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1 Introduction

The past few years have witnessed an explosion of interest in discrete mod-
els and intrinsic localized modes (discrete breathers or solitons) that has been
summarized in a number of recent reviews [1]. This growth has been motivated
by numerous applications of nonlinear dynamical lattice models in areas as
broad and diverse as the nonlinear optics of waveguide arrays [2], the dynam-
ics of Bose-Einstein condensates in periodic potentials [3], micro-mechanical
models of cantilever arrays [4], or even simple models of the complex dynamics
of the DNA double strand [5]. Arguably, the most prototypical model among
the ones that emerge in these settings is the Discrete Nonlinear Schrödinger
(DNLS) equation, the main topic of this book.

While DNLS combines two important features of many physical lattice
systems, namely nonlinearity and periodicity, yet another element which is
often physically relevant and rather ubiquitous is disorder. Localized impuri-
ties are well-known in a variety of settings to introduce not only interesting
wave scattering phenomena [6], but also to create the possibility for the ex-
citation of impurity modes, which are spatially localized oscillatory states at
the impurity sites [7]. Physical applications of such phenomena arise, e.g., in
superconductors [8], in the dynamics of the electron-phonon interactions [9],
in the propagation of light in dielectric super-lattices with embedded defect
layers [10] or in defect modes arising in photonic crystals [11].

In the context of the DNLS, there has been a number of interesting studies
in connection to the interplay of the localized modes with impurities. Some of
the initial works were either at a quasi-continuum limit (where a variational
approximation could also be implemented to examine this interplay) [12] or
at a more discrete level but with an impurity in the coupling [13] (see also
in the latter setting the more recent studies of a waveguide bend [14, 15] and
the boundary defect case of Ref. [16]). More recently the experimental inves-
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tigations of Refs. [17, 18] motivated the examinations of linear and nonlinear
defects in a DNLS context [19, 20, 21].

The aim of the present chapter is to summarize the properties of the focus-
ing DNLS equation in the presence of a linear impurity, as shown previously
in [22]. Our first aim is to present the full bifurcation diagram of the station-
ary localized modes in the presence of the impurity and how it is drastically
modified in comparison to the case of the homogeneous lattice. The rele-
vant bifurcations are quantified whenever possible even analytically, in good
agreement with our full numerical computations. A second aim is to show
the outcome of the interaction of an incoming solitary wave with the linear
impurity.

The DNLS equation with the defect can be written as,

iu̇n + γ|un|2un + ε(un+1 + un−1) + αnun = 0, (n = 1 . . . N) (1)

αn allow for the existence of local, linear inhomogeneities. Hereafter, we con-
sider a single point defect, thus αn = αδn,0, that can be positive (attractive
impurity) or negative (repulsive impurity). In general, the presence of an on–
site defect would affect the nearest neighbor coupling, and Eq. (1) should be
modified to take this effect into account, as in Ref. [23]. This inhomogeneity in
the coupling, however, can be avoided using different techniques, for example,
in nonlinear waveguide arrays, changing slightly the separation between the
defect waveguide and its nearest neighbors, as in the case of Ref. [24]. We
will assume here that the coupling parameter ε is independent of the site and
positive.

Note that the defocusing case can be reduced, under the staggering trans-
formation un → (−1)nun, to the previous one with opposite sign of the impu-
rity α. Also, under the transformation un → une2iεt, Eq. (1) can be written
in the standard form

iu̇n + |un|2un + C∆un + αnun = 0, (2)

In what follows, we use the form given by Eq. (1).

2 Stationary solutions

In this part, we look for stationary solutions with frequency Λ, un(t) = eiΛtvn

and the stationary analog of Eq. (1) then reads

−Λun + ε(un+1 + un−1) + u3
n + αnun = 0. (3)

2.1 Linear modes

Some of the properties of solitons are related to the characteristics of linear
localized modes. These modes arise when an inhomogeneity appears and can
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be obtained from the linearized form (around the trivial solution un = 0, ∀ n)
of Eq. (3). In this case, and considering an inhomogeneity located at the first
site of the chain and with periodic boundary conditions, the problem reduces
to solving the eigenvalue problem
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that is a particular case of the eigenvalue problem studied in Ref. [25]. There
it was shown that, if α 6= 0, the solution corresponds to N−1 extended modes
and an impurity localized mode. Also, if N becomes large, the frequencies of
extended modes are densely distributed in the interval Λ ∈ [−2ε, 2ε] and the
localized mode can be approximated by

vn = snv0

[( α

2ε
+ β

)−n

+ sN
( α

2ε
+ β

)n−N
]

, Λ = 2sεβ, β ≡
√

α2

4ε2
+ 1

(5)
with s = sign(α) and v0 is an arbitrary constant. Note that for α > 0 (α < 0)
the localized mode has an in-phase (staggered) pattern. In Fig. 1 we depict
the linear mode spectrum as a function of the inhomogeneity parameter α
and examples of the profiles of the ensuing localized modes.
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Fig. 1. (a) Linear modes spectrum as function of impurity parameter α. Periodic
boundary conditions are considered. (b) Examples of the profiles of the impurity
modes. The impurity is located at n = 0. (Left) profile for α = −1; (right) profile
for α = 1. In all cases N = 200 and ε = 1.
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2.2 Bifurcations

In order to explore the existence and stability of the nonlinear stationary
states described by Eq. (3), we have used the well-known technique based
on the concept of continuation from the anti-continuum (AC) limit using a
Newton-Raphson algorithm. Also, a standard linear stability analysis of these
stationary states has been performed.

In the homogeneous lattice case of α = 0, fundamental stationary modes
are well known to exist and be centered either on a lattice site or between
two adjacent lattice sites. The site-centered solitary waves are always stable,
while the inter-site centered ones are always unstable [26].
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Fig. 2. Bifurcation diagram of stable (solid line) and unstable (dashed line) non-
linear modes. Shown is the power P as a function of the impurity parameter α. In
all cases N = 100 and Λ = 2.5. The branch designation is as follows: (A) Unsta-
ble soliton centered at the impurity (n = 0), (B) stable on-site soliton centered at
n = 0, (C) Unstable inter-site soliton centered at n = 0.5, (D) stable on-site soliton
at n = 1, (E) unstable inter-site soliton at n = 1.5, (F) stable on-site soliton at
n = 2, (G) unstable inter-site soliton at n = 2.5, and (H) stable on-site soliton at
n = 3. The stable on-site mode located at the impurity, in the homogeneous case
(α = 0), disappears for a coupling value of ε ' 1.25 due to resonances with the
phonon band.

In order to study the effects of the inhomogeneity on the existence and
properties of localized modes, we have performed a continuation from the
homogeneous lattice case of α = 0. We found that, if α increases, (α > 0,
attractive impurity case), the amplitude of the stable on-site mode decreases,
while if α decreases (α < 0, repulsive impurity case), in general, the stable
on-site soliton localized at the impurity merges with the unstable inter-site
centered one localized between the impurity and its neighboring site (beyond
some critical value of |α|) and the resulting state becomes unstable. Notice
that, at heart, the latter effect is a pitchfork bifurcation as the on-site mode
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collides with both the inter-site mode centered to its right, as well as with the
one centered to its left.

In Fig. 2 we show a typical bifurcation scenario where, for fixed values
of Λ and ε, we depict the mode power P corresponding to different on-site
and inter-site localized modes as a function of impurity parameter α. If we
denote as n0 the site of the impurity, when α > 0 increases, we found that
the unstable intersite soliton localized at n = 0.5 disappears in a saddle-
node bifurcation with the stable on-site soliton localized at n = 1. Also,
if we continue this stable mode, when α decreases, and for a given value
α = αc < 0, it also disappears together with the unstable mode localized at
n = 1.5 through a saddle-node bifurcation. If we increase again the impurity
parameter, this unstable mode localized at n = 1.5 bifurcates with the stable
site mode localized at n = 2 for a critical value of parameter α = α′c > 0
through a saddle-node bifurcation again, and it could be possible to continue
this bifurcation pattern until a site k, where the value of site k increases with
the value of ε and Λ parameters. This scenario is similar to the one found in
previous studies with different kinds of impurities [14, 20] and appears to be
quite general. It should be noted that when the coupling parameter increases,
more bifurcations take place, in a narrower interval of power P and impurity
parameter α values.

Some of the particularly interesting experimentally tractable suggestions
that this bifurcation picture brings forward are the following:

• A localized mode centered at the impurity may be impossible for suf-
ficiently large attractive impurities (because the amplitude of the mode
may decrease to zero), while it may be impossible to observe also in the
defocusing case due to the instability induced by the pitchfork bifurcation
with its neighboring inter-site configurations.

• A localized on–site mode centered at the neighborhood of the impurity
should not be possible to localize for sufficiently large impurity strength
both in the attractive and in the repulsive impurity case.

2.3 Invariant manifold approximation

This subsection shows a more detailed study of the bifurcation between the
on-site nonlinear mode centered at the impurity and its inter-site and one-site
neighbor. From the discussion of the previous section we can determine for
a given value of the coupling parameter ε, the corresponding critical value of
impurity parameter α = αc. Note that this bifurcation takes place only if α
is negative (repulsive impurity). In case of α positive (attractive impurity),
the inter-site solution disappears in a saddle-node bifurcation with the on-site
wave centered at the site next to the impurity at α = α′c. In these cases, via an
analysis of invariant manifolds of the DNLS map, and following the method
developed in Section 4.1.4 of Ref. [27], some approximate analytical expres-
sions corresponding to this bifurcation point can be obtained. This method is
sketched below.
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The difference equation (3), for α = 0, can be recast as a two-dimensional
real map by defining yn = vn and xn = vn−1 [28]:

{
xn+1 = yn

yn+1 = (Λyn − y3
n)/ε− xn.

(6)

For Λ > 2, the origin xn = yn = 0 is hyperbolic and a saddle point. Conse-
quently, there exists a one-dimensional stable (W s(0)) and a one-dimensional
unstable (Wu(0)) manifolds emanating from the origin in two directions given
by y = λ±x, with

λ± =
Λ±√Λ2 − 4ε2

2ε
. (7)

These manifolds intersect in general transversally, yielding the existence
of an infinity of homoclinic orbits. Each of their intersections corresponds to
a localized solution. Fundamental solitons (i.e. on-site and inter-site solitons),
correspond to the primary intersection points, i.e. those emanating from the
first homoclinic windings. Each intersection point defines an initial condition
(x0, y0), that is, (v−1, v0), and the rest of the points composing the soliton
are determined by application of the map (6) and its inverse. Fig. 3 shows an
example of the first windings of the manifolds. Intersections corresponding to
fundamental solitons are labeled as follows: (1) is the on-site soliton centred
at n = 0, (2) is the inter-site soliton centred at n = 0.5 and (3) is the on-site
soliton centred at n = 1.
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Fig. 3. First winding of the homoclinic tangle of the map (6). Dashed line corre-
sponds to the linear transformed unstable manifold when α = 0. Labels 1, 2, 3 (1′,
2′, 3′) corresponds to fundamental solitons for α = 0 (α 6= 0).

The effect of the inhomogeneity is introduced as a linear transformation
of the unstable manifold A(α)Wu(0) with A(α) given by:
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A(α) =

[
1 0

−α/C 1

]
(8)

When α > 0, the unstable manifold moves downwards, changing the inter-
sections between the transformed unstable manifold and the stable manifold
to points 1′, 2′ and 3′ (see Fig. 3). For α = αc, both manifolds become tan-
gent. Thus, for α > α′c intersections 3′ and 2′ are lost, that is, for α = α′c the
breathers centred at n = 1 and n = 0.5 experience a tangent bifurcation. On
the contrary, if α < 0, intersections 1′ and 2′ are lost when |α| > |αc|, leading
to a bifurcation between the breathers centered at n = 0.5 and n = 0.

A method for estimating αc(Λ) and α′c(Λ) is based on a simple approx-
imation of Wu(0). Let us consider a cubic approximation Wu

app of the local
unstable manifold of Fig. 3, parametrized by y = λx−c2 x3, with λ ≡ λ+. The
coefficient c depends on Λ and C and need not be specified in what follows (a
value of c suitable when λ is large is computed in Ref. [29]). We have

y = λ0x− c2 x3 (9)

on the curve A(α)Wu
app, where λ0 = λ− α/C. By symmetry we can approxi-

mate the local stable manifold using the curve W s
app parametrized by

x = λ y − c2 y3. (10)

The curves A(α)Wu
app and W s

app become tangent at (x, y) when in addition

(λ− 3c2 x2)(λ0 − 3c2 y2) = 1. (11)

In order to compute αc and α′c as a function of Λ, or, equivalently, the
corresponding value of λ0 as a function of λ, one has to solve the nonlinear
system (9)– (11) with respect to x, y, λ0, which yields a solution depending
on λ. Instead of using λ it is practical to parametrize the solutions by t = y/x.
This yields

x =
1

c
√

2
(t+

1
t3

)1/2, y =
t

c
√

2
(t+

1
t3

)1/2; λ0 =
3
2
t+

1
2t3

, λ =
3
2t

+
1
2

t3.

Since λ + λ−1 = Λ/ε it follows that

t4 − 2λt + 3 = 0, (12)

α =
ε

2
(t− 1

t
)3. (13)

As this system of equations has two real positive solutions, given a value of
Λ, one can approximate αc and α′c by the values of α given by equations
(12)–(13). Despite the fact that it gives precise numerical results in a certain
parameter range, the approximation (12)–(13) is not always valid. Indeed, the
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parameter regime Λ < 5ε/2 is not described within this approximation (see
[29]).

Fig. 4 shows the comparison between the exact numerical and the approx-
imate analytical results. For a fixed value of the coupling parameter ε, the
critical value of the frequency increases with |α|.
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Fig. 4. Bifurcation loci corresponding to the bifurcation between the on-site local-
ized mode at the impurity (n = 0) and its neighbor inter-site breather (n = 0.5)
(left panel), and to the bifurcation between the on-site localized mode next to the
impurity (n = 1) and its neighbor inter-site breather (n = 0.5) (right panel), for
different values of parameter ε. Dashed lines correspond to numerical results and
continuous lines to approximate analytical calculations.

3 Interaction of a moving soliton with a single impurity

Early studies of the DNLS had shown that discrete solitary waves in the
DNLS can propagate along the lattice with a relatively small loss of energy
[30], and more recent work suggests that such (almost freely) propagating
solutions might exist, at least for some range of control parameters [31, 32, 33];
nevertheless, genuinely traveling single-hump solitary wave solutions are not
present in the DNLS, but only in variants of that model such as the ones with
saturable nonlinearity [34].

In this section we deal with the interaction of propagating (with only
weak radiative losses) localized modes with the impurity. Thus, we consider a
nonlinear localized mode, far enough from the impurity, of frequency Λ, and
perturb it by adding a thrust q to a stationary breather vn [35], so that:

un(t = 0) = vneiqn. (14)

This is similar in spirit to the examination of Ref. [19], although we presently
examine both attractive and repulsive impurities. In what follows, Λ = 2.5
and ε = 1; a similar scenario emerges for other values of Λ.
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In general, if q is large enough, the soliton moves with a small loss of
radiation. We have calculated, as a function of parameters q and α, the power
and energy that remains trapped by the impurity, reflected and transