, of the form
pi = (0,4, R;), 1 <i <m,
where:
a) so € @ is the initial state of node;

b) n; > 0, is the initial number of spikes in node;

c) R; is a finite set of rules of the form sE/a® — (s',al,a”), where
s is the current state of the node, E is a regular expression over
a, c>1,and I,r > 0, with the restriction that R; contains only
rules with [= 0.

A rule sE/a® — (s',a!,a”) from R; is applied like the rule E/a® —
(a',a™), but only if node p; is in state s; after the use of the rule, the
state of p; becomes s'.

Let us examine some examples, in order to clarify the definitions and to
illustrate the way our devices work.
Consider first the simple system

I = (07 Q>,01>,02),

where:

121

1. O={a};
2. Q@ ={s0,51};

3. p1 = (50,1, R1), p2 = (0,1, Ra);
Ry = {r1 : spa™ Ja — (s0, A, a)}

= {r1 : spat/a — (s9,a3,),

r9 1 S00 — (81, A, A),

T3 : s1a — (s1,\,a)}.

It generates the non-regular context-free language
L(II;) = {bgbT | n > 1}.

The computation steps are presented in Table 5.1.

step | a a step | a a
1|{ri:a re:alby 1|7r:a ri:a | by
2| - rg:a | by 217 :a? ri:a | by

3(ri:a rota | by
4| - rg:a | b

step | a a step | a a
liri:a mr:albg l|7m:a r1:a | by
21 ri:a?2 ri:alb 2| r:a? ri:a | by
3|r:a® ri:albg 3|r:a’ ri1:a | by
4| r:a* riial by 4|7 :at ri:a | by
5(r:a® ri:al b . . C .
6|ri:a® ro:al by n—1|ri:a"t ri:a|bg
71lr:a® r3:alb; n|r:a® r9:a | bg
8|ri:a* ry:al|b n+l|ri:a™t r3:al|b
91r:a® r3:a|bg n+2|r:a® r3:a | b

10|r1:a2 r3:a by ‘ .
11 r:a rg:a|bi|[2n—1|7r:a rg:a | b
12 | - rs:.a bl 2n | — r3.a b1

Table 5.1: Some computations in Iy

Let us observe in Table 5.1 how the system works. Initially each node
contains one spike (a), and they are in the initial state so. Node p; has only
one rule and it never changes its state. In turn, node py has 2 states and 3
rules; rules 71 and ro apply in state sg, but once rule ry is chosen the state
of the node is changed to s1, and from now on rule r3 should apply until the
computation halts.

It is easy to see that the system generates strings of the form b{b7 in
2n steps, for some n > 1. Let us follow the table. We apply rule r; in

122

node ps for a number of times, thus generating symbols by (no spike is sent
to the environment); in the meantime, node p; accumulates continuously
spikes. Once rule ry is chosen (suppose this happens in the n-th step), the
node changes its state to s; and starts to send the spikes of node p; to the
environment, using the rule rj.

Let us now consider a system with a more sophisticated functioning,
namely

Il = (07 Q7 P1, ,02),

where:
1. O={a};
2. Q = {80’317 3,173273127 53, S#};

3. p1 = (50,0, R1), p2 = (30,2, Ry);

Ri = {r1:s0a— (s0,\02%)};
Ry = {r,:spa®— (s, A, N),
o : soat /a — (s3,),a),
73 : spat /a — (53, a?),
r4: 800" /a — (s2,a,a?),
5 : spat /a — (s1,a,a),
e : s1a% /a — (s1,a,a),
r7: 8107 Ja — (s2,a,a?),
rg : s1at Ja — (sh,), a®),
rg : siat /a® — (s3, A, a3),
10 : s2at Ja — (59,0, a?),
r11 ¢ s2at Ja — (sh, A, a3),
r12 : shaT /ad — (s3,), a%),
r13 2 8307 /a — (s3,\,a%)}.

The language generated is
L(ILy) = {byb5'05"™ | n,m > 0},

which is in C'F. Initially, there is no spike in node p;, but there are two
spikes in node p;. The main work of controlling the computation is done
by node ps, while node p; helps to grow spikes in node p;. There are 5
rules in state s in node p2 and one of them is non-deterministically chosen
when computation starts. Rule r; is for word A (n = m = 0), rule rq is for
bibs (n = 1,m = 0), rule r3 is for bgbs (n = 0,m = 1), and rule ry is for

123

1 : soa — (so0,a?,a)

r1: soat/a — (s0,a,A) 72 : s0a?/a® — (so, A, a?)
* * k)

1 : soa — (54,02, a?)

r2: soat/a — (s, a)
r3: s0at/a — (s1,A,a)
re:s10% /a — (8152, a)
rs: sha®/a? — (s5,a%,a%)
e : sha’/a® — (so,a?,a?)
rr: 10t /a® — (s2,a?,a?)
rs : s2a™ fa — (s2,a%,a%)

_ _/

Figure 5.8: An axon P system generating a non-context-free language

words b'bT* (n = 0,m > 1). Words of the form b765'65T™ (n > 1,m > 0)
can be generated if the computation starts by rule r5. We omit the detailed
explanation here.

The last example we present is II3 = (O, @, p1, p2, p3), given in a graph-
ical form in Figure 5.8; it generates the non-context-free context-sensitive
language {b765b3 | n > 1}.

step a a step a a
1]- r:a Tri:a {b 1]|- rs:a Tr1:a |b
2|7 :a® a? ro:a? | by 2| - rg:a2 rm:a | b
3|lrr:a - - bo 3| - rg:a® rm:a | b
4 | - raiat ri:a | b
5| — re:a® ri:a | by
6|r:a%2 rg:at ro:a® | by
a a Tlri:a® rg:a® ro:a? | by
1] - re:a ri:a | by 8 1 ri:at rg:a? ro:a? | by
2| - rs:a2 rm:a | b 9|ri:a® rg:a To:a| by
3|ri:a?2 rg:a? ro:a? | by 10 |7 :a% - re:a2 | by
4|7 :a® - ro:a® | be || 11| 7p: a® - by
5|7 :a? - - bo 12 | r :a* - - bo
6|ri:a - - bo 13| r:a® - - bo
14 |7 :a2 - - bo
15{r1:a -~ - bo

Table 5.2: Some computations in I3

The string b7b3b%,n > 1, is generated in 3n steps. Initially, node p;
contains no spike, while each node py and p3 contains only one spike. The
computation steps are mainly controlled by node py. There are three rules in
node p3 (r1,r9,r3) which can be applied in the first step of the computation.

124

If computation starts applying rule r1 (rq, or r3), a word bybabg (resp. b%b%b%
or bTbyby) will be generated. The reader can easily trace the computation
steps in Table 5.2.

Further Remarks

Many open problems and research topics about axon P systems remain to
be considered. We only mention here some of them.

Actually, many questions are suggested by the research about SN P
systems. For instance, in the systems considered here we have no delay
associated with the rules, the spikes are emitted immediately after firing
the rule — otherwise stated, the delay is always 0. However, an arbitrary
delay can be considered, as usual in SN P systems. Is this of any help?
What about considering infinite sequences generated by axon P systems, as
investigated in [84] for SN P systems? Can any interesting class of languages
or of infinite sequences be characterized /represented in this framework?

Are the hierarchies on the number of nodes infinite? The universality
implies the fact that the hierarchies on the number of nodes collapse, but,
in view of Theorem 5.6, our systems are not universal. Another problem
related to the non-universality result is to find decidable properties other
than the membership one.

What about associating a language in the following way: for each node
¢ we consider a symbol ¢; and a configuration {(ki,...,kn) is described by
the string c’fl ...ckm_ We obtain a language (strictly bounded). Variant: to
take only the strings which describe configurations which send out a spike
(thus we have a selection of strings). Any relation with L systems?

5.5 Spiking Neural P Systems with Self-Activation

In this section we show that if some precomputed resources (namely, the
neurons disposed in a particular — initially inactive — structure) are con-
sidered, SN P systems having a self-activation behavior prove to be also
computationally efficient, and can solve SAT in constant time.

The basic idea, initially mentioned in [81], is that, instead of producing
in linear time an exponential workspace, we start from the beginning with
an exponentially large precomputed workspace in the form of an exponen-
tially large number of inactive neurons, which will be activated and used in
constant time in our computation.

We assume a structure of neurons given “for free” as a result of a pre-
computation whose duration does not matter — although the structure is not
completely independent from the problem we want to solve. The neurons
in the structure are initially inactive and become active immediately when
a spike enters them.

125

This strategy corresponds to the well-known fact that the human brain
contains a huge number of neurons out of which only a small part are cur-
rently used, and (some of) the inactive neurons can change their status as
soon as they receive (electrical) signals from active neurons.

We consider a neuron to be inactive if it contains no spike (hence no rule
can be applied in it). As soon as a spike enters a neuron (as input in the
initial configuration or from another neuron through a synapse), it makes it
active altogether with the synapses that it establishes with other neurons.

In a self-activating SN P system we have an arbitrarily large number of
neurons which differ by the number of spikes and/or of rules they contain.
Some of these neurons will be active, the others will be inactive.

In what follows, we construct an SN P system for solving SAT problem
in constant time. Let us consider n variables z1,%2,...,Zp,n > 1, and a
propositional formula with m clauses, v = C; A - -+ A Cpp, such that each
clause Cj,1 < i < m, is of the form C; = y;1 V-V yik,, ki = 1, where
Yij € {zg, x| 1 < k < n}.

The set of all instances of SAT with n variables and m clauses is denoted
by SAT({n,m)). '

The instance v is encoded as a set over

J V.7

where z; ; represents variable z; appearing in clause C; without negation,
. /
while z; ; represents variable z; appearing in clause C; with negation.

Now, we give an informal description of the precomputed resource struc-
ture devoted to SAT((n,m)). Figure 5.9 depicts an SN P system working
in self-activating manner using precomputed resources, where the nodes and
the arrows represent the neurons and the synapses, respectively. One can
notice that the nodes have (four) different shapes (O, ®, O,), but this is
just a way to make the construction easier to understand (the shape does
not imply any differences in the behavior of the nodes). Also, we see that
the structure has a sort of symmetry. Namely, for each clause we have a
block of ()-neurons and @-neurons.

The Device Structure: The precomputed device (initially inactive) able
to deal with any v € SAT({n,m)) is formed by 2"(m + 1) + 2nm + 1
neurons and 2"(3m + 1) synapses. Further on we are giving some details on
the components of this structure.

Neurons of type O¢,a;1/0t For each variable z; of a clause C;, we associate
2 neurons QOg;z;1 and Og;e;0, 1 <4 <m, 1 < j < n. Obviously, the subscript
of the neurons indicates the clause (c; for the clause C;), and the variable (z;
for the jth variable in the clause). 1 and 0 are used to mark differently the
two neurons needed to encode the same variable; their use will be detailed
further on in the paper where the encoding part will be explained. However,

126

each clause is described by 2n neurons, and there are exactly 2nm neurons
of type Ocia,j 1/0 associated with m clauses.

Neurons of type ©@c,pin: There are 2" ©,pin, neurons, associated to each
clause Cj, injectively labeled with elements of {c;bin | bin € {1,0}"}. They
correspond to the 2™ truth assignments for variables variables z1,...,zy,.
In total, the device has 2"m ®,pin neurons (2" for each of the m clauses).
Later on, we will see that these neurons will handle, during the computation,
Boolean operation vV (OR) present in the clauses of the formula.

