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Treatment of Singularities and Quasi-Static Terms in
the EFIE Analysis of Planar Structures
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Abstract—This paper reports on some mathematical and nu-
merical details of the application of the electric field integral equa-
tion (EFIE) method to the analysis of planar structures printed
on multilayered substrates. Closed-form expressions for singular
and hypersingular terms of the transverse electric field Green’s
dyadic (TEFGD) are identified so that they can be explicitly ex-
tracted out before solving the EFIE. The problems due to the pres-
ence of the hypersingular contribution, usually argued to preclude
the application of the EFIE to planar structures, are solved. In ad-
dition, a low-frequency expansion of the TEFGD corresponding to
a single layer substrate is carried out to recognize nonsingular elec-
trostatic-type contributions that can eventually become very im-
portant for computational purposes.

Index Terms—Dyadic Green’s function, electric field integral
equation (EFIE), planar structures.

I. INTRODUCTION

T HE APPLICATION of the mixed-potential integral equa-
tion (MPIE) method for solving electromagnetic problems

in planar layered structures is often described in the literature as
considerably more convenient than the use of the electric field
integral equation (EFIE) technique [1]–[3]. Two main reasons
are usually adduced. The first reason is that the Green’s func-
tions involved in the kernels of the MPIE are scalar functions
that can be represented by one-dimensional (1-D) Sommerfeld
integrals. The second reason is that the Green’s function in the
EFIE involves singularities of higher order ( ) than those ap-
pearing in the MPIE ( ). In this way, although a few works
follow an EFIE formulation [4], [5], this method is not com-
monly used and it is generally accepted the manifest superiority
of MPIE-based techniques. Nevertheless, the present work will
try to show that carrying out an appropriate treatment of the scat-
tered electric field, the EFIE technique can be posed in a form
very similar to that found for the MPIE, namely, the kernel of
the EFIE can be reduced to 1-D Sommerfeld integrals of scalar
functions and only -type singularities have to be treated.
After doing this, the MPIE and the EFIE methods are found
comparable and may be regarded as possible alternative and
competent techniques to deal with planar layered structures.
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This work will focus on the application of the EFIE to com-
pute the scattered currents on a perfect conductor printed on
a multilayered dielectric substrate, which may also show uni-
axial anisotropy with its optical axis normal to the interface.
In the development of the EFIE problem for this structure, it
will be first shown that a convenient analytic preprocessing of
the singularities of the transverse electric field Green’s dyadic
(TEFGD) is the key point to overcome the apparent disadvan-
tages of the EFIE. The study of the singularities in the TEFGD
will also make possible an additional understanding of the phys-
ical meaning of the singular-terms contribution to the scattered
electric field. In a second step, the study will be completed
with the obtaining of the most relevant nonsingular terms in the
TEFGD for a particular (although representative) structure con-
sisting of a perfect conductor printed on a grounded anisotropic
dielectric layer. Special emphasis will be put on those nonsin-
gular terms that are of electrostatic type, whose contribution
may become specially significant.

II. TRANSVERSEELECTRIC FIELD GREEN’S DYADIC (TEFGD)

It is usually accepted that the most important drawback of the
EFIE technique when dealing with planar printed structures is
the high-order singularities exhibited by the kernel of the cor-
responding integral equation, that is, by the TEFGD. In this
way, any attempt of improving the efficiency of the EFIE should
focus on giving an appropriate treatment for the singularities
of this dyadic. This treatment can be greatly simplified if the
TEFGD of the multilayered structure, as that shown in Fig. 1,
is expressed in a convenient way. Fig. 1 shows a surface current
density supported by a perfectly conducting surfaceprinted
on a grounded dielectric layered substrate. Each layer of the
substrate is laterally unbounded and can be anisotropic with its
optical axis directed along the axis, namely its permittivity
dyadic is given by

(1)

where symbol indicates unit vector, is the
unit transverse dyadic (subscriptwill indicate in the following
transverseto axis), and subscriptrefers to theth layer. The
constitutive properties of this type of substrate exhibit transverse
(to axis) homogeneity as well as transverse isotropy.

