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Introduction

@ Fermentation: bio-chemical
process by means of which
sugar in grape juice is
transformed into ethanol in
presence of nutrients.

Actin
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vesicles
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@ Transformation: thanks to i
yeast in the must which allows <
to degrade sugar into ethanol.

Mitochondrion

o Different wines: dry or sweet.

@ Bioreactor (batch): substrate Vacuole
provided at the beginning and cal
no remove.
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Literature dedicated to derive mathematical models

ﬁ S. Aiba, M. Shoda and M. Nagatani,
Kinetics of product inhibition in alcohol fermentation,
Biotechnology and Bioengineering, 10 (1968), 845-864.

ﬁ R. Boulton,
The prediction of fermentation behavior by a kinetic model,
Am J Enol Vitic, 31 (1980), 40-45.

@ |. Caro, L. P’erez and D. Cantero,
Development of a kinetic model for the alcoholic fermentation of must,
Biotechnology and Bioengineering, 38 (1991), 742-748.

@ A. C. Cramer, S. Vlassides and D. E. Block,
Kinetic model for nitrogen-limited wine fermentations,
Biotechnology and Bioengineering, 77 (2002), 49-60.

Few works dedicated to study the mathematical models!
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Mathematical model

K = o
&= ulnx
de

= = B,

ds

— = —pB(s)y(e
B = pnle
@ x=x(t): yeast conc.
@ n=n(t): nitrogen conc.
@ e=¢(t): ethanol conc.

@ s=s(t): sugar conc.
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Mathematical model

7 = Hnx

T = —ulo,

& = Bleriem

S = Bl
@ x=x(t): yeast conc.
@ n=n(t): nitrogen conc.
@ e=¢(t): ethanol conc.

@ s=s(t): sugar conc.

Growth rate
_ Hmaxn
p(n) Toin

Rate of sugar utilization

_ Bmaxs
Als)= ks+s
Inhibition of sugar consumption
ke
1(e)= ke +e

@ Umax, Pmax: max. specific growths
@ kp: nitrogen limited growth
@ ks: sugar transport across cell membrane

@ ke: ethanol inhibition
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Mathematical model

7

dx
dt
dn
dt
f
dt
f
dt

= pu(n)x, (1) Observe that
% + ﬂ = ﬁ + é =0
= —u(n)x, (2) dt dt dt dt
Then

x(t)+n(t) =x(0)+n(0):=y>0

= —B(s)y(e)x (4) e(t)+s(t)=e(0)+s(0):=1>0.

Thus, we can

rewrite system (1)-(4) as a two dimensional one

dx Hmax(y = x)

dt  knty-x O )
f _ ,Bmax(/l_e) ke . (6)
dt ks+A—e kete
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Dynamics of the model

For any initial value (xp,ep) € [0,7] % [0,A], system (5)-(6) possesses a
unique global solution which is, in addition, positive and bounded.
Moreover, as long as (xo,€p) € (0,y] x [0,A], the solutions of system (5)-(6)
approach the fixed point P =(y,A) as t goes to infinity. As a consequence,
solutions of system (1)-(4) converge to (y,0,1,0).

4

Proof. By classical theory of ODE's it is easy to obtain local existence and
uniqueness of the solutions of system (5)-(6).

Moreover, the positive cone & = {(x,e), x =0,e =0} is positive invariant
since x =0 is an invariant plane and on e =0 we have

de| _Pmack
dt e:O_ ks+A -

Hence, we obtain the positiveness of solutions.
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Dynamics of the model

€ % _ ﬂmaX(Y_X)X
Ly p dt kn+7y—x
A
ﬁ _ ,Bmax(/l_e) ke X
dt kstA—e kete
L4 L2 J

o Side [y: x=y, e€[0,A). Set x=y
x invariant and 9 >0 for e €[0,1).

o Side [3: e= A, x€(0,y). Set e=1
is invariant while % >0 for

Ly

x € (0,7).
© Side L;: e=0, x€(0,7). @ Side L4: x=0, e€[0,1). This side
dx de consists of a segment of fixed
prie 0 and pre 0. points which are unstable.
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Dynamics of the model

€ % _ ﬂmaX(Y_X)X
Ly p dt kn+7y—x
A
ﬁ _ ,Bmax(/l_e) ke X
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L
L4 2 J
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Dynamics of the model
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Dynamics of the model

Then, B=[0,y] x[0,A] is positively invariant. Moreover, solutions starting
on B are positive, bounded and global in time.