Synapses Ocimjl /0 — @¢;bin: The connections are in one direction from
Qcim]. 1/0 t0 @¢;pin- The synapses are designed in such a way that the two
neurons linked by a connection have the same prefix of the labels (¢;), and
the last symbol of label c;z;0/1 is the same with the jth symbol (0 or 1) of
the string bin. Each ©,in neuron is connected to n chj 1/0 heurons.

Neurons of type Oy There are exactly 2™ [y, neurons in the device
labeled injectively with strings from bin € {0,1}". These neurons are de-
signed to handle the Boolean operation A (AND) between the clauses of the
formula.

Synapses @c,pin, — Opin: Each [y, neuron is connected to one ©c,pin
neuron from each clause block, hence, m double circled neurons may send
spikes to each square neuron. Strings bin from the labels of the connected
®¢;bin and [y, neurons are the same.

Neuron of type >4: Finally, there is a unique output neuron > with label
4. By choosing label 4 for this neuron we emphasize that it spikes in the 4th
step of the computation if the problem has at least a solution and does not
spike in this step, otherwise. All [J;;, neurons are connected to the output
neuron, hence, there are 2™ connections of type Oy, — 4.

Rules: Here are the rules which apply to each type of neurons:

R, = {a—)\a®—a;0,a® =)\ a* = a;0}
Re = {a"/a— a;0}
Ro = {a™ — a;0}
R, = {a"/a— a;0}

We have described the precomputed device structure for solving SAT
problem as depicted in Figure 5.9, with the neurons in the inactive mode.
Note that this structure is independent of the instance of SAT we want to
solve, and it depends only on n and m. Let us explain now how we encode
the particular instance of the problem into the device.

The Problem Encoding: The variables are encoded by spikes as follows:
one assigns values 1 and 0 to each variable z; and —z;. Further, a variable
z; is encoded by two spikes (a?), and one spike (a) if we assign to z; values
1 and 0, respectively. Similarly, we use a® and a* to encode variable -z,
which has assigned values 1 and 0, respectively.

127

In Table 5.3 one can notice how we introduce the encoded variables (the
spikes) into the precomputed device. The (encoded) variables x; or —x;,
from a clause C;, assigned with value 1 are introduced in the neuron with
label ¢;zj1 (Oc;z;1), while the other “half” of the encoding, the one where
variable is assigned with value 0 is introduced in the neuron labeled c;z;0,
(hence Oc;z;0)- Some of the Og,q;1/0 neurons will not be activated in the
case the corresponding variables are missing form the given instance of the
problem. Anyway, we stress the fact that at most 2nm (Q¢,s;1/0 neurons are
activated in when the device is initialized, the other neurons in the system
remaining inactive.

The Computation: Starting this moment (when the device is initial-
ized and the corresponding neurons activated), the computation can be per-
formed and the problems will be solved in 4 steps. Once the system starts
to evolve the spikes follow the one-directional path:

(O-neurons — @-neurons — [J-neurons — >-neuron,

as shown in Figure 5.10.

An Example

In order to illustrate the procedure discussed above, let us examine a simple
example. :

We consider the following instance of SAT, with two variables and three
clauses, v € SAT((2,3)),

v = (1) A (mz1 V 22) A (—T2).

The device structure: The system we construct is given in a pictorial way
in Figure 5.9, and has 29 inactive neurons (4+22+22%3+1) and 40 synapses.
There are 3 blocks of neurons, each dealing with a clause of the problem.
Each block contains 4 solid circled (Oe¢;z115 Oesz10 Oesaa1r Oeizz0) NEUTONS
— 2 for each variable — to which we assign 1 and 0 (see the labels). In each
block, there are also 4 double circled neurons (®¢;11, ®¢;10, ®¢;01, @¢;00) CON-
nected to the Og,x,1/0 neurons, corresponding to the 22 truth assignments
(see the labels). Moreover, we have 4 [y;, neurons connected to the corre-
sponding ©c,pin NEUTONS.

Encoding: According to the formula +, in the first clause Cj, there is
only one variable z;. We assign values 1 and 0 to z; and encode it by
two spikes (a?) and one spike (a!) that are placed in O¢yzq1 and Oeya0,
respectively. The other two neurons (¢,z,1 and (g, z,0 corresponding to
variable zo remain empty, since there is no variable z2 or —z9 in the clause.

The second clause (C2) is encoded in the following clause block. To each
variable —z; and zo are assigned values 1 and 0. Further, they are encoded
by a3 in Oeozals a* in QOeyz10, for ~z, and a? in QOeyza1s al in Oeyz,0, for
9.

128

1 0
Li,j (a‘27 Oci.’til) (a7 Ocixio)
W5 (a’37 Ocimil) (a4’ OCiQZ]'O)

Table 5.3: The variable encoding.

00

C3.’L‘21 ! 0301 03:1}20

Rules used in Ilgar((2,3))

Ry, = {a— \a%—a;0,a® —)\ at — a;0}
Re = {a"/a— a;0}
Ro = {a®—a;0}

R, = {a"/a— a;0}

Figure 5.9: Precomputed spiking neural net for SAT ({2, 3))

129

The last clause C3 has only one variable, —z9, which is encoded in the
neurons Oegzy1 a0d Oesze0- The other two neurons corresponding to this
clause remain empty. See Step 1 of Figure 5.10.

Computation: Once the encoding is done, single circled neurons are ac-
tivated and send signals, or erase spikes according to the rules they contain.
In the first step, neurons having inside a? and a* fire, while spikes a' and
a® from the other neurons are deleted. We see in Step 2 from Figure 2,
that only 7 double circled neurons out of 12 contain spikes, hence only 7
will be activated in the second step. Then, in next step of computation,
double circled neurons containing spikes fire because of the rules a*/a — a
inside. One can notice that neurons (ly1, Ogg, and g have received two
spikes, and neuron gy has received only one spike. In the third step of the
computation, only neuron ®g,0; fires since there was one spike remained,
and nothing else happens in the system. The rule present inside the square
neurons, a®/a — a, cannot be applied, because there is no such neuron con-
taining three spikes. At the fourth step, the output neuron does not spike,
since no spike has arrived here in the third step of the computation, hence
the given problem has no solution.

We have mentioned before that what happens after the fourth step of
the computation is out of our interest because it does not give further de-
tails with respect to the satisfiability of the given problem. We just want
to mention that the system may not stop after giving the answer to our
problem.

5.5.1 A solution to SAT

Formally, for a given (n,m) € N2, an SN P system using precomputed
resources, working in a self-activating manner, devoted to solve SAT problem
with n variables and m clauses, is a construct

gt = Tsar(nmy), E((n,m)))
with:
o Tgar(inmy) = (O, 1t,>4), Where:

1. O = {a} is the singleton alphabet;
2. p=(H,Q, R, syn) is the precomputed device structure, where:
— H = H{UH,UH3U Hj, is a finite set of neuron labels, where
H1 = {cia:jl,ciwj() | 1 S 1 S m,l _<_ j S n},
Hy = {cibin | 1 <4 < m,bin € {0,1}"},
Hj3 = {bin | bin € {0,1}"},
Hy = {4};
-0 = {(07 Oh1)7(07 @h2)7(07Dh3)7(07[>h4) | hy € H17h2 €
Hy hs € Hs,hy € H4} are the empty (inactive) neurons

130

¢101c1T20

a)F2%1l c2 2710¢,

11 c2 20 00 | [out

caT2l C901c2T20 .;D'

Step 4
17211 e 1Z1
11 70
5} ¢101 c1z20
a
01
‘" z11 cg 21
201 » a?
11 Co 2 0{) 00 || out
cofal [¢201 €2720
B

Figure 5.10: The steps of the computation for v € SAT({2,3)).

present in the precomputed structure (with |Q] = 2"(m +
1) + 2nm + 1);

— Ry = Ry, URy,URy,URy, is a finite set of rules associated
to the neurons, where
Ru,={a' =) a% — ¢;0, a® =), a* — a;0},
RHz = RH4 = {a+/a - a;O},
Ry, = {a™ — a;0}; -

- syn = Uinil{(OCilea©cibin) | b’l’ﬂlg =11<j <nbine
{0,1}"}
U Uzr‘il{(Ociw]O: @cibin) l bin'j =1L1<j<nbine {0, 1}n}
U {(@qln'm Dbm) l bin € {0, 1}",1 <1 < m} U {Dln'm‘>4 |
bin € {0,1}"};

3. D4 is the output neuron;

131

e X((n,m)) is a polynomial encoding from an instance vy of SAT into
5 A7((n,m))> Providing the initialization of the system such that

E({n,m))(7)

Il

{1, Ociz;0) | 715 € 71,1 <i<m,1 < j<n}
{(2,0ciz;1) | #ij € 7,1 <i<m,1 < j <}
{(3,Ociz;0) | 71 ; € 7,1 <i<m,1 < j <n}
{(4,0c;z;1) | zij € 1,1 <i<m,1 <5 <n}.

Cc C C

In the precomputed structure of II{({n,m)) (for any SAT problem with
n variables and m clauses), neurons are described as a pair (spikes inside,
neuron). There are 2"(m + 1) + 2nm + 1 neurons and 2™(3m + 1) synapses
initially inactive. X({n,m)) encodes the given instance of the problem in
spikes, that is, the encoded problem is introduced into the precomputed
structure (spikes are assigned to solid circled neurons) activating the corre-
sponding neurons. It is important to note that at most 2nm neurons will
be activated, hence the initialization takes a polynomial time.

The system evolves exactly in the same manner as the basic SN P sys-
tems. The result of the computation is obtained in its 4th step. If the
system (output neuron) spikes, then the given problem has at least a solu-
tion. Otherwise, it does not have any solution. The evolution of the system
after this step of the computation is ignored.

Thus, the system evolves as follows:

Step 1: After encoding the problem (the variables) through (the num-
ber of) spikes, we introduce into the system, namely in at most
2nm neurons of type Oc,0z,1/0, these neurons are activated and
evolve according to the rules inside.

Step 2: When we have at most 2"m initially inactive neurons, neu-
rons of type ®,pin, Which provide information on the truth as-
signments at the level of clauses (OR operations are simulated)
will be activated and they will send spikes to the 2" [y, neu-
rons corresponding to the truth assignments at the level of the
system.

Step 3: Now, only those neurons of type Oy, in which the threshold
is reached (AND operations are simulated, if all m clauses are
satisfied, hence there exist m spikes inside) will spike (because
of the rule a™ — a;0) towards the output neuron.

Step 4: If the output neuron will spike, it means that our problem has
at least a solution. Otherwise, we do not have any solution for
the given problem.

132

As we have already mentioned neither in the definition of the system nor
in the example, it is mandatory for the system to halt. We only observe its
behavior in the fourth step of the computation.

Based on the previous explanations we can state that:

Theorem 5.7 Il can deterministically solve each instance of size (n,m)
of SAT in constant time.

Final Remarks

In this section, we have shown that SN P systems are not only computa-
tionally universal, but also computationally efficient devices. We have shown
that the idea of using an already existing, but inactive, workspace proves
to be very efficient in solving NP-complete problems. We have illustrated
this possibility with the satisfiability problem. The initial system is fixed,
depending only on the number of variables (n) and the number of clauses
(m). Then, any instance of SAT with size (n,m) is encoded in a polynomial
time in spikes introduced in the system and then it is solved in exactly 4
steps by our device.

The framework is the following: an arbitrarily large net of neurons is
given of a regular form (as the synapse graph) and with only a few types of
neurons (as contents and rules), and it is repeated indefinitely; the problem
to be solved is plug-in by introducing a polynomial number of spikes in
certain neurons (of course, a polynomial quantity), then the system is left
to work autonomously; in a polynomial time, it activates an exponential
number of neurons, and, after a polynomial time, it outputs the solution to
the problem.