Let us assume an incident (or imposed) electric field, ,
with an implied time dependence that will not be ex-
plicitly written henceforth, that gives rise to a scattered field

. The EFIE to be solved for computing the scattered surface
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Fig. 1. Planar perfect conductor printed on a uniaxial anisotropic dielectric
multilayered substrate with the optical axis alongy axis.

current density on the metallized surface, , can be written
as

(2)

or, equivalently

(3)

where is the transverse electric field Green’s dyadic
and and are the observation and source points respectively,
both on the metallized surface. The explicit dependence on

exhibited by the Green’s dyadic in the previous equa-
tion is an immediate consequence of the transverse homogeneity
of the dielectric structure. As is well known, the direct compu-
tation of TEFGD is rather an impracticable task, which causes

to be numerically computed as the inverse trans-
form of its corresponding spectral expression. The obtaining of
the spectral expression for the TEFGD of a multilayered and/or
anisotropic structure is adequately documented in the open lit-
erature, for example [3], [6]–[8]. When computing the inverse
Fourier transform of the TEFGD, nonconvergent integrals ap-
pear because of the asymptotic linear growing of the TEFGD
with the spectral variable. This asymptotic behavior is associ-
ated with a hypersingular term (of the type ) appearing in
the spatial expression of the TEFGD for . The existence
of this kind of hypersingularity in the electric Green’s dyadic,
which corresponds to the near field of an elementary dipole,
is a general feature of this dyadic that does not depend on the
particular dielectric properties of the medium surrounding the
source dipole. Since the presence of the hypersingular term in
the spatial TEFGD precludes direct numerical computation of
the scattered electric field in (3), the practical implementation
of the EFIE basically lies on the ability to properly deal with
the hypersingular term. It would be then required an adequate
extraction of the asymptotic behavior of the spectral expression
of the TEFGD as well as the obtaining of a closed form expres-
sion of its corresponding singular spatial counterpart.

In order to carry out the aforementioned treatment, the spec-
tral expression of the TEFGD will be first obtained and written
in a compact form to simplify the further analysis. Then, closed
form expressions for the singular terms in the spatial TEFGD
will be obtained by Fourier–Bessel transforming the asymptotic
behavior of the spectral expression for the TEFGD. Finally, a

simple one-layer anisotropic dielectric grounded substrate will
be analyzed in order to obtain the nonsingular electrostatic-type
terms in the TEFGD. These terms will be obtained after ex-
panding the TEFGD into a series of powers of the frequency.
As it will be explained, they can become as relevant as the sin-
gular ones in this practical structure.

A. Spectral TEFGD

To compute the spectral TEFGD for uniaxial substrates with
the optical axis normal to the interface, it is convenient to use
polar spectral variables and

(4)

where and are the spectral variables for the Fourier trans-
forms along and directions respectively. Thus, the spectral
TEFGD can be conveniently written as

(5)

where and are radial spectral functions which,
after some algebra, can be computed starting from any of the
algorithms above mentioned. (In the following, the spectral/spa-
tial nature of the different quantities will be apparent looking at
the corresponding variables.)

A formal expression for the corresponding spatial Greens’s
dyadic can be now written as the inverse transform of (5), that
is

(6)

where and

(7)

stands for the inverse Fourier–Bessel transform of integer order
.
Considering now the following identity:

(8)

the spatial TEFGD can be written as

(9)

It is interesting to point out that the TEFGD has been expressed
in terms of two 1-D Sommerfeld-type integrals of two scalar
functions. Similarly, the application of the MPIE formulation
also involves two 1-D Sommerfeld-type integrals of two scalar
functions. In this way and after a proper treatment of the sin-
gularities in the EFIE, the final computational effort becomes
quite similar in both schemes.

B. Spatial Expressions for the Singular Terms of the TEFGD

As is well known, the asymptotic behavior of the spectral
TEFGD for ( is the free-space wavenumber) is as-
sociated with the inverse Fourier–Bessel transform of the elec-
tric-field nearthe dipole source (that is, for , where is
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the free-space wavelength). Thus, the singular terms in the spa-
tial TEFGD (i.e., the spectral dominant terms in the asymptotic
limit) are only related to the layer that the conductor is printed
on, namely, the upper one. In this sense, the singular terms in
the spatial TEFDG can be obtained from the specific expres-
sion of the TEFGD for a single layer structure with the same di-
electric properties as the upper layer in the original layered sub-
strate. For this simple case, and assuming that the single layer
is grounded (this particular structure will be considered later in
Section IV because of its practical interest), the expression for

and is found to be

(10)

(11)

where

(12)

(13)

(14)

(15)

with being the layer height. The asymptotic behavior of
can be now obtained by expanding functions

and into a series of powers with . This
expansion is carried out after assuming that the hyperbolic
functions in (12) and (13) have reached its asymptotic values
( ). This assumption has no effect on the singular
behavior of the spatial functions for since the hyper-
bolic functions in (10) and (11) just account for the presence of
the ground plane and it is expected that the ground plane will
not affect the singular behavior of the field.