Now, we study the asymptotic behavior of solutions starting on B.
@ Since % >0 for x € (0,y), no periodic orbits in B.

@ Then, invariant sets on B are the unstable fixed points on the side L4
and the fixed point P.

@ Stability of P: compute the eigenvalues of the Jacobian matrix

Y ﬁmax
A=—t,  Ap=——Lmax
17 27 ke(ke + 1)

@ A; and A, are both negative, then P is locally stable.

Finally, every solution of system (5)-(6) with initial value in (0,y] x [0,7]
converges to P . [
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Dynamics of the model

Thanks to Theorem 1, since every solution of system (5)-(6) with initial
value in (0,y] x [0,A] converges to P =(y,A), every solution of system
(1)-(4) converge to (y,0,4,0).

Remark: Theorem 1 consistent with real fermentation process

@ In this case, dry wine is obtained.

@ Sum of sugar and ethanol concentrations s(t)+e(t) =s(0) =7
remains constant.

@ Total quantity of sugar transformed into ethanol since e(t) — s(0)
while s(t) — 0.

@ Sum of microbial biomass and nitrogen concentrations x + n remains
constant with n(t) — 0 and x(t) — x(0) + n(0).
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Numerical simulations

. Microbial biomass B Nitrogen
75 35
7 3
25
S 2
15
s 1
45 05
o
o 05 1 1s 2 25 3 a5 4 45 5 o o5 1 15 2 25 3 35 4 45 &
time time
Ethanol Sugar
o 9
8 s
7 7
~ 6 ~ 6
iy >
S s S s
s ., 74
3 3
2 2
1 1
o
5 10 15 20 25 0 35 w0 o 5 10 15 20 25 0 35 a
time time

x0=4,n9=4,e0=0,50 =10, ttmax = 1.5, kn = 2, Bmax = 0.4, ks = 1.2, ke = 2.
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Mathematical model

&= xuln)ke)
&= —ulnx
de

< = Bler(e,

ds

— = —p(s)y(e
B = el
@ x=x(t): yeast conc.
@ n=n(t): nitrogen conc.
@ e=¢(t): ethanol conc.

@ s=s(t): sugar conc.
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Mathematical model

&= xulm)ke)
% = —pu(n)x,
% Bleriem
S = psrielx
@ x=x(t): yeast conc.
@ n=n(t): nitrogen conc.
@ e=¢(t): ethanol conc.

@ s=s(t): sugar conc.

Growth rate
u(n) =

Rate of sugar utilization
B(s) = Dmax®

ks+s

Inhibition of sugar consumption

ke
v(e)= kete

@ Umax, Pmax: max. specific growths
9 kp: nitrogen limited growth
@ ks: sugar transport across cell membrane

@ ke: ethanol inhibition

9 k: sensitivity of yeast to ethanol
Javier Lépez de la Cruz Fermentation models



Mathematical model

Similarly to the dry wine case we can rewrite the previous system

dx Hmax " ]

— = — —ke|, 7
dt ~ Akprn € ()
dn Hmax N

dt _k,,+nX' (8)
d max A— k

de _ PrelAze) ke (9)
dt ks+A—e ke+e

where e(t) +s(t) =s(0):=A>0.
From now on we will denote
%:{(x,n,e)EIRi3 :x=20,n=0,e=0}

the positive cone.