Let us suppose that in the system (ILg4r((n,m)), 2({n,m})) We consider
rules of type R, = R, = {a* — a;0}, which state that if at least one
spike is present inside a neuron at a given moment, then, it should spike
immediately and all spikes would be consumed. In this case, if the problem
has at least a solution, then the computation halts at the fourth step with
the system spiking. Otherwise, the problem would not have any solution.
After the fourth step, no spike will remain in the system.

Another way to stop the computation after sending the answer out is the
following: Let us introduce two intermediate neurons in between each Uy,
and >4 neuron, so that at step 4 (the intermediate neurons take one step
for transmitting the spikes further) neuron >4 receives an even number of
spikes. Then, instead of the rule a*/a — a;0, in neuron >4 we use the rule
(a?)*/a — a;0. Thus, if any spike reaches neuron b4, then an even number
of spikes arrive here; the rule (a?)*/a — a;0 can be used only once, at step
5, because the number of remaining spikes is odd after that.

In this way, we add 2 - 2" neurons and further 3 - 2" synapses, while the
computation lasts five steps only.

133

Moreover, if we consider the 3SAT problem, then each clause block will
contain exactly 14 = 3 - 2 + 23 neurons.

This strategy of computing is attractive from a natural computing point
of view because it enable us to assume that the brain may be arbitrarily
large with respect to the small number of neurons currently used, the same
would happen to the cells in liver, etc.). Moreover, a formal framework for
defining acceptable solutions to problems by making use of precomputed re-
sources needs to be formulated and investigated. What kind of pre-computed
workspace is acceptable? i.e, how much information may be provided for
free there?, what kind of net of neurons and what kind of neurons? What
means introducing a problem in the existing device (only spikes, also rules,
or maybe also synapses?) Defining complexity classes in this case remains
as an interesting research topic.

Another idea from [75] is to introduce tools in order to increase the
working space in an exponential way in a polynomial time. A suggestion
coming from usual P systems is to use an operation similar to cell (mem-
brane) division and cell (membrane) creation, in such a way to make possible
polynomial solutions to computationally hard problems.

134

Chapter 6

Computability of Gene
Assembly in Ciliates

DNA computing in vivo concerns the investigation of computations taking
place naturally in a living cell, with the goal of understanding computational
properties of DNA molecules in their native environment. Gene assembly in
ciliates is perhaps the most involved process of DNA manipulation yet known
in living organisms. The computational nature of this process has attracted
much attention in recent years. The results obtained so far demonstrate
that this process of gene assembly is a splendid example of computing taking
place in nature.

Most organisms store their genomic DNA in a linear sequence consisting
of coding blocks interspersed with non-coding blocks. For example, if a
functional copy of a gene consists of the coding blocks arranged in the order
1-2-3-4-5, it may appear in the order 3-5-4-1-2 in the genome. This presents
an interesting problem for organism, which must somehow descramble these
genes in order to generate functional proteins required for its continued
existence.

The genetic rearrangement mechanism in ciliates. Ciliates are
unicellular eukaryotes (nucleated cells) that possess two types of nuclei: an
active macronucleus (soma) and a functionally inert micronucleus (germline)
which contributes only to sexual reproduction. The active macronucleus
forms from the germline micronucleus after sexual reproduction, during the
course of development.

This chapter does not address the biological aspects and implications of
the gene assembly in ciliates, but the computational aspects of gene assem-
bly.

There were proposed two formal models to explain the gene assembly
process in ciliates: the intermolecular model in [55], [58], [59], and the
intramolecular model in [34] and [91]. They both are based on so-called
“pointers” — short nucleotide sequences (about 20 bp) lying on the borders

135

between coding and non-coding blocks. Each next coding block starts with
a pointer-sequence repeating exactly the pointer-sequence in the end of the
preceding coding block from the assembled gene. It is supposed that the
pointers guide the alignment of coding blocks during the gene assembly pro-
cess. The intramolecular model proposes three operations: Id (loop with
direct pointers), hi (hairpin loop with inverted pointers), dlad (double loop
with alternating direct pointers). _

It turns out that the molecular operations performing the gene assembly
process in ciliates may be powerful enough to carry out universal computa-
tions. In [55] the so-called guided recombination systems were considered for
intermolecular operations, defining the contextual sensitivity for molecular
operations according to a splicing scheme. The authors in [55] succeeded
to show that the intermolecular guided recombination system with inser-
tion/deletion operations is computationally universal.

In this chapter, we propose a computing model called accepting in-
tramolecular recombination (AIR) system based on the contextual variants
of the intramolecular recombination operations (dlad, Id). We prove that
the AIR systems have the computational power of Turing machines. This is
rather interesting, because processing a single stranded molecule by a pro-
cess using only two well motivated gene rearrangement operations (ctrl, del)
provides a computing model equivalent with Turing machines.

In Section 6.2.2, we also extend the AIR systems with the string (molecule)
replication operation (repl), and consider the maximally parallel application
of rules. Such ertended AIR systems can solve computationally hard prob-
lems (in particular SAT) in feasible time.

6.1 The Gene Assembly Operations

We briefly mention here the two operations suggested by the intermolecular
model [58].

Intramolecular Recombination: excises from a linear molecule a circu-
lar molecule, i.e., apBpy — apy + ¢3p, where apBp-~ is an initial
linear molecule, a p~y and e p are resulting molecules;

Intermolecular Recombination: inserts a circular molecule into a linear
one, i.e., o8p + apy — apfBpy, where apy and e(3p are initial
molecules, while ap 8p-y is the resulting molecule.

In the expressions from above apBp~y and ap~y are linear molecules,
while efp is a circular molecule, p is the pointer, «, # and ~y are sequences
of base pairs of nucleotides.

136

Intramolecular Gene Assembly Operations

The intramolecular operations excise non-coding blocks from the micronu-
clear DNA-molecule, interchange positions of some portions of the molecule
or invert them, so as to obtain after some rearrangements the DNA-molecule
containing a continuous succession of codding blocks, i.e., the assembled
gene. Contrary to the intermolecular model, all the molecular operations in
the intramolecular model are performed within a single molecule.

We recall bellow three intramolecular operations conjectured in [34]
and [91] for the gene assembly, which were proved to be complete [33],
i.e., any sequence of coding and non—'coding blocks can be assembled to the
macronuclear gene by means of these operations (for details related to the
intramolecular model we refer to [32]):

e |d excises non-coding block flanked by repeated pointers from the
molecule in the form of a circular molecule as shown in Figure 6.1.

o hi inverts part of the molecule flanked by pointers, where one pointer
is the inversion of another one as shown in Figure 6.2.

e dlad swaps two parts of the molecule delimited by a repeating pair of
nonequal pointers as shown in Figure 6.3.

1d (%) 1d(i%) d (441)

Figure 6.1: Loop Recombination: (i) the molecule folds on
itself aligning pointers in the direct repeat to form the loop,
(ii) enzymes cut on the pointer sites, (iii) hybridization hap-
pens. As the result, a portion of the molecule in the loop
is excised in the form of circular molecule.

The Intermolecular Operations with Contexts

In what follows, following [55], we consider operations as above, controlled by
pair of triples like in splicing scheme. Specifically, taking a splicing scheme
(X, ~) (see Section 2.1.5) the pairs (a,p, 3) ~ (d/,p, ') define the contexts
necessary for a recombination between the repeats p. Then the contextual
intramolecular recombination is defined by

{upwpv} = {upv, ewp}, where u = v'a,w = pu' = w'd',v = 3.

137

Similarly, if (a,p,8) ~ (d/,p,3'), then the contextual intermolecular
recombination is defined by

{upv, ewp} = {upwpv}, where u = v'a,w = fw" = w'd/,v=pv".

O OB

hi(7) hi(iz) hi(ii7)

Figure 6.2: Hairpin Recombination: (i) the molecule folds
on itself aligning pointers in the inverted repeat to form the
hairpin, (ii) enzymes cut on the pointer sites, (iii) hybridiza-
tion happens. As the result, a portion of the molecule in
the hairpin is inverted.

D LD &

dlad(7) dlad(zz) dlad(zi7)

Figure 6.3: Double-Loop Recombination: (i) the molecule
folds on itself aligning equal pointers from the repeated pair
to form a double loop, (ii) enzymes cut on the pointer sites,
(iii) hybridization happens. As the result, portions of the
molecule in the loops interchange their places.

Definition 6.1 A guided recombination system is a triple R = (X,~, A)
where (X, ~) is a splicing scheme, and A € % is a linear string called the
aziom.

A guided recombination system R defines a derivation relation that pro-
duces a new multiset from a given multiset of linear and circular strands,
as follows. Starting from a “collection” (multiset) of strings with a certain
number of available copies of each string, the next multiset is derived from
the first one by an intra- or inter-molecular recombination between exist-
ing strings. The strands participating in the recombination are “consumed”

138

(their multiplicity decreases by 1) whereas the products of the recombination
are added to the multiset (their multiplicity increases by 1).

For two multisets S and S’ in £* U X°, we say that S derives S’ and we
write S =g &', iff one of the following two cases hold:

(1) there exist x € S,y, ez € S’ such that

— {z} = {y, ®z} according to an intramolecular recombination step in
R,

- S'(z) = S(x) - 1,5 (y) = S(y) + 1,5 (ez) = S(ez) + 1, and 5’ (u) =
S(u) for all u ¢ {z,y, ez};

(2) there exist z’, ey’ € S,2’ € §' such that

- {2/,ey'} = {7’} according to an intermolecular recombination step
in R,

- S'(2") =S5(2')—1,5(ey) = S(ey/)—1,5'(2") = S(2')+1, and §'(u) =
S(u) for all u ¢ {/,y',e2'}.

Those strands which, by repeated recombinations with initial and interme-
diate strands eventually produce the axiom, form the language of the guided
recombination system. Formally,

L¥(R) = {fw e =% | {(w, k)} =% S and A € S}

((w, k) indicates the fact that the multiplicity of w equals k).
The guided recombination systems are proved in [55] to be equivalent to
Turing machine:

Theorem 6.1 Let L be a language over T* accepted by a Turing machine
TM = (S,ZU{#}, P). Then there exist an alphabet X', a sequence m € X',
depending on L, and a recombination system R such that a word w over T™
is in L iff #%sow#S belongs to LE(R) for some k > 1.

6.2 The Contextual Intramolecular Operations

We now define the contextual intramolecular translocation and deletion op-
erations based on dlad and Id, respectively. We follow here the style of con-
textual intermolecular recombination operations defined above. The contex-
tual intramolecular recombinations are a generalization of the intramolecu-
lar recombination operations on strings: recombinations can be done only if
certain contexts are present.

Let us consider a splicing scheme R = (3, ~) where X is the alphabet and
~ is the pairing relation of the scheme. Denote core(R) = {p | (o, p,5) ~
(7,p,0) € R for some «,8,7v,0 € T}

139

Definition 6.2 Let u and v be two nonempty words in ¥*. The contextual
intramolecular translocation operation with respect to R is defined as

ctrl, o (xpuqypvgz) = Tpugypugz,

where

r=12a, uqy=pu =u'd, vgz = B,
zpu = u"y, ypv = " ="y, 2 =487,

with (o, p, B) ~ (¢/,p,8) and (v,4,0) ~ (7, q,6).

