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Summary. Modelling real systems and processes is a task classically performed through
the approach of differential equation systems, defining the evolution of different variables
as the different components of the system. A bad feature that differential equations
have is that if some new parameter has to be introduced in the system, then often the
previous equations are not useful, and the whole system has to be remodeled again. Bio-
inspired computational models are abstractions of reality into a mathematical system that
works with specific semantics and can perform some tasks, such as solving problems or
demonstrating the universality of themselves or other models. An interesting application
of these models is the modelling of real-life processes, where some of them as the so-called
P systems have demonstrated previously that their performance is remarkable. This is not
only for the similarity of the results with the experimental ones, but for its adaptability
and modularity of the system, that is, if a new component of the real system is taken
into account, not the whole system but a small part of it has to be changed in order
to simulate the changed scenario. In this work, a first look at the dynamics of a laser
physical system is given, reproducing the behavior of a first model with a PDP system.
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1 Introduction

Lasers are devices that emit light through a process of optical amplification based
on the stimulated emission of electromagnetic radiation. In fact, its name comes
from “Light Amplification by Stimulated Emission of Radiation”. In [21, 22], a
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wide explanation of them can be found. While the principles of such devices were
introduced by A. Einstein in [9], they were not applied until the 1950s. Nowadays,
there exists a vast amount of applications based on lasers, for example, communi-
cations, optical memories and medicine, between other ones. For a good coverage
of the history of laser early development, the reader should take a look at [14].

Cellular automata were discovered in the 1940s by Stanislaw Ulam and John
von Neumann as a computational paradigm based on a regular grid of cells (that
is why it is called cellular automata) in a given topology, each of them in one of a
finite number of states. Classical models, like Rule 110 [23] and Conway’s Game
of Life [11] use 1 and 2 dimensions, respectively. However, these devices are not
restricted to 2 dimensions, but they can be defined by a grid of n ∈ N dimensions.
In the beginning, Stephen Wolfram developed a systematic theoretical study of
one-dimensional cellular automata, called elementary cellular automata. Later on,
in [23] he claimed the usefulness of them not only as a theoretical model, but as a
framework to simulate natural processes, applicable to cryptography and biology,
as some patterns generated by them can be found in the nature [24], and several
more applications. In [12, 13], a cellular automata model simulating the behavior
of lasers is defined, giving some hints about how laser dynamics can be simulated
by a computational simulation paradigm, and how good are they treating the
topology of the real process.

Membrane Computing is a bio-inspired paradigm based on the structure and
behavior of living cells. It was first introduced in [16], trying to give an alternative
perspective to fields such as formal language theory and computability theory. The
main devices within this framework are the so-called P systems. Several kinds of
these systems have been defined, some of them are explained in [17, 18]. Apart
from theoretical results, such as computational completeness and efficiency, a wide
range of applications have been found by specific types of P systems. As some of
them can be found in [10, 19, 26], we want to stress the impact of probabilistic-like
systems, called PDP systems, in the field of ecosystems. From the first success-
ful implementation of a model for the endangered species Gypaetus barbatus, or
bearded vultures, in the Pyrenean and Prepyrenean mountains of Catalonia [6],
passing through the Pyrenean chamois [4] and the zebra mussel [7] in the fluvial
reservoir of Riba-roja, to the Giant Panda conservation in China [26], it has been
proved that this framework is plausible for the simulation of real-life processes.
In fact, in [1, 2], two simple models are defined to simulate two classical physics
problems such as the Stern-Gerlach experiment and the Uranium 238 decay. Some
tools have been developed in order to simulate and validate these models, such as
P-Lingua [27], MeCoSim [28] as well as some GPU based simulators in the PMCGPU

project [29]. In this work, we want to prove the usefulness of these kinds of systems
in the simulation of the dynamics of lasers, as a different approach to the simula-
tion of these devices. The paper is organized as follows: in the next sections, some
definitions are given to make the work self-contained. Section 3 will be devoted to
a brief explanation of laser dynamics. In Secion 4, cellular automata will be defined
and a glimpse of the model of laser dynamics from [12, 13] will be given. Section 5
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will introduce the framework of PDP systems and in the next one a first model
to model laser dynamics within the framework of Membrane Computing will be
explained. The work will be closed with some conclusions and open research lines.

2 Preliminaries

Some basic concepts are going to be introduced in this section. The reader is
supposed to have a basic knowledge about alphabets, multisets, graphs and trees.
For a broader definition, the reader is invited to take a look at [17, 18].

2.1 Lattices and topology

A lattice in Rn is a subgroup of the additive group Rn which is isomorphic to
the additive group Zn, and which spans with the real vector space Rn. Given a
lattice Λ in an n-dimensional space, each element in Λ can be labelled by a natural
number i. If Λ is a finite 2-dimensional square lattice, we can define the label of
an element as i = (x, y), being (x, y) the position of the element in the lattice,
defined in a natural way. Given two elements of a lattice, we define the operator
+ : L2 → L as a sum of elements in the lattice into another one. In the previous
example, i+ j = (xi + xj , yi + yj). The size of the lattice Λ is denoted by |Λ|.

The lattice can be a finite or an infinite set of elements. If the lattice is finite,
its bounds can act as real bounds, that is, they can act as actual elements with
static states, or they can be joint with other sides of the lattice, giving the lattice
a different topology. Usually, 2-dimensional square cellular automata use cylinder
or torus topology.

3 Laser dynamics

The basic components of a laser system [21, 20, 25] are a laser medium, where par-
ticles interact with each other, the pumping process, through which electrons get
artificially excited into higher quantum-mechanical energy levels and optical feed-
back elements, that reflect repeatedly the radiation beam into the laser medium,
building a resonant cavity in laser oscillators, which we will refer to generically as
“laser devices” in this work, as in [12, 13].

In Figure 1, a description of these components can be visualized in a graphical
way.

Lasers are based on the principle of stimulated emission, that is, an electron can
decay to a lower energy state while it is stimulated by the presence of a photon,
with the restriction that the latter has to have energy equal to the difference
between the two energy levels, and as a result of this process, a new photon with
the same wavelength, phase and polarization as the first one is emitted. In order to
have a simplified model, only two energy levels for electrons, E2 (upper level) and
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Fig. 1. Components and operation of a typical laser. R stands for reflectivity.

E0 (lower level) are considered. The pass of an electron from the upper to the lower
level is called population inversion. Under the assumption of this simplification,
the dynamics of the laser can be modeled by the following coupled differential
equations [21, 22]:

dn(t)

dt
= KN(t)n(t)− n(t)

τc
(1)

dN(t)

dt
= R− N(t)

τa
−KN(t)n(t) (2)

being:

• n(t) the number of laser photons;
• N(t) the population inversion (the number of electrons in the upper level);
• τc the decay time of photons in the cavity;
• τa the decay time of the upper laser level (E2);
• R the pumping rate; and
• K the coupling constant.

First equation denotes the variation of laser photons through time, while Equa-
tion 2 give the temporal variation of the population inversion. The term KN(t)n(t)

accounts for the stimulated emission, n(t)
τc

and N(t)
τa

for the decay of photons and
electrons in the upper level, respectively, and R introduces the pumping of elec-
trons with a pumping rate R to the upper laser level E2.

4 Cellular automata

Cellular automata are computational models defined informally as a grid of cells
with states like on and off that will evolve through a set of rules.
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4.1 Formal definition

Definition 1. A cellular automaton can be defined as a tuple C = (L,S, S0,N , g)
where:

• L ∈ Rn is a lattice;
• S is a finite set of states;
• S0 ∈ Sm, being m the number of cells of the automaton;
• N = {r1, r2, . . . , rσ}, ri ∈ L (1 ≤ i ≤ σ) and σ is the neighborhood size; and
• g : Sσ → S is a map from a set of states to a single one.

A cellular automaton can be seen as a grid of m cells arranged with the cellular
space given by L such that: (a) S0 represents the initial state of the grid; (b) the
neighborhood of the cell i ∈ L is given by the set of cells {r1, r2, . . . , rσ}, where ri
can depend on the cell i, even being itself.

A configuration at any instant of such kind of cellular automaton is de-
scribed by the state of each cell at the moment. The initial configuration of
C = (L,S, S0,N , g) is (s1, s2, . . . , sm), being si ∈ S (1 ≤ i ≤ m).

A transition from a configuration Ct to another configuration Ct+1 is obtained
by applying g to all the cells in the cellular space L. Thus, the state of each cell at
any time step is determined by the state of the neighbouring cells at the previous
time step. A computation of the system is a sequence of transitions starting from
the initial configuration, where any term of the sequence other than the first, is
obtained from the previous configuration in one transition step, and it is denoted
by Ct ⇒C Ct+1.

4.2 Cellular automata model of laser dynamics

In [12, 13], a cellular automaton modelling the behavior of a laser is defined as a
tuple C = (L,S, S0,N , g), where:

• L is a 2-dimensional square lattice (a subset L ∈ Z2) containing Nc = L × L
sites, with periodic boundary conditions, that is, it follows the topology of
a torus. Each site or element of the lattice is a cell, which is labelled by its
position r = (i, j) ∈ L, where i and j are the row and the column indices,
respectively;

• Four variables are associated at each cell, being ar(t) ∈ {0, 1} and cr(t) ∈
{0, 1, . . . ,M} being the state of the electron (being 1 when the electron is in the
upper state) and the number of photons, respectively; and ãr(t) ∈ {0, 1, . . . , τa}
and c̃kr (t) ∈ {0, 1, . . . , τc} the number of time steps that an electron has been
in its upper state and that a photon k ∈ {1, 2, . . . ,M} has been in a cell,
respectively;

• In the initial configuration, all electrons are in their lower state and there are
no photons in the system;
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• N is the Moore neighbourhood, that is, given a cell i = (x, y),
N = {(x− 1, y − 1), (x− 1, y), (x− 1, y + 1), (x, y − 1), (x, y), (x, y + 1),
(x+ 1, y − 1), (x+ 1, y), (x+ 1, y + 1)}

• g is a set of rules based on the value of the variables of each cell, which are
not going to be reproduced here. For the definition of these rules, we invite
the reader to view paper [13] or the thesis [12] for a wider explanation and
meaning.

To get an idea, rules from g reproduce the different processes of the system, that
is, pumping, stimulated emission, photon and electron decay and the introduction
of noise photons. Three variables are taken into account when trying to reproduce
the behavior of laser systems: the pumping rate, that makes an electron to promote
to an upper level with probability λ, the electron decay time τa and the photon
decay time τc.

First successful model works with λ = 0.192, τa = 30 and τc = 10, where λ
is adimensional and τa and τc are measured in time steps. The evolution of the
system simulates the behavior of a laser with such characteristics, as graphics of
the Figure 3 demonstrate.

Some other results can be found in the reference, but only this example is going
to be used for our purpose.

5 PDP systems

PDP systems are a variant of P systems inspired by the functioning of cells. Cells
are able to run multiple processes in parallel in a perfectly synchronized manner,
making them good candidates to be imitated for modeling complex problems. A
PDP system can be viewed as a cellular tissue in which each cell is within a special
compartment called environment. The cells have a particular structure hierarchy
in which there is a skin membrane that defines and distinguishes the inside from
the outside. In turn, inside a cell there are a number of hierarchically arranged
membranes, where organelles or chemical substances capable of evolving according
to specific reactions of the membrane may appear. PDP systems are probabilistic
P systems, that is, the applications of their rules is commanded by a predefined
probability on them. For a more exhaustive explanation of this model, see [5].