After some algebra, the dominant terms in the asymptotic ex-
pansion of and accounting for the singular spatial
behavior of the TEFGD are found to be

(16)

(17)

where

(18)

(19)

The subscript “eff” in (18) stands foreffective, since cor-
responds to the effective relative permittivity appearing in the
computation of the electric field (or potential) on the substrate
under electrostatic conditions.

The corresponding spatial expression of the asymptotic ra-
dial functions (16) and (17) are now obtained as the following
inverse Fourier–Bessel transforms:

(20)

(21)

Substituting (20) and (21) into (9) and after straightforward ma-
nipulations, the spatial expression for the singular part in the
TEFGD can be expressed as

(22)

where

(23)

(24)

The complete spatial TEFGD can be then decomposed as fol-
lows:

(25)

where stands for the regular part of the spatial TEFGD.
This regular part can be readily computed by numerically re-
versing to the spatial domain the spectral functions

and for a few values of the polar dis-
tance and then properly interpolating to get an accurate ap-
proximation for any value of . In practice, the values obtained
for are stored for further analysis of different devices
built on the same substrate and operating at the same frequency.

Finally, it is interesting to mention that the expressions for
the singular terms in the TEGFD (23) and (24) apply for any
multilayered substrate with no restriction about the electric or
magnetic properties of its layers except for the upper one, which
must be an uniaxial anisotropic dielectric with the optical axis
normal to the interface.

III. SCATTERED ELECTRIC FIELD DUE TO THE SINGULAR

TERMS IN TEFGD

Once the exact expression for the singular terms in the
TEFGD have been obtained, this section will focus on the
computation of the scattered transverse electric field due to
these singular terms. First, the complete scattered transverse
electric field will be split into two parts: one related to the
singular terms in the TEFGD and the other to the regular terms
in the TEFGD. Next, and fundamental for further analysis
and computation of reaction-type integrals, a simple treatment
will show that the contribution to the transverse electric field
associated with the singularity in the TEFGD can be
conveniently expressed as a convergent integral.

Using the decomposition (25) for the TEFGD, the complete
scattered transverse electric field will be written as

(26)
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where

(27)

(28)

and

(29)

The indexes ( 1) and ( 3) do not mean that the corresponding
fields are singular with this radial dependence. They simply
stand for the term of the TEFGD that they come from. In fact,
the electric field created by a surface current density is regular
at any point.

Next, the two terms contributing to the electric field related to
the singular terms of the TEFGD will be discussed. Both its nu-
merical computation and its physical meaning will be analyzed
in detail.

A. Electric Field

The integrand in (27) has a singularity for . How-
ever, provided is a continuous function [as is expected to
occur if is a physically valid current density], this improper
integral converges. Thus, the practical computation of (27) does
not pose any particular numerical problem.

With respect to the physical meaning of this field, it should
be noticed that (27) only provides thetransversecomponent of
the complete electric field. Nevertheless, only a qual-
itative description of its nature will be carried out since a com-
plete discussion would require to know the whole expression of

in order to obtain the sources of this field. Following a
physical rationale, thesolenoidalpart of can be asso-
ciated with the time variations of the near magnetic flux density
field (a Biot–Savart type field). This magnetic field is
due to the surface currents on the conductors and the displace-
ment currents associated with the electrostatic-type electric field

[the electrostatic-type nature of will be ex-
plicitly shown later]. Analogously, theirrotational part can be
related to the surface polarization charge on the substrate in-
terface [note that in Electrostatics, namely, if

]. This surface polarization charge gives rise to the dis-
continuity of the component of normal to the inter-
face; it is worth to mention that, obviously, this surface polariza-
tion charge does not appear ifis embedded in an homogenous
layer.

B. Electric Field

The integrand of the contribution (28) to the complete trans-
verse electric field involves a singularity, which, in prin-
ciple, causes this improper integral not to converge (at least in
the classical sense). Thus, expression (28) should be rather con-
sidered as a symbolic expression for . Whenvolumecur-
rent densities are present, the singularity can be treated
by using the method of circumvent integrating over the singu-
larity, that is, excluding the volume surrounding the singularity,

the so-calledexclusion volume. The contribution of this exclu-
sion volume is then accounted for by an appropriate dyadic [9].
Nevertheless, to the authors’ knowledge, this technique has not
been extended to deal with surface current densities as those
appearing in the present analysis. Thus, a different technique to
treat the singularity of (28) will be proposed. This tech-
nique is based on the formal equivalence of (28) to an electro-
static problem. More specifically, the dyadic in the integrand
of (28) can be recognized as that corresponding to the electro-
static field produced by an elementary dipole in an homoge-
neous medium of relative permittivity [10]. Then, expres-
sion (28) is formally equivalent to the expression of the electro-
static field due to a surface dipole distribution whose polariza-
tion, , is given by

(30)

This formal equivalence to an electrostatic problem makes it
possible to express (28) as a convergent improper integral. Thus,
following the usual procedure in electrostatics, can be
expressed in terms of an equivalent linear charge densityand
an equivalent surface charge densityassociated with the sur-
face dipole distribution (30), that is

(31)

where

with being the transverse nabla oper-
ator and the normal vector pointing outward to (see Fig. 1).
Provided that the scattered surface currents (or, equivalently, the
proposed basis functions for the surface currents when a Method
of Moments is employed to solve the problem [11]) have con-
tinuous normal components, no linear charge distribution will
be present in the problem, i.e., . In consequence, the
electric field accounting for the -type singularity can be fi-
nally written as

(32)

namely, is a purely irrotational field that can be obtained
as the transverse gradient of a scalar potential, , given by

(33)

After the application of the transformation in the previous
equation, the contribution to the complete transverse electric
field coming from the singular terms in the TEFGD have
been expressed as integrals that only involve -type singular-
ities. In this sense, the treatment reported here for the singulari-
ties of the TEFGD has overcome the major disadvantage usually
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related to the use of the EFIE method. Thus, the EFIE shows a
well-conditioned numerical behavior very similar to that found
when using an MPIE-based technique. It is interesting to point
out that the potential technique has been only applied to account
for the hypersingular contribution to the electric field, whereas
the remaining parts are expressed in terms of the TEFGD, that
is

(34)

In light of this equation, the present analysis could be interpreted
as a hybrid EFIE/MPIE formulation.

Finally, it should be mentioned that a similar treatment of the
-type singularity was reported by Bressan and Conciauro

in [12] to deal withvolumecurrents in a homogeneous isotropic
medium. In such homogeneous cases, accounts for the
completecontribution to the irrotational part of the electric field
due to the singular terms in the Green’s dyadic. However, in
non homogeneous structures as those considered in this work,
the already mentioned polarizationsurfacecharge density at the
dielectric interface for [i.e., the scalar sources of ]
appears as an additional source of the complete irrotational part
of the electric field due to the singular terms in TEFGD.

IV. ELECTROSTATIC-TYPE NONSINGULAR TERMS IN TEFGD

Although the contribution to the electric field due to the sin-
gular terms in the TEFGD is the most relevant one at short
distances to the source, there are many practical structures in
which other terms can be similarly meaningful. This situation is
found, for example, in a single layer grounded substrate whose
height is significantly smaller than the free-space wavelength

. In such structure it is found that the contribution to the reg-
ular transverse electric field coming from the nonsingular
electrostatic-typeterms involved in the TEFGD can be as rele-
vant as the field. This section will focus on the study
of the aforementioned nonsingular electrostatic-type terms for
this particular and practical structure. As in previous sections,
the layer is assumed to be dielectric either isotropic or uniaxial
anisotropic with its optical axis directed normal to the interface.

Assuming that these nonsingular electrostatic-type terms in
the TEFGD come from the infinite electrostatic images of an
elementary dipole placed at the dielectric/air interface, the sub-
sequent image terms will show a dependence of the type

, where is the corresponding vertical dis-
tance of the considered image with respect to the interface (the
specific values of will be found later). Due to the fast
decay of these terms as increases, it is reasonable to expect
their contribution to to be significant only if the typical
linear dimension of the metallized surface is small compared
with (the remaining nonsingular nonelectrostatic terms are
only expected to be more relevant than the electrostatic terms at
distances ).

In the forthcoming analysis, the most relevant nonsingular
terms in TEFGD will be obtained by expanding the TEFGD

in terms of a series of the operating frequency. This expan-
sion will also give the singular terms already obtained in a sim-
pler way in Section II-B. The frequency expansion would then
provide an alternative approach to obtain the singular and other
representative terms in the TEFGD. The obtaining of all these
terms and their corresponding analytical preprocessing can be
very useful for the efficient computation of the reaction inte-
grals involving .

Looking at expressions (10) and (11) for the radial spectral
functions, it can be observed that both and
are odd functions of the variable. Therefore, they can be ex-
panded into series of odd powers ofas follows:

(35)

(36)

where the dominant terms are found to be

(37)

(38)

(39)

with

(40)

(41)

(subscript “eq” stands forequivalent). The introduction of the
equivalent permittivity and height formally reduces the compu-
tation of either or for the possible anisotropic
uniaxial problem to a simpler isotropic problem [note that for
an isotropic substrate of relative permittivity, it is found from
(40) and (41) that and ].

As is apparent in light of expansions (35) and (36),
the and terms account for the
electrostatic-type contribution, since the remaining terms
vanish as . Then, the electrostatic-type part in
the TEFGD, , can be readily obtained by taking

in (9), that is

(42)
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In order to perform the inverse Fourier–Bessel transformation
in (42), it is convenient to write previously as the fol-
lowing series of exponential functions of:

(43)

where . Now substituting (43) into (42) and after
taking the term by term inverse Fourier–Bessel transformation,

can be finally written as

(44)

where

(45)

(46)

The first zero-order term in (45) is recognized as the
singular term previously found in (23), that is,

. Therefore, as it was explained in
Section III, this singular term can be seen as the Green’s dyadic
associated with the transverse electrostatic field due to an
elementary dipole in an homogeneous isotropic medium whose
polarization is . The remaining
nonsingular electrostatic-type terms, (46), can be seen as the
Green’s dyadics related to the transverse electric field due to
the infinite electrostatic image dipole distributions of
the source dipole distribution

(47)

Unlike the hypersingular dyadic, the dyadic terms in
(46) are regular. Thus, their contribution to the transverse elec-
tric field, which can be expressed as

(48)

can be directly obtained by numerically computing the integrals
appearing in (46).

Taking into account the term-by-term relationship between
expressions (46) and (47), it is possible to find an alternative

way of expressing in terms of electrostatic-type poten-
tials due to the image series of the equivalent surface dipole dis-
tribution (30), as it was made in (32) for the hypersingular case.
Thus, each term of can be written as

(49)

that is, as the transverse gradient of the following scalar poten-
tial:

(50)

where

(51)

and

(52)

The previous expansion of in terms of the transverse
gradient of certain scalar potentials could be very useful when
computing the reaction integrals appearing in the application
of the method of moments (MoM). Following the usual treat-
ment reported in the literature [12], [11], the use of the reported
decomposition together with its analytical preprocessing would
allow to obtain possible closed form expressions for the corre-
sponding reaction integrals.

Finally, it will be briefly considered the nonelectrostatic
dominant terms at low frequencies in expansions (35) and (36),
namely and . Expanding the hyperbolic functions
in (38) and (39) into exponential terms, it can be written that

exponential terms involving (53)

exponential terms involving (54)

Now recognizing the -independent terms in the previous ex-
pressions as the -terms in expressions (16) and (17), the
spatial expression for in (24) can be again obtained
after performing inverse transforms. It is interesting to note that
the results obtained in the present section related to the singular
terms in the TEFGD plainly justify the approximation assumed
in Section II-B [i.e., ] to compute these terms. Con-
cerning the remaining nonsingular-dependent terms in (53)
and (54), it should be mentioned that, to the authors’ knowledge,
their spatial counterpart cannot be expressed in closed form
by analytically performing the corresponding Fourier–Bessel
transform. Thus, considering that in most cases these terms are
less relevant than the singular terms or than the nonsingular elec-
trostatic ones, they have not been extracted out explicitly.
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V. CONCLUSION

Some important details concerning the application of the
EFIE to the computation of the current density scattered by
printed perfect conductors on iso/anisotropic uniaxial dielectric
multilayered substrates have been examined. The singular con-
tributions to the transverse electric field Green’s dyadic have
been identified and extracted out from the complete dyadic.
It has been shown that the major drawback of the application
of EFIE to the aforementioned type of problems, namely, the
existence of a hypersingularity in the TEFGD, can be
overcome by means of a suitable analytical treatment. This
treatment is based on Fourier–Bessel inverse transformation
of the asymptotic behavior of the spectral Green’s function.
By exploiting a certain formal equivalence with an electro-
static-type problem, the original EFIE is modified in such a
way that the new integral equation only involves a kernel with

-type singularities. Although singular terms are dominant
at very short distances to the source point, non singular electro-
static-type terms in the TEFGD can become significant under
certain conditions (namely, when , with being the
height of the upper layer). For this reason, these terms have
been also recognized in the spatial domain and extracted out
for a simple, although practical, one layer structure.
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