Intuitively, ctrl, , is applicable if the contexts of the two occurrences of
p as well as the contexts of the two occurrences of ¢ are in the relation
~. The result of applying ctrl), , is that the strings v and v, each one is
flanked by pointers p and ¢, are swapped. If ctrl, (w) = w’, we also write
w ::’ctrlp’q w'

Definition 6.3 Let u be a nonempty word in £*. The conteztual intramolec-
ular deletion operation with respect to R is defined as:

del ,(zpupy) = xpy,
where
z=72a u=L0u=4"d, y=p"Y,

with (a,p, 8) ~ (/,p, 3).

As a result of applying del,, the substring u flanked by the two occurrences
of p is removed together with one string p, provided that the contexts of
those occurrences of p are in the relation ~. If del ,(w) = w', we also write
w =>delp w'.
We define the set of all contextual intramolecular operations under the
guiding of ~ as follows:
R= {ctrl

pgrdel, | D, q € core(R)}.

The recombination relation ==y) —del , ATE denoted in general by = 5.

Now we define an accepting intramolecular recombination (AIR) system
that models the series of dispersed homologous recombination events that
take place on a single scrambled gene in ciliates.

Definition 6.4 An accepting intramolecular recombination system is a qua-
druple G = (3, ~, ag, wy) where R = (X, ~) is a splicing scheme, ap € X* is
the start word — the recombination starts from og, and wy € £F is a linear
string called the target.

The language accepted by G is defined by

L(G) = {w € ¥ | aow =% wi }-

140

6.2.1 Computational Universality

Theorem 6.2 Let M = (S, X U {#}, P) be a Turing machine. Then there
exists an alphabet Y', an accepting intramolecular recombination system
Gu = (X', ~,ap,w;), and a string mpr € L™ such that for any word w over
X* there exists ky > 1 such that w € L(M) if and only if w#4$07r’1f}f#2 €
L(Gn). -

Proof. We use here a proof idea/construction similar to that in [55], but,
for the sake of completeness, we present the proof with full details.

(I) Let a word w be accepted by the given Turing machine M. Consider
that the rules of P are ordered in an arbitrary fashion and numbered. Thus,
if there are m rules in P, then a rule is of the form ¢ : u; — v;, where
2 <|ul €3, 1< || €£4,1< i< m. For the Turing machine M we
construct an intramolecular recombination system

GM = (2l7 ~, Qy, wt)

where
Y = SUZU{#IU{S$|0<i<m),
@y = #430a
wy = #4Sf#3,

Rz = (¥,~) is defined below.

We also consider the sequence 7 € ¥'* consisting of the concatenation
of the right-hand sides of the rewriting rules in P bounded by markers, as
follows:
T = (H $:pivii8:)8mi1,
1<ism
Pi, G EXNUH#
where @ : u; — v;, 1 < i < m, are the rules of M.

We denote by dol(mpr) the string obtained by removing from mys all
symbols different form the dollar sign.

If a word w € ¥* is accepted by M, then a computation of Gy starts
from a string of the form § = #450w#4$07r§,}”#2, where k,, is a number
which will be defined below. We refer to the subsequence #*sqw#* as the
“data”, and to the subsequence $07rﬁ}f #2 as the “program” of 6.

A rewriting rule ¢ : u — v € P of M is simulated by a contextual
translocation rule ctrl p,q € Ra. We construct the relation Rg so that when
the left-hand side of a rule ¢ : u; — v; appears in the data the application
of the rule can be simulated in G by swappping u; (left-hand side of the
rule in the “data”) and corresponding v; (right-hand side of the rule in the
“program”).

If u; appears in the data several times during the computation, each
time the corresponding v; is chosen from the concatenated original copies of

141

7w in the program. In order to have enough copies of each u;, we take ky,
sufficiently large, for instance, equal with the number of steps the machine
M performs in order to recognize w.

According to the above construction of the alphabet X', sequence mps
and recombination system Gy, for any z,y,z € X, to accomplish the
translocation step for a rule ¢ : u; — v; € P we want to perform the
contextual intramolecular translocation operation ctrl,, . :

zepitiqidy$ipivigi$iz =>am,, , wepivigidy$ipiuigidiz,

and to this aim we introduce the following contexts for the pointers p; and
g; of ctrl,, .

(i) (cpi,uigid) ~ (3008;, i, vigi$:) and
(i) (cpiwi, gir d) ~ (Bipivi, 43, $i),
for all c € {#}'E*,d € TX{#}", |c| = |d| =2,
PG € SU{#}, o€ £ |o| < |mhwl.

Flankers p; and ¢; are a sort of “place holders” to allow for all the possible
combinations of contexts. Consequently, for one rule of M we have as many
possible operations as many letters the alphabet has, to take into account
all the possibilities. _

We know that u; and v; contain exactly one state s; € S C X', hence
when choosing u; the flankers p; and ¢; are closest to each other, in other
words there is no pointer p; or ¢; between them. The case of strings v; will
be discussed immediately.

By the application of ctrl

the substrings u; and v; flanked by pointers
p; and ¢; are swapped. :

Piyqi?

zepiigidy$s - - $i_18ipivigi8iSit1 - Imz =vern,

zepiviqidy$y - - - $i—18ipiuiqi 8811 - Sz

It is possible that a wrong substring would be swapped with w; by ctrl, .
if the pointers $;p; and ¢;$; chosen by the contexts (7) and (¢) in the program
are not closest, but contains other similar contexts in between them. For
instance, we can have a string of the form '

$1 iviqi$i...$i L Viqidi . . vy

and we swap the string u; from the data with the string v;¢;%; . .. $ipiv;,
hence the one bounded by the first p; and the last ¢; (and not by v;).

In this case, at least a symbol $; (such a symbol is not in £ U S) appears
in the data. The occurrence of $ will never be removed from data by ctrl,, .,
because the second occurrence of p in (¢) is imposed to be in the program,

142

more precisely, such p must to be preceded by a substring $y0%; as in the
relation (7). Consequently, the simulation will get stuck, the data will never
arrive to a string of the form #4%s f#4 as needed below for reaching the target
string.

Moreover, in the context of the relation (i) (or in the context of the
relation (ii)), if the deletion operation del,, (or del,) of G is applied to the
repeats of pointer p (or g) one of which is from the left side and another
one is from the right side of the substring ...$g..., substring ...$p... is
deleted. Then again the simulation will get stuck since the relations (i) as
above and (iv) as below will not be satisfied any longer.

When we get the final state s in the data, we clean the used “program”.
For this we use the next deletion operation and delete all u; and v; from the
program.

delg, : #*s;#28$,a;$:%i11y =>dels, #1s1#428:8i 11y
To this aim we need the following relations
(iil) (##ss#'2, %, 0) ~ (a5, 86, 8i41), z€{8; |0<j<m+1}*
aie{uj,vj|uj—>'uj€P,1 S]Sm}, 1<i<m.
The left- and right-hand sides (u, and vs) of the rules of M are deleted. At
the end of the deletion delg,, the string becomes
#'s 4 S0 (dol(ma)) o # 4, ko 2 1.

Then we use one more deletion operation:

dely : #%sp#%80(dol(mar)) ™ 4t =>del #hsp#°

which is applied in the context of the repeated occurrences of #, according
to the splicing relation

(V) (##ss###, #, So(dol(mar)) o) ~ (So(dol(mar))™, #, #).

Thus, we reach to the target ####s ###.

Concluding, a derivation step of machine M can be simulated by the
contextual translocation operation in the intramolecular recombination sys-
tem Gpy. If the TM accepts a word w, then we can start a recombination in
G from the string #4sow#4$07r§2,” #2 and reach the target ####s FHAHH
by only using the recombinations according to Gps:

#isowi Somhy #2 = HHHspHAH

This means that our word is accepted by Gjy.

(IT) For the converse implication, it suffices to prove the next two claims.
(1) Starting from the string w#4$07rﬁ}[" #2 € L(Gy), no other recombina-
tions except those that simulate steps of M are possible in Gps. (2) No

143

other word ¢ different from w#4$07rﬁ}f #2 corresponding to w € L(M) is in
L(Gur).
(1) Assume that the current recombination step of G is of the form

/
0 = zepiuiqidyri Ty, .. .72,

8

ri. € {8ipvigi$i | 1 <i<m}uU{$;|1<i<m}.
Then,

— we cannot use relation (¢) in the program because that would require
the presence of strands cpugd, which cannot appear in the program
since ¢ and d do not contain $,

— we cannot use relation (iz) in the data, because that would require a
substring of type pvq, and data does not contain any $§ symbol.

These two arguments show that pug and pvg in ctrl,, , are chosen only from
the data and the program, respectively.

Assuming that a subword pu;q contains the left-hand side of a rule % :
u; — v; which appears in the data, and assuming that the necessary pv;q is
in the program, the next step is to show that the only possible translocation
is simulating a rewriting step of M using rule 7. In other words, pu;q cannot
be changed by pvjq in the data where ¢ # j, because once u; appears in
the data, it has to be changed by only v;. The indices of the subwords
pu;q and $;pv;¢8%;, and the contexts of u and v used in the translocation
operation ctrl, , are identical. As we have seen above, when choosing the
strings to swap, they should correspond to strings u; (in the data) and v;
(in the program), otherwise we cannot reach the target string.

This implies that the only possible operations done by translocation steps
simulate (correspond to) legal (correct) rewriting of the Turing machine.

(2) Assume ¢ = #1sguw'#1$on" w ## € L(Gpr) and it contains a sub-
string X ¢ {u,v | u — v € P}. If [w'|x # 0, then the translocation
operation will stuck when it reaches X since X ¢ (XU S)*; however, we can-
not get the substring #%s;#* in the data. If |7’*»|x # 0, when Gy deletes
u; and v, u;,v; € {u,v | u —» v € P}, from the program by delg, after s¢
appeared in the data, the deletion rule delg,1 < i < m cannot delete X
from 7% because (#i4) is not satisfied since X ¢ {u,v | u — v € P}. Then
#%s;#480(dol(mpr))¥w #+4 cannot be obtained by delg.. This implies that
the deletion rule del , cannot apply anymore since (iv) cannot be satisfied.
The target of Gy cannot be reached, #%sow'#$om'*w ## R #4s f#3,
which means ¢ ¢ L(Gps). Thus, the converse implication is proved.

The conclusions of (I) and (II) altogether complete the proof of the
theorem. ' U

144

6.2.2 Computational Efficiency

Now, we concentrate on computational complexity issue of the computing
model for intramolecular gene assembly process, and we show that this model
can solve NP-complete problems (in particular, SAT) in a feasible time.

To this aim, we need an additional operation, the conteztual intramolec-
ular replication. Let again R = (X, ~) be a splicing scheme.

Definition 6.5 Let u and v be two nonempty words in ¥*. The conteztual
intramolecular replication operation is defined as:

repl p(:cpupy) = Tpuupy,

where

z=2a, u=p8=47d, y=p079,
with (o, p, 8) ~ (¢, p,).

As a result of applying repl » the string u flanked by the two occurrences of
p is replicated.

We define the set of the contextual intramolecular operations under the
guiding of ~ as follows:

P ={ctrl, , del repl , | p,q € core(R)}.

We consider the parallelism for the intramolecular recombination model.
Intuitively, a number of operations can be applied in parallel to a string
if the applicability of each operation is independent of the applicability of
the other operations. The parallelism in intramolecular gene assembly was
initially studied in a different setting in [41]. We recall the definition of
parallelism following [41] with a small modification adapted to our model.

Definition 6.6 Let S C P be a set of k rules and let u be a string. We
say that the rules in S can be applied in parallel to u if for any ordering
©1,92,...,9k of S, the composition @y 0 p_1 0 -0 1, is applicable to u.

In our proof below we use a different notion of parallelism. We introduce
it here is the form of the maximally parallel application of a rule to a string.

First, we define the working places of a operation ¢ € P on a given string
where ¢ is applicable.

Definition 6.7 Let w be a string. The working places of a operation ¢ € p
for w is a set of substrings of w written as Wp(p(w)) and defined by

Wp(etrl, ((w)) = {(w1,w2) € Sub(w) | ctrl, ((zwiywsz) = swayw 2}.
Wp(del,(w)) = {w; € Sub(w) | del,(zpwipy) = zpy}.
Wp(repl ,(w)) = {wi € Sub(w) | repl (zw1y) = Twiw1y}.

145

Definition 6.8 Let w be a string. The smallest working places of a opera-
tion ¢ € P for w is a subset of Wp(p)(w) written as Wps(p(w)) and defined

by
Wps(ctrl, [(w)) = {(w1,wa) € Wp(ctrl, ,(w)) | w} € Sub(w1) and

wh € Sub(ws) and (wi,wh) # (w1, ws),

(w1, wy) ¢ Wp(ctrl, 4 (w))}.
Wps(del,(w)) = {wy € Wp(del,(w)) | wy € Sub(w),
and wh # wi,w) ¢ Wp(del ,(w))}.
Wps(repl ,(w)) = {w1 € Wp(repl (w)) | wy € Sub(wi),
and W # wy,w] ¢ Wp(repl ,(w))}.
Definition 6.9 Let X be a finite alphabet and P the set of rules defined

above. Let ¢ € P and u € ¥*. We say that v € X is obtained from u by
applying ¢ in a mazimally parallel way, denoted u =3 v, if

U= o1U1Ug ... OEUELAdE41, and v = a1U1002 . .. ApVEOL41,
where u; € Wps(p)(w) for all 1 < i <k, and also, oy ¢ Wp(p(w)), for all
1<i<k+1

Note that a rule ¢ € P may be applied in parallel to a string in several
different ways, as shown in the next example.

Example 6.1 Let ctrl, . be the contextual translocation operation applied in

the context (z1,p,T2) ~ (a:3 p,x4) and (y1,4q,y2) ~ (¥3,49,y4). We consider
the string :

u = x1pxe$1y1qyeSorspraSszspraSaysqua.

Note that there are two occurrences of p with context x3 and x4. We can
obtain two different strings from u by applying ctrl), , in a parallel way as
follows:

u =040 o where o' = z1pza$323pza84y39y28223p2281919s-
u=7q" " where v" = 21p2484y3qy28203pr4a8s23pT2$1y194-

Here only the second case satisfies the definition of mazimally parallel ap-
plication of ctrl,, , because it applies for the smallest working place.

Example 6.2 Let del,, be the contertual deletion operation applied in the
context (122, p, x3) ~ (x3,p, 1), and consider the string u = T1ToPT3PT1T2P
x3px1. The unique correct result obtained by mazimally parallel application
of del,, to u is:

T1X9PT3PL1L2PLIPLL :—>de| Z1TopX1T2PI].

146

Now we define a computing model as follows.

Definition 6.10 An extended accepting intramolecular recombination (AIR)

system is a triple G = (X, ~, A) where (X,~) is a splicing scheme with the

set of rules P = {ctrl, g, del, repl | | p,g € core(R)} which are applied in

mazimally parallel manner, and A € B is a linear string called the aziom.
The language accepted by G is defined by

L(G) = {w € £ | w =% A}.

We use extended accepting intramolecular recombination (AIR) systems
as decision problem solvers. A possible correspondence between decision
problems and languages can be done via an encoding function which trans-
forms an instance of a given decision problem into a word, see, e.g., [37].

Definition 6.11 We say that a decision problem X is solved in time O(t(n))
by extended accepting intramolecular recombination systems if there exists a
family A of extended AIR systems such that the following conditions are
satisfied:

1. The encoding function of any instance x of X having size n can be
computed by a deterministic Turing machine in time O(t(n)).

2. For each instance x of size n of the problem one can effectively con-
struct, in time O(t(n)), an extended accepting intramolecular recom-
bination system G(z) € A which decides, again in time O(t(n)), the
word encoding the given instance. This means that the word is accepted
if and only if the solution to the given instance of the problem is YES.

Theorem 6.3 SAT can be solved deterministically in linear time by an ez-
tended accepting intramolecular recombination (AIR) system constructed in
polynomial time.

Proof. Let us consider a propositional formula in the conjunctive normal
form, o = C; A - -+ A Cyy, such that each clause C;,1 < i < m, is of the form
C; = Y1V V yi,ki,ki > 1, where Yij € {.’L‘k,.’i‘k l 1<k< n}
We construct an extended accepting intramolecular recombination sys-
tem
G= (27 ~ YES)7

where

3

{

$il0<i<m+1}U{m,z; |1<i<n}U{{ G| 1<i<n}
{tuf;11<i<n}u{fi|0<i<n+1}U{T,F,V,Y,E, S},

P = {repl, |ogz'5n—1}u{d¢|fi,de|h,de|h |1<i<n}
{etrl(), ctrl iy | 1<i<n}U{delg, |1 <i<m}U{delg}.

C

-

147

We encode each clause C; as a string bounded by §; in the following
form:

c = $Z \% <0‘(ib)m0(ib)>0(ib) VeV (na(ib)mnd(ib)>na(ib) \4 $i7

where b € {0,1},0(i1) = i,0(ip) = i, and z; stands for variable z; in the
formula, while z; stands for negated variable Z;, 1 <17 < n.
The instance « is encoded as follows:

6= $0€1 ‘e Cm$m+1-

In order to generate all possible truth-assignments for all variables x1, 2,
..., Ty of the formula, we consider a string of the form

v=t D)1t 1 F)it1- Tn(nT>nTnTn<ﬁF>ﬁJfﬁ-

Here T and F denote the truth-values true and false, respectively. Then
m copies of v are attached to the end of the encoded formula, leading to

B ="
Let us have an example:
£ = (361 \Y .’2'2) A (acl \Y 372).
g $0%1 V (1z1)1 V (375)5 V $182 V (121)1 V {2z2)2 V $283.
o4 h Tt tiGF) it eT)ateta(aF)ats.

We use the next notations:

1 0
Y = MY2---Tn where%:%()%-(),

A0 = 1, (Tt 7Y = 16 F)t
Yimn = ViYi+l---Vn-

'yi(?’j) = 'yl-(bi)’yi(ﬁ_ifl) . .7J(~bj),bi,j =bibiy1...b; € {0,1}1,1<i<j<n,
YL =V Yn = Yo VL0 = A Yndln = A
' e Suby).
ain = fifit1-- fn
Q;pn = fnfn—l L fi,0<e<n, Aniiptl = Optlntl = frty1-
o(iy) = 1, olig) =1.

The input string mo (we call it in-string) containing the encoded propo-
sitional formula « is of the form:

7o = YEGu n+1f001,n+1801 nt1 foarni1ES.

The size of the input is polynomial, |7g| < 4nm + 14n 4+ 3m + 12, hence it
is constructible by a Turing machine.

Roughly speaking, the main idea of the algorithm by which the AIR sys-
tem solves SAT is as following: (i) We generate all possible truth-assignments

148

on the in-string according to the variables of the given instance of the propo-
sitional formula, while the encoded propositional formula with the attached
I’ is replicated, in a linear time. (ii) Then each truth-assignment is as-
signed to its attached formula in the maximally parallel way. (iii) Following
this step, we check the satisfiability of the formula with regard to the truth-
assignments. (iv) Finally, the AIR system decides to accept or not the input
string 7g. We stress here that the computation is guided very much by the
contexts of rules to be applied.

Let us start the computation accomplishing the above steps.
The generation of all possible truth-assignments takes 3n steps.

(i) Generating truth-value assignments:

In order to generate all possible truth-assignments, we use a combina-
tion of three modules, which are applied one after other in a cyclic order:
repI . = deIT. = del;,. We emphasize here that the repeated pointers
used in each del and repI are the closest to each other.

1. The replication operation repI duphcates the substring t; flanked by
the repeats of f;.

repI : of;sifid ::>:Zg|’” ozfzszslf,a a,d €¥*,0<i<n-1

The contexts for the replication operation to be applied are

o (qiy1m41, fir55) ~ (Sis fir Qit1,n41)
b _
where s; = Oéi+1,n+15(7§,i1”)’Yi+1,n)m04i+1,n+1-

At each 3k — 2th (1 < k < n) step, the in-string contains substrings of
the form:

fn+1fn-~-.fi+1ﬁfi+1---fnfn+15(')/§b1)' R L
frvrfn - firrfifivr oo fnfnsr-

Each substring flanked by f; contains only one I'. The only possible
rule to be applied to this substring is repI for the repeats f;,7 = 3k—3
(no other rules contexts are satisfied on "the string). No replication
using repl j,] # 3k — 3,j > 0, may occur, because no f;,j < 3k — 3,
has remained in the string; on the other hand, at this moment there
is no pattern of the form f;i1f;fj+1, § > 3k — 3, to which repl ;. is
applicable. No deletion using del ,,7 > 1, may occur; the only possible
pattern to which del g, could apply is f,+1 fifi+1, but del 5 asks the
substring 7;41 has to be evolved as fyi(fb: 1), it is not the case at the
moment. Moreover, the other rules of type ctrl are not possible to be
applied here.

149

Then in this step, only repl f, can be applied in the maximally parallel
way to the string. Each substring ﬂanked by f; is replicated as follows.

b1,¢ m
fifivr... fn+15(’7§,;’ Sir1m) ™ st -
fivrfigr... fn+15(7;?;’1)7i+1,n)mfn+1 oo firnfs

Now we check which operation among repl o dely,, del; , del, ctrl is
applicable to the in-string. The replication repl 4, cannot be repeated
immediately because more than one ds are between two repeats of f;,
which contradicts the context of repl f,- Moreover, no deletion by del .
is possible at this step, because 7; has not been evolved yet. Only the
rules del i, and delh are applicable to the current in-string.

. It is the 3k — 1th (1 < k < n) step. The deletion del; is applied in
the maximally parallel way on the 2* copies of I'. By deletion del;
(resp. del.), the truth-values (;T); (resp. (;F);) are deleted wherever
the contexts of del; are satisfied.

aTa(ib) <U(ib)B>a(ib) Ta(ib)dl :LZ?:Z(%) aTa(ib)al,

a,d €T Be{T,F},1<i<n.

del 3¢ (fz 105 n+15(7£b11 z1 1)% n)j_17§bzl 11 1)7117 Tz? ({F>E) ~

(<f >f’ hv %—H,n(Vi zl z1 1)71,n)m_j6‘i,n+lai,n+1)

where b; € {0,1},1 < j <m,1 < i <m0 =7, Ynin =

YnyY1,0 =)\77n+1,n =\
The context says that the substring t;(;F);1;, which is go-
ing to be deleted, has to be preceded by a string which is
bordered by f;_1 in the left side, and followed by a string of
the form fr41... fifi... fn+1. One more requirement is that
all v;,j < ¢, have to be broken already and +;,j > 4, have
not been processed up to now. del; applies to m copies of I
attached to 8, namely, it applies to all ' in the maximally
parallel way on the in-string which satisfies the contexts.

_ i (b1,i
del; (@41 Qi 18(7 i T yin)i™ 1’7111 T4, GT)i) ~

(GT)is 14 7?7i+1,n('7£i1_11 D)™ g1 Fio1)s

whereb; € {0,1},1 <j <m,1 <i<n, 711 =7, Yen =
Yrs V1,0 = A Ynkln = A
A substring 1,(;T);T; with its preceding substring bordered
by fi—1 in the right side is deleted by del; .

Up to now, 2¢ truth-assignments of the form

150

b1) (b b;
AN A iin o, b € {0, 1)
have been generated on the in-string.

3. At the 3k — 1th (1 < k < n) step of the computation, the deletion
operation del s, is allowed. It applies for the repeats of f; and deletes
one copy of f; with one f;_ if it is available between those f;.

dels, : afifi1fid =>§’é‘.‘;i afid,

a0l €¥*,1<i<n.

The next two contexts are in the splicing scheme for del £l

_ b1,
o (@ivint1, fir fim1) ~ (fie1y iy ir1,n010 (1§ Yit1,0)™),s
bis _
. (5(7§,¢-1’ i) @ity fis fict) ~ (fiet, fir Qip1,n41)-

Remember that at the previous two steps del; was not applicable
because 7y; was not operated. Since this was done at the previous step
by deITi, now del ¢, can be applied. Note that the subscripts are shifted
from % to ¢ — 1 here.

del;, : afifid =>gé‘,’;” afid/, where
. i

b1,s ~
o (5(’Y§,il’z)’Yi+1,n)mai+1,n+1,fi, fi) ~ (fis fis dit1,n41)
where Ontln+l = Qnglntl = fn+1~

As the truth-assignments are generated completely, the cyclic iteration
(1) = (2) = (3) is ended at the 3nth step of the computation after
n repeats. Now the in-string is of the form:

7' = YE(foi1 fufri100™ o1 fufrt1)® ES.

(ii) Assigning the truth-values to the variables.

Now the truth-values (truth-assignments) are assigned to each variable
(to each clause).

i
{o(ip)) o (i)

o (5 (3) B (i) " (0 (3y) Toiy)) i) @+ Where

& (i) Zo(i)) o (i) (o(in) B o(in) @ =>con

be {0,1},0(i1) =i,0(ip) =4,1 <i<n, Be{T,F}, «,d",o" € ¥*,

(v, éo(ib)’ Zo(in)) o(is) VUTo(in)) ~ (To(ip)) i) VUTa(in) (otin)s Bloin) o(in)V)
an

151

(otin)Ta(in) Yatin)r VUla(iy) (otin) B) ~ (VUl o) o) B) Yotin) Tolin) V)
where u # ¥ fp1u”, v #V frov”, W U7 V0" € BF

By the application of ctrl, y , every variable z; flanked by {; and); in
each clause ¢; and the corresponding truth-value T' (true) flanked by (;
and); are swapped if such correspondence exist. Similarly, for assign-
ing the truth-value F' (false) to z;, the contents of (;x;); and (;F'); are
swapped by ctrl) Thus, all truth-assignments are assigned to their
attached propositional formula at the same time. The truth-values
assigned to a fixed formula should not be mixed from the different
assignments, that is why the constraints u # o' f,11u”, v # v/ fp10”
are asked in the context.

(iii) Checking the satisfiability of the propositional formula.

If a clause ¢ is satisfied by the corresponding truth-assignment, then
at least one substring of type (;(;,)B)s(i,) €Xist in cx as $px{o(i,) B)o(iy) Y8k
However, if the propositional formula « is satisfied by a truth-assignment,
then each clause ¢, of o is of the form $x2(;(;,) B)o(s,)¥8%, 1 < k < m. Then
a formula satisfied by an assignment is of the form:

$0817(5 (1) B o (i) ¥3132%(53) B) (i) Y82 - - - $mT {0 i) B) o (i) YSmSm 1,
where b € {0,1},0(i1) = 4,0(ip) = 4,1 < i < n, B € {T,F}, for some
T,Y,u,v € XF.

The deletion operation delg, applies to the string in a maximally par-
allel way, and deletes the clauses which contain at least a truth-value,
80/ (o) Bo(j) @ $i-

/ " " "
delg, : a8;0/(5(j,) B) o) $icx :>gé?; a$;a”, where

o (Bi1,86, 2(505) Blo(i)¥) ~ (o) Bt ¥> $i» $i1),
1<i<m,1<j<n.
(iv) Deciding.

In the end of the computation, we obtain some sequences of the form
$081%2...8n8m 11 on the in-string if there exist truth-assignments which
satisfy the formula a.

Then del; is applicable to the in-string YEu1>...$,,_1$,,vES for the
repeats E at the 3n + 3th step and we get the axiom.

YEu$18; ... 8,19, vES =>4, YES, where

e (Y,E,$) ~ ($,E,S), $ = u$:85...$,,—18v, for some u,v € T*.

152

If no sequence $,%;...$,, is obtained in the in-string, then the computation
just halt at the 3n + 2th step since no rule is possible to apply from now on,
hence, 7y is not accepted by G. Thus, the problem « is solved in a linear
time. 0

Mathematically, the AIR systems are elegant because only one string
and a very restricted number of operations (two or three) are involved. The
context-sensitivity for string operations are already well-known and much
investigated in formal language theory, see [63, 78, 56]. The operations ctrl
and del of AIR systems are based on dlad and Id which are formalizations
of gene assembly in ciliates, hence, our recombination operations are well
motivated from biology. Moreover, we use parallel application of rules when
we solve SAT, and the parallelism is a feature characteristic of bio-inspired
computing models, starting with DNA computing. From computer science
point of view, AIR systems are both as powerful as Turing machines, and, in
the extended variant, they solve intractable problems in feasible time. The
idea of the algorithm solving SAT by AIR is clearly applicable to the guided
intermolecular recombination systems, see Definition 6.1. However, the pos-
sibility of generating languages using these rules remains be investigated.

A research topic for link membrane computing and ciliate computing is
formulated by Gh. Paun in [76] as follows.

Links P systems with Ciliates. One of the most intriguing “computa-
tions” held in nature is that done by ciliates, during their reproduction. The
permutations of genes in macronuclei-micronuclei are exquisite list process-
ing operations of a surprising power and complexity. Ciliates are unicellular
organisms. Up to now they were interpreted as single membrane structures,
which is not exactly the case in reality. What about “marrying” membrane
computing and “ciliate computing”?- The first suggestion is to use ciliate-
inspired operations with strings in handling string-objects in P systems.
Which combinations of operations (in what kinds of membrane structures)
lead to universality? Then, a question of a possible interest from a biolog-
ical point of view is to have a look at the ciliate structure, distinguishing
the compartments of their cell-body and the specific operations (including
the way of communicating among compartments), and to define a suitable
model of this structure. The third issue of interest is to use ciliate-like P
systems as computing devices, adding parallelism (and/or further ways to
get speeding-up features, such as an exponential workspace) in such a way
to solve computationally hard problems in a feasible (polynomial) time.
This last idea could hopefully be related to the possibility to “implement”
ciliate-P-systems in real-ciliates, thus dreaming at using ciliates as living
computers.

153

Example 6.3

e = (1 Vz2)A(ZT1V T2).
e = $0%1V (16)1 V (28)2 V $182 V (1C); V (5C)5 V $283.
v = t1(D1hTi (A Tt eDataTa(pA) o o
m = YE&3foou 307 @3 foar sES
= YEfsfafifof1f2fs8081 V (16)1 V (2G)2 V §182 V (1C); V (5C)5 V $283
H Tt (A Tt (eT)ataTa(oA) o T2
11T 1t (A Tt (eT)atoto(oh) o Tafa 2 1 fof1 f2ES.
Step 1:
mo = repl; (mo), (@13, fo,50) ~ (s0, fo, @13), s0 = a1,30(1172) 20, 3.
m = YE&13foa1,307 8,301,307 0,3 o 3ES
= YEfsfafifof1f2f38081 V (16)1 V (26)2 V $:182 V (1C); V {5C)p V $283
H Tt T (A Tt (eT)ataTa(oA) o 2
t Dt () T2 (eT)ataTa(oA) o T2 o
fafafififafs$o81 V (1G)1 V (2G)2 V $182 V (1C); V (,C)y V $283
t Tt T (A Tt (eT)ataTa(oA) 1o
t Dt LG A) Tt eT)ataTo(oA) o Tafa 2 1 fo f1 fo f3ES.
Step 2
rf = dely del; (mh)
my = YEaysfoous6(viTiv2)ansen,36(11707e) a1 3 o 3ES
= YEfsfofifofifof38081 V (1G)1 V (26)2 V $182 V (;C); V (5005 V 8283
Tl<1T>1T1%1T2<2T>2T2$2Z2A52$21—1<1T>1T1%1T2<2T)2T2¥222AS2¥2
Fafafififofs$081 V (1G)1 V (2G)2 V $182 V (1C); V ()5 V 8283
1171 (A FrtaleT)ataTo (oA Tot T (1A TitaeT)atatalsA)ota
fsfaf1fof1faf3ES.
Step 3 :
m = delg (7g)
T = YE@gsfi0030(viT172) Gesfioe 30 (T) B3 f10n 3ES

= YEfafofif2f38081 V (1G)1 V (2G)2 V $182 V (1C) V {5C)y V 8283
t Tt fiteeDetafa(oA) T2T1<1T>1T1T1T2<_2T>2_T2Tg< A), T
fafof1faf38081 V (16)1 V (2G)2 V 8182 V (;C)1 V (3C)5 V 8283
t1F1 (181 Fita(eT)ataTalpA) oot 1 1 (1 A) Frta 2 Datafa(aA)o T
fafaf1f2f3ES.

154

Step 6 :

2

T =

= repl ;. (m)

YEd9,3 /100,36 (71 T172) G2, 302,36 (71 1172) B2 3
J100,38(117172) 2 @2,3002,30 (1171 72) o, 3 f102,3E8
YEf3f2f1f2f38081 V (1G)1 V (2G)2 V $182 V {;C); V
t Tt Tt eTataTaly >2T2T1<1T>1T1T1T2<21:>T
fafafaf3$081 V (1G)1 V (2G)2 V $182 V (1C); V (,C)
11T 1tititaeTataTals >2T2T1<1T>1T1T1T2(_2T>_T
f3f2f1f2f3$0$1 % (1G>1 Vv (2G>2 v $1$2 v (C)y VvV <2

fafaf1fafsES.

del,dels ()

= YEd;3f10230(7i T173T2) Az302,30 (71 T11273) 2,3

f102,30(119773T2) 22,302, 30 (1171 1275) @2, 3 f102,3ES.
YEf3faf1f2f3%081 V (16)1V (2G)2 V $182 V (1C); V (50, V 8283
t1aDatifrteleT)atatot (Tt T T2 (e Tatots

fafafaf38081V (1G)1 V (2G)2 V $182 v () \ (>2 V $283

t Tt iteta (A Toti (Dt Titatel _) t2 o
f3faf1faf38081 V (1G)1 V (2G)a V 8182 V (;C); V (4C) V 8283
T1$1Z1A51%1T2<2T>2T2$2T1?1Z A);Tita(2Tatats o
ffafafa$081 V (1G)1 V (2G)2 V $182 V ({C); V (,C)5 V $283

[&
TJlZlAleTz%zzzAgﬁfhh >T112T22 $¥2f3f2ﬂf2f3ES-

)2
(14

= delf2 (7!'11/)

YEf3fofs6(viT1vatae)? fafefs6(viT11278)° fafafs

St 72te)® fafafs8(117128) fa fof3ES

YEf3 faf38081 V (16)1 V (2G)2 V $185 V (;C); V {,C)y V $283
t1aDtifite(eT)etotat (Tt t2(eTatats

155

f3f2f3%081 V (1G)1 V (2G)2 V $182 V (4
t Tt Titeta (o) Toti (o >1T1T1T2T
f3f2f38081 V (1G)1 V (2G)2 V 8182 v (4
t111(14), $1T2(2T>2T2¥2T1T1< A), T1T2§
f3f2f38081 V (1G6)1 V (2G)2 V 8182 V (4
t1T1 (1A FitaTaloA)oTotiTa (1A) Fitatals

V() V $29%3
A)oTof3faf3ES.

\/|

Step 7 :
mg = ctrly.ctrig 5 (me), i =1,2.

w3 = YEdg3fi0036(viTivate) as300,30(1iT11215) a3
F100,30(117175 1) B2,300,30 (1177 1272)*G2,3 fr0va 3ES.
= YEf3faf3$081 V (1T)1 V (2T)a V $182 V (1C); V (,€), V 8283
Tl<1G>1T1$11‘2<2G>2T2?21‘1<1T>1T1¥1T2S2T22T2i2 .
fsf2f38081V (1T)1 V (2G)2 V 8182 V (1C); V (34), V 8283
111G i itata(A) o Tots (Tt TitatalaChota
f3fafs$081V (16)1 V (2T)a V $182 V (A); V (5C)y V 8283
t171(1A) Fata(2GatatatiT1(1C) T1T2§ Z T2T_2
F3f2£38081 V (16)1 V (2G)2 V $182 V (1A); V (5A), V $285
t111(1A) FatataloA)oTotiTi (1€Y1 TitatalaChotafafasfsES.
Step 8 :
my = delg,(ms), ($i-1,8i, 2(o() Blot)¥) ~ (#(ais) Botin) ¥ $is $it1),
B e {AT}, i,j =1,2.
T4 = YEf3faf3808182 V (,C); V.(,C)y V $285
111G T Tt 2@ 2tototi (T 11T 1te (2 T) 2ot
faf2fs$081828311 (16)1 111 TaTa(pA)oTati (T 1T1TaTaT2(oC)ota
fafafs$0818283t1T1 (1A) T1ta(2@atafatiTi(1C)1 T1ta(2Tatata
f3faf38081 V (1G)1 V (2G)2 V 818283
t1F1 (1) TrtaTaloh)oTatsTi (1) TataTa (C) o Ta s fa fRES.
Step 9 :
delg(my) = YES.

156

Bibliography

[

2l

(3]

4]

(5]

[6]

8]

[10]

[11]

Adleman, L. M., Molecular Computation of Solutions to Combinato-
rial Problems. Science, 266 (1994), 1021-1024.

Adleman, L. M., On Construéting a Molecular Computer. 1st DI-
MACS Workshop on DNA Based Computers, Princeton, 1995. In DI-
MACS Series, 27 (1996), 1-21.

Alhazov, A., Communication in Membrane Systems with Symbol Ob-

jects. PhD thesis, University of Rovira i Virgili, 2006.

Alhazov, A., Ishdorj, T.-O., Membrane Operations in P Systems with
Active Membranes. In [85], 37—44.

Alhazov, A., Pan, L., Pdun, Gh., Trading Polarizations for Labels in
P Systems with Active Membranes. Acta Informaticae, 41, 2-3 (2004),
111-144.

Baum, E., Landweber, L., eds., DNA Based Computers. Proceedings
Second Annual Meeting. Vol. 44 of DIMACS: Series in Discrete Math-
ematics and Theoretical Computer Science, AMS, 1996.

Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z., Shapiro, Eh., DNA
Molecule Provides a Computing Machine with Both Data and Fuel.
Proc. Nat. Acad. Sci. (PNAS), 100, 5 (2003), 2191-2196.

Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, Eh., Livneh, Z.,
Shapiro, Eh., Programmable and Autonomous Computing Machine
Made of Biomolecules. Nature, 414 (2001), 430-434.

Bennett, C. H., Logical Reversibility of Computation. IBM Journal of
Research and Development, 17 (1973), 525-532.

Bennett, C. H., Thermodynamics of Computation — a Review. Inter-
national Journal of Theoretical Physics, 21 (1982), 905-940.

Calude, C. S., Paun, Gh., Computing with Cells and Atoms: An In-
troduction to Quantum, DNA and Membrane Computing. Taylor and
Francis, London, 2000.

157

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Calude, C., Paun, Gh., Rozenberg, G., Salomaa, A. (eds.), Multiset
Processing. LNCS 2235, Springer, Berlin, 2001.

Cardelli, L., Brane Calculi. Interactions of Biological Membranes. In
[30], 257-278.

Cavaliere, M., Fvolution, Communication, Observation: From Biology
to Membrane Computing and Back. PhD thesis, University of Sevilla,
2006.

Cavaliere, M., Ionescu, M., Ishdorj, T.-O., Inhibiting/De-inhibiting
Rules in P Systems. In [65], 60-73, and Lecture Notes in Computer
Science LNCS 3365, 224-238, Springer, Berlin, 2005.

Cavaliere, M., Ionescu, M., Ishdorj, T.-O, Inhibiting/De-inhibiting
Rules in P Systems with Active Membranes. In Proc. Cellular
Computing (Complezity Aspects) ESF PESC Exploratory Workshop
(M. A. Gutiérrez-Naranjo, Gh. Paun, M. J. Pérez-Jiménez, Eds.),
Sevilla, January 31 — February 2, 2005, 117-130, Fénix Editora,
Sevilla, 2005.

Ceterchi, R., Sburlan, D., Simulating Boolean Circuits with P Sys-
tems. Workshop on Membrane Computing WMC, Tarragona, Spain,
2003, (C. Martin-Vide, Gh. P&un, G. Rozenberg, A. Salomaa, eds),
LNCS 2933, 104-122, 2004.

Chen, H., Freund, R., Ionescu, M., Paun, Gh., Pérez-Jiménez, M. J.,
On String Languages Generated by Spiking Neural P Systems. In [39],
Vol. I, 169-194.

Chen, H., Ionescu, M., Ishdorj, T.-O., On the Efficiency of Spiking
Neural P Systems. In [39], Vol. I, 195-206, and Proc. 8th Interna-
tional Conference on Electronics, Information, and Communication
(ICEIC2006), Ulaanbaatar, June 2006, 49-52.

Chen, H., Ishdorj, T.-O., Paun,. Gh., Computing Along the Axon.
In [39], Vol. I, 225-240, and Pre-proceedings of International Confer-
ence on Bio-inspired Computing: Theory and Applications (BIC-TA),
September 2006, Wuhan, China, 60-70.

Chen, H., Ishdorj, T.-O., Paun, Gh., Pérez-Jiménez, M., Spiking Neu-
ral P Systems with Extended Rules. In [39], Vol. I, 241-265, and
Romanian Journal of Information Sceince and Technology, 9 (2006),
151-162.

Chen, H., Ionescu, M., Ishdorj, T.-O., Paun, A., Paun, Gh., Pérez-
Jiménez, M., Spiking Neural P Systems with Extended Rules: Uni-
versality and Languages. Natural Computing, to appear.

158

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Chomsky, N., Three Models for the Description of Languages. IRE
Transactions on Information Theory, 2: (1956) 113-124.

Ciobanu, G., Pan, L., Paun, Gh., Pérez-Jiménez, M. J., P Systems
with Minimal Parallelism. Theoretical Computer Science, to appear.

Ciobanu, G., Pdun, Gh., Perez-Jimenez, M. J., eds, Applications of
Membrane Computing. Springer, Berlin, 2006.

Crick, F., Of Molecules and Men. Great Minds Series, University of
Washington Press, 1966.

Crick, F., Watson, J. D., A Structure of Deoxyribonucleic Acid. Na-
ture, Vol. 171, (1953), 737-738.

Csuhaj-Varju, E., Freund, R., Kari, L., Paun, Gh., DNA Computing
Based on Splicing: Universality Results. Proc. First Annual Pacific
Symp. on Biocomputing, Hawaii, 1996 (L. Hunter, T. E. Klein, eds.),
World Scientific, Singapore, 1996, 179-190.

Daley, M., Kari, L., Some Properties of Ciliate Bio-operations. DLT
2002, LNCS 2450, Springer, Berlin, (2003) 116-127.

Danos, V., Schachter, V. eds., Computational Methods in Systems
Biology, International Conference CMSB 2004. Paris, France, 2004,
LNCS 3082, Springer, Berlin, 2005.

Dassow, J., Paun, Gh., Regulated Rewriting in Formal Language The-
ory. Springer, Berlin, 1989.

Ehrenfeucht, A., Harju, T., Petre, 1., Prescott, D. M., Rozenberg, G.,
Computation in Living Cells: Gene Assembly in Ciliates. Springer,
Berlin, 2003.

Ehrenfeucht, A., Petre, 1., Prescott, D. M., Rozenberg, G., Universal
and Simple Operations for Gene Assembly in Ciliates. In: V. Mitrana,
C. Martin-Vide (eds.) Words, Sequences, Languages: Where Computer
Science, Biology and Linguistics Meet, Kluwer Academic, Dortrecht,
(2001) 329-342.

Ehrenfeucht, A., Prescott, D. M., Rozenberg, G., Computational As-
pects of Gene (Un)Scrambling in Ciliates. In: L. F. Landweber,
E. Winfree (eds.) Ewvolution as Computation, Springer, Berlin, Hei-
delberg, New York (2001) 216-256.

Feynman, R. P., There’s Plenty of Room at the Bottom. H. D. Gilbert
ed., Miniaturization. Reinhold, New York, 1961, 282-286.

159

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Galiukschov, B. S., Semicontextual Grammars. Mathematika Logica
Matematika Linguistika, Talinin University (1981), 38-50 (in Russian).

Garey, M., Johnson, D., Computers and Intractability. A Guide to the
Theory of NP-completeness. Freeman, San Francisco, CA, 1979.

Gutiérrez-Naranjo, M. A., Paun, Gh., Riscos-Nufez, A., Romero-
Campero, F. J., Sburlan, D., eds., Proceedings of the Third Brain-
storming Week on Membrane Computing. Seville, 2005, GCN Techni-
cal Report 01/2005, University of Seville, 2005.

Gutiérrez-Naranjo, M. A., Paun, Gh., Riscos-Nunez, A., Romero-
Campero, F. J., eds., Proceedings of the Fourth Brainstorming Week
on Membrane Computing. Vol. 1, Seville, 2006, Fenix Editora, Sevilla,
2006.

Gutiérrez-Naranjo, M. A., Péuﬁ, Gh., Riscos:-Nifiez, A., Romero-
Campero, F. J., eds., Proceedings of the Fourth Brainstorming Week
on Membrane Computing. Vol. 11, Seville, 2006, Fenix Editora, Sevilla,
2006.

Harju, T., Petre, 1., Li, C., Rozenberg, G., Parallelism in Gene Assem-
bly. In: Natural Computing, to appear, 2006.

Harju, T., Petre, 1., Rozenberg, G., Gene Assembly in Ciliates: Molec-
ular Operations. In: P&un, Gh., Rozenberg, G., Salomaa, A., (Eds.)
Current Trends in Theoretical Computer Science, World Scientific,
2004.

Harju, T., Petre, 1., Rozenberg, G., Two Models for Gene Assembly
in Ciliates. LNCS 3113, Springer, Berlin, 2004, 89-101.

Head, T., Formal Language Theory and DNA: An Analysis of the
Generative Capacity of Specific Recombinant Behaviors. Bull. Math.
Biology 49: 737-759, 1987.

Head, T., Splicing Schemes and DNA. In Lindenmayer systems
(Rozenberg, G., Salomaa, A., Eds.) Springer, Berlin, 295-358.

Head, T., Aqueous Simulations of Membrane Computations. Roma-
nian Journal of Informatics Science and Technology, 5, 4 (2002).