Javier Lépez de la Cruz Fermentation models



Dynamics of the model

All solutions of system (7)-(9) with initial data in

C:=[0,+00) x [0, +00) x [0, 1),

are defined for all t € [0,+00). Moreover, they are positive and bounded.

4

Proof. By classical theory of ODE's we obtain local existence and
uniqueness of solutions.

Observe that x=0, n=0 and e= A are invariant plane while on e =0 the

vector field points inside C. Then, we also have that e(t) is globally
defined and bounded.
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Dynamics of the model

From
dn _ fimaxn

dt kn,+n

we have that n(t) is decreasing, then n(t) is bounded for any ng € C and
defined for all t=0.

Moreover, we have

dx
= _x
dt

/vtmaxn

 Hmaxn Hmaxn(0)
kn,+n

" kn+n " kn+n(0)

X =1pX, (10)
where we used that p(n(t)) is decreasing with respect to t.

Then,
x(t) = x(0)eft, fort=0,

whence x(t) is defined for all t € [0, +00).
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Dynamics of the model

It remains to prove the boundedness of x(t). Suppose by contradiction
lim x(t) =+oo, and lim n(t)=n*>0,
t—+oo t—+oo

then
dn _ Hmaxn dn B

dn _ iodn_
dt . ko+n LI

Now suppose that

lim x(t)=+oo, and tETwn(t):O. (11)

t—+o0
We recall that

@ the nitrogen concentration n is decreasing from n(0) >0 to zero.
@ u is monotonic, then pu(n) goes to zero.

@ the ethanol concentration e is increasing from zero.
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Dynamics of the model

—um]| There exists T >0 such that
p(n(T))—ke(T)=0.
Then

dx [ Umax D

sz kn+n—ke]50,

forall t>T.

This contradicts (11) and then the biomass concentration x is bounded and
defined for all t=0.
|
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Dynamics of the model

For any xo >0, there exists T >0 such that the biomass concentration x(t)

is increasing for every t € [0, T]. Then, it attains its maximum at t=T and
decreases for every t > T.

There exists T >0 such that

= u(n(T))—ke(T)=0.
Then
d N >0,t< T
— =X —Mmax —ke =O,t=T
dt kn+n <0, t>T

Crucial effect of inhibition



Dynamics of the model

Theorem 4

The set
A={(x,ne)e C:Ai(n,e):=pu(n)— ke <0}

is positively invariant.

— e=A

— e=lu(n)

n

T+ 2 3 a4 s
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Dynamics of the model

Every solution of system (7)-(9) with initial value in C\ {x =0} converges
to a fixed point in the plane x = 0.

Proof. Suppose that there exists a strictly positive constant L > 0 such that

thwa(t) =L>0,
then we have
. T Hmaxn _ _ R
tIer;oE _tlLrgox Toin ke] = L(u(n*)—ke"), (12)

where n* and e* denote the limit values of the nitrogen and ethanol
concentrations. Such limits satisfy

0<n*<n(0), and O<e* <A

Javier Lépez de la Cruz Fermentation models



Dynamics of the model

From Theorem 4, we have that the limit points are in

A={(x,ne)e C:A1(n,e):=u(n)— ke <0}.

and as a consequence

tILmoo%zL(,u(n*)—ke*)<O, (13)
Thus, we conclude that
r“T x(t) =0. (14)

As a result, every solution of system (7)-(9) with initial value in C\{x =0}
converges to a fixed point in the plane x =0.
|
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Dynamics of the model

Theorem 6

The nitrogen concentration is not completely consumed at the end of the

process, I.e.,
lim n(t)>0.

t—+oo

Proof. Assume by contradiction that

lim n(t):=nw=0.

t—+oo ( ) >

Since the nitrogen concentration n remains positive and decreasing for
t=0, it is possible to define a diffeomorphism from [0, +00) to (e, N,
where ng = n(0). Then, the microbial biomass concentration x can be

expressed as a function of n:
dx _ x(u(n)—ke) _ 1 ke

dn = " —u(n)x u(n)



Dynamics of the model

Hence, for n< n(T) with T >0, we have

dx . ke(T)
> 1+ OB (15)

We observe that u(n) < £p2xp,

Hence, we have

where o > 0.