The key of software implementations of these systems are conflicts. If two or
more rules compete for a resource, the algorithm has to take a strategy. The res-
olution of conflicts depends on the algorithm used to simulate the system. Some
algorithms as the Binomial Block Based simulation algorithm (BBB) [3], the Di-
rect Non Deterministic distribution with Probabilities algorithm (DNDP) [4] and the
Direct distribution based on Consistent Blocks Algorithm (DCBA) [15] have been
developed, each of them treating these conflicts in a different way. Thus, the state
of the system at any time step is determined by the state of the system at the
previous time step.
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6 Laser dynamics modelling through a PDP system

In this first approach, to model the system, we use a PDP system of degree (1, 1)
Π = (Σ,G,RE , Γ,R, T, {fr : r ∈ RΠ},M11), where:

• Γ = {a, z} ∪ {pi|1 ≤ i ≤ τc} ∪ {ei|1 ≤ i ≤ τa}, and Σ = ∅;
• G = (V,E), where V = {e1} and E = ∅;
• RE = ∅;
• R is the set of the following rules:

6.1Rules to simulate the pumping process:

[a]1
λ−→ [e1]1

[a]1
1−λ−→ [a]1

6.2Rules to simulate the laser action:
[ei pj pk]1

0.5−→ [a p1 pj+1 pk+1]1

[ei pj pk]1
0.5−→ [ei+1 pj+1 pk+1]1

}
for 1 ≤ i ≤ τa, 1 ≤ j ≤ k ≤ τc

6.3Rules to reproduce the photon decay:
[pi]1 −→ [pi+1]1 for 1 ≤ i ≤ τc − 1
[pτc ]1 −→ [z]1

6.4Rules to reproduce the electron decay:
[ei]1 −→ [ei+1]1 for 1 ≤ i ≤ τa − 1
[eτa ]1 −→ [a]1

6.5Rules to introduce noise photons:

[z]1
0.0003−→ [z p1]1

[z]1
0.9997−→ [z]1

• T = 1000; and
• M11 = {a160000, z160000}.

The inner probabilistic P system has a single membrane labelled by 1, so the
initial configuration can be represented as in Figure 2.

1

a160000, z160000

Fig. 2. Initial configuration of the PDP system Π.
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Objects a represent electrons in the lower energy state E0, while ei represent
electrons that have been i time steps in population inversion. Analogously, objects
z represent photons that are not in the system and pi represent photons that have
been i time steps in the system.

Basically, the system works as said: electrons (respectively, photons) are excited
(resp., introduced in the system) by rules from 6.1 (resp., 6.5), as well as rules
from 6.4 (resp., 6.3) represent their evolution through time until reaching τa (resp.,
τc), while they become an object a (resp,. z) again. Rules from 6.2 simulate the
interaction between electrons in population inversion and photons.

In the first case, we use the following constants: λ = 0.192, τc = 10 and τa = 30.
For the simulations, we have used the DCBA algorithm implemented in

CUDA [29], using the cluster of the RGNC group [30] to increase their speed.
The results seem pretty interesting since they reproduce almost exactly the ob-
tained in the cellular automata approach and the experimental results. In Figure 4
it can be seen that the graphics obtained with this model are very similar with
the ones of Figure 3.

7 Conclusions and future work

In this work, a new approach to the modelling of laser dynamics has been devel-
oped. In [12, 13], a cellular automaton modelling this process is defined, taking
advantage their inherent parallelism to implement the algorithm in distributed
systems. In this case, we use the parallelism of P systems and its implementa-
tion in CUDA to obtain similar results understanding the principles of the phe-
nomenon. The use of probabilities seems reasonable since physical processes are
usually probabilistic. In this first version, we only use a single membrane and a
single environment to simulate the whole system, but we could try to use more
membranes to simulate different parts of the laser, as well as to simulate the in-
teraction of particles from the outside of the laser and so on. It can be used in a
second version since the results with parameters λ = 0.0125, τc = 10 and τa = 180,
the results are not similar to the experimental ones. Another interesting research
line could be the use of stochastic P systems instead of probabilistic ones, since the
equations defining the dynamics come with two constants K and R that could be
introduced directly in the system.
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Fig. 3. Evolution of the cellular automaton for λ = 0.192, τc = 10 and τa = 30. Up:
number of laser photons and population inversion versus time. Down: evolution in a phase
space with the number of laser photons versus the population inversion.
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Fig. 4. Evolution of the PDP system for λ = 0.192, τc = 10 and τa = 30. Up: number
of laser photons and population inversion versus time. Down: evolution in a phase space
with the number of laser photons versus the population inversion.
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