Hopcroft, J. E., Ullman, J. D., Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, Reading MA, 1979.

Ionescu, M., Ishdorj, T.-O., Boolean Circuits and a DNA Algorithm
in Membrane Computing. In Proc. of the 6th Workshop on Mem-
brane Computing, Vienna, Austria, 18-23 July 2005, and LNCS 3850,
Springer, Berlin, 2006, 274-293.

160

[49] Ionescu, M., Paun, Gh., Yokomori, T., Spiking Neural P Systems.
Fundamenta Informaticae, 71, 2-3 (2006), 279-308.

[50] Ishdorj, T.-O., Power and Efficiency of Minimal Parallelism in Polar-
izationless P Systems. Journal of Automata, Languages, and Comp-
inatorics, to appear, 2006.

[51] Ishdorj, T.-O., Minimal Parallelism for Polarizationless P systems.
Pre-proceedings of the 12th International Meeting on DNA Computing,
(C. Mao, T. Yokomori, B.-T. Zang, editors), Seoul, June 2006, 203-
214, and Lecture Notes in Computer Science LNCS 4287, Springer,
Berlin, (2006) 17-32.

[52] Ishdorj, T.-O., Ionescu, M., Replicative-Distribution Rules in P Sys-
tems with Active Membranes. 'Pre-proceedings of First International
Colloquium on Theoretical Aspects of Computing ICTAC, Guiyang,
China, September 20-24, 2004 - UNU/IIST Report No. 310, 263-278,
Zhiming Liu (Ed.) Macau, and Lecture Notes in Computer Science
LNCS 3407, Springer, Berlin, (2005) 69-84.

[63] Ishdorj, T.-O., Petre, 1., An Efficient Computing Paradigm Inspired
by Gene Assembly in Ciliates. Manuscript, 2006.

[54] Ishdorj, T.-O., Petre, 1., Vladimir, R., Computational Power of In-
tramolecular Gene Assembly. Manuscript, 2006.

[65] Kari, L., and Landweber, L. F., Computational Power of Gene Rear-
rangement. In: Winfree, E., Gifford, D. K., (eds.) Proceedings of DNA
Based Computers, V American Mathematical Society (1999) 207-216.

[56] Kari, L., and Thierrin, G., Contextual Insertion/Deletions and Com-
putability. Information and Computation 131 (1996) 47-61.

[57] Kleene, S. C., Representation of Events in Nerve Nets and Finite Au-
tomata. In Automata Studies, Princeton University Press, Princeton,
NI, 1956, 3-42.

[58] Landweber, L. F., and Kari, L., The Evolution of Cellular Computing:
Nature’s Solution to a Computational Problem. In: Proceedings of the
4th DIMACS Meeting on DNA-Based Computers, Philadelphia, PA
(1998) 3-15.

[59] Landweber, L. F., and Kari, L., Universal Molecular Computation in
Ciliates. In: Landweber, L. F., Winfree, E (eds.) Evolution as Com-
putation, Springer, Berlin, 2002.

[60] Lindenmayer, A., Mathematical Models for Cellular Interaction in De-
velopment I and II. Journal of Theoretical Biology 18(1968), 280-315.

161

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Lipton, R. J., Using DNA to Solve NP-Complete Problems. Science,
268 (1995), 542-545.

Maass, W., Computing with Spikes. Special Issue on Foundations of
Information Processing of TELEMATIK, 8, 1 (2002), 32-36.

Marcus, S., Contextual Grammars. Revue Roumaine de Matématique
Pures et Appliquées, 14 (1969), 1525-1534.

Martin-Vide, C., Ishdorj, T.-O., Modeling Neural Processes in Lin-
denmayer Systems. The 8th International Work-Conference on Artifi-
cial Neural Networks (IWANN’2005) (Computational Intelligence and
Bioinspired Systems), Vilanova i la Geltrd (Barcelona, Spain) June
8-10, 2005 and LNCS 3512, Springer, Berlin, (2005), 145-152.

Mauri, G., Paun, Gh., Pérez-Jiménez, M. J., Rozenberg, G., Salo-
maa, A., eds., Membrane Computing, 5th International Workshop,
WMC2004. Milano, Ttaly, June 2004, LNCS 3365, Springer, Berlin,
2005.

McCulloch, W. S.; Pitts, W. H., A Logical Calculus of the Ideas
Immanent in Nervous Activity. Bulletin of Mathematical Biophysics,
5(1943), 115-133.

Minsky, M. L., Computations. Finite and Infinite Machines. Prentice
Hall, Englewood Cliffs, 1967.

Von Neumann, J., Theory of Self-Reproducing Automata. The Uni-
veristy of Illinois Press, Champaign, Illinois, 1966.

Von Neumann, J., The Computer and the Brain. Yale Univeristy Press,
New haven and London, 1958.

Ogihara, M., Ray, A., Simulating Boolean Circuits on a DNA Com-
puter. Proceedings of the First Annual International Conference on
Computational Molecular Biology, Santa Fe, New Mexico, USA, 1997,
226-231.

Pan, L., Alhazov, A., Solving HPP and SAT by P Systems with Active
Membranes and Separation Rules. IEEE Transactions on Computers,
submitted, 2005.

Pan, L., Alhazov, A., Ishdorj, T.-O., Further Remarks on P Systems
with Active Membranes, Separation, Merging and Release Rules. Soft
Computing. A Fusion of Foundations, Methodologies and Applications,
(2005) 686—690.

162

[73] Pan, L., Ishdorj, T.-O., P Systems with Active Membranes and Sep-
aration Rules. Journal of Universal Computer Science, 10(5) (2004),
630-649.

[74] Papadimitriou, Ch. P., Computational Complezity. Addison-Wesley,
Reading, MA, 1994.

[75] Paun, Gh., Twenty Siz research Topics About Spiking Neural P Sys-
tems. 2006, in [106].

[76] Paun, Gh., Further Open Problems in Membrane Computing. 2004, in
[106]. |

[77] Paun, Gh., On the Power of the Splicing Operation. Int. J. Comp.
Math 59 (1995) 27-35.

[78] Paun, Gh., Marcus Contextual Grammars. Kluwer, Dordrecht, 1997.

[79] P&un, Gh., Computing with Membranes. Journal of Computer and
System Sciences, 61, 1 (2000), 108-143, and Turku Center for Com-
puter Science-TUCS Report No 208, 1998 (www.tucs.fi).

[80] Paun, Gh., P Systems with Active Membranes: Attacking NP-
Complete Problems. Journal Automata Languages and Combinatorics,
6-1 (2001), 75-90, and CDMTCS Research Report 102, Auckland Uni-
versity, 1999.

[81] Paun, Gh., Membrane Computing. An Introduction. Springer, Berlin,
2002.

[82] P&un, Gh., Introduction to Membrane Computing. In Proceedings
First Brainstorming Workshop on Uncertainty in Membrane Comput-
ing, Palma de Mallorca, Spain, November 2004, 1-42.

[83] Paun, Gh., Pérez-Jiménez, M.J., Rozenberg, G., Spike Trains in Spik-
ing Neural P Systems. Intern. J. Found. Computer Sci., 17, 4(2006),
975-1002.

[84] Paun, Gh., Pérez-Jiménez, M.J., Rozenberg, G., Infinite Spike Trains
in Spiking Neural P Systems. Submitted, 2006.

[85] Pdun, Gh., Riscos-Nufiez, A., Romero-Jiménez, A., Sancho-
Caparrini, F., eds., Proceedings Second Brainstorming Week on Mem-
brane Computing. Seville, 2004, GCN Technical Report 01/2004, Uni-
versity of Seville, 2004.

[86] P&un, Gh., Rozenberg, G., A Guide to Membrane Computing. Theo-
retical Computer Science, 287-1 (2002), 73-100.

163

[87]

[38]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]
[99]

[100]

[101]

Paun, Gh., Rozenberg, G., Salomaa, A., DNA Computing - New Com-
puting Paradigms. Springer, Berlin, 1998.

Pérez-Jiménez, M. J., Romero-Jiménez, A., Sancho-Caparrini, F.,
Complexity Classes in Models of Cellular Computation with Mem-
branes. Natural Computing, 2, 3 (2003), 265-285.

Prescott, D. M., Cutting, Splicing, Reordering, and Elimination of
DNA Sequences in Hypotrichous Ciliates. BioEssays 14 (1992) 317-
324.

Prescott, D. M., and DuBois, M., Internal Eliminated Segments (IESs)
of Oxytrichidae. J. Eukariot. Microbiol. 43 (1996) 432-441.

Prescott, D. M., Ehrenfeucht, A., Rozenberg, G., Molecular Opera-
tions for DNA Processing in Hypotrichous Ciliates. Furop. J. Protis-
tology 37 (2001) 241-260.

Prescott, D. M., Rozenberg, G., Encrypted Genes and Their Reassem-
bly in Ciliates. In: M. Amos (ed:) Cellular Computing, Oxford Uni-
versity Press, Oxford (2003).

Riscos-Nunez, A., Cellular Programming: Efficient Resolution of NP-
complete Numerical problems. PhD thesis, University of Sevilla, 2004.

Roweis, S., Winfree, E., Burgoyne, R., Chelyapov, N., Goodman, M.,
Rothemund, P. W. K., Adleman, L. M., A Sticker Based Architecture
for DNA Computation. In [6], 1-27.

Rozenberg, G., Lindenmayer, A., Developmental Systems with Locally
Catenative Formulas. Acta Inf. 2: (1973) 214-48.

Rozenberg, G., Salomaa, A., The Mathematical Theory of L Systems.
Academic Press, New York, 1980.

Rozenberg, G., Salomaa, A., eds., Handbook of Formal Languages.
Springer, Berlin, 1997.

Salomaa, A., Formal Languages. Academic Press, New York, 1973.

Sburlan, D., Promoting and Inhibiting Contexts in Membrane Com-
puting. PhD thesis, University of Sevilla, 2006.

Segev, I., Schneidman, E., Axons as Computing Devices: Basic In-
sights Gained from Models, J. Physiol. (Paris), 93 (1999), 263-270.

Shepherd, G. M., Neurobiology. Oxford University Press, NY Oxford,
1994.

164

[102] Sipser, M., Introduction to the Theory of Computation. PWS Publish-
ing Company, International Thomson Publishing Company, 1997.

[103] Turing, A. On Computable Numbers, with an Application to the
Entscheidungsproblem. Proceedings of the London Mathematical So-
ciety, Series 2, Vol. 42 (1936-37) 230-265.

[104] Winfree, E., Liu, F., Wenzler, L. A., Seeman, N. C., Design and
Self-Assembly of Two-Dimensional DNA Crystals. Nature, 394(6693),
(1998), 539-544.

[105] Winfree, E., Yang, X., Seeman, N. C., Universal Computation Via
Self-Assembly of DNA: Some Theory and Experiments. In [6], 191~
214.

[106] P systems web-page: http://psystems.disco.unimib.it/

165

deD. Tgeveu - owol + Iehdoj
titulada

acordo otorgarle Ia calificacién de

Sevila,a 23 de Warzo g 2003

Vocal, Vocal,

21y

{ H
| T

(Jucdt] s

| \ o Cavdo audpon
*clo . Qudo)f Frevucl s . Harau Glatrvj('\z T ro

Presidente,

Secretario, Doctorando,

Tdo/‘.'. 'Franaﬁc Eos‘u((o' (.LoM/)o-/’}’ ’Fdo 7696 L ,,Qm/uzr(oJunq "Ua

Taereu - Ouolk Txbdov].