Finally, by integrating the last inequality between n., and n we obtain
x(n) > x(neo) — N+ Noo + o (log n —log Ny ).

Then, if ne, =0 we have that x > co.
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Dynamics of the model

Let F: C — R be the function defined as

A— 1
F(e,n):=—ks(ke+A) Iog(Te) + (ke —ks)e+ §e2 +vkp Iog( . ) +v(n—ng),

o

where
ke

max

V= Bmax

Then, the ethanol and nitrogen concentrations satisfy F(e,n) = 0.

Theorem 8

The ethanol concentration e(t) does not tend to the initial sugar concentration A.

Proof. Suppose e(t) — A. Then n— 0.
]
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Dynamics of the model

Emaxn(0)

Suppose that p = 7 Tn(0) < kA. Then the unique positive solution of the

following equation provide an upper bound for the limit value of the
ethanol concentration

_5x(0)=a3e3+a2e2+a1e+a|og(/1;e),
where
,Bmaxke _ 1 _1 P
0 = T, a3——§, az—i(z—ke‘l‘ks),
_ _b P - _P
a = kA k)+ke(ks+k), a=ks(2 k)(ke+}t).

Remark: upper bound for limit value of ethanol!

Javier Lépez de la Cruz Fermentation models




Numerical simulations. k =0.05 e*

=0.29 e* =0.15

Microbial biomass. Nitrogen
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5 s
a4 -
s ]
S 76
2 s
1 4
3
o 5 10 1 20 2 30 E3 w o s 10 15 20 2 E) 3 r
time time

x0=4,ng =4, =0,50 = 10, ttmax = 0.1, kn = 1, Bmax = 0.4, ks = 2, ke = 4.
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Numerical simulations. k =0.25 e*

=3.19 e* =2.92
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xo=4,ng=4,e0=0,50 =10, Umax = 0.1, kp =1, Bmax = 0.4, ks = 2, ke = 4.
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Numerical simulations. k=25 e* =1.07 e* =0.98

Microbial biomass Nitrogen
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T 04 7 94
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01 01
s
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time time

xo=4,n9=4,e0=0,50 =10, tmax = 0.1, kn =1, Brmax = 0.4, ks =2, ke = 4.
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Numerical simulations. k=0

. Microbial biomass B Nitrogen
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x0o=4,ng=4,e0=0,50 =10, Umax = 0.1, kp =1, Bmax = 0.4, ks = 2, ke = 4.

Javier Lépez de la Cruz Fermentation models



Table of Contents

© Comparison between both models



Numerical simulations. kK =0.05 and kK =0.25

Microbial biomass Nitrogen

(0x;)
n(tony)

10
time

Ethanol Sugar

e(t0e,)
S(10.5,)

2 4 6 5 0 12 14 16 18 20 o 2 4 6 8 10
time time

12 14 16 18 20

x0=8,n0=2,60=0,50=10, tmax = 0.1, kn =1, Brmax = 0.4, ks = 2, ke = 4.
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Conclusion

@ Studied two models for wine production.
@ Dry wine: total quantity of sugar transformed into ethanol.
@ Sweet wine: parameter to interrupt.

@ Proved existence, uniqueness, boundedness and positiveness of
solution of both models.

@ Studied in details the asymptotic behavior of state variables:
yeast, nitrogen, sugar, ethanol.

@ However... results in this work not only clarify the dynamics of
the model.

@ We provide useful tools to control the fermentation process and
produce wine with the desired sugar.

Here you can see practical guide for producers ;)
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@ Renato Colucci and Javier Lépez-de-la-Cruz,

Dynamics of fermentation models to study the production of dry and sweet
wine,

Communications on pure and applied analysis, vol. 19, 4 (2020) 2015-2034,
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Happy birthday... and thank you very much for everything!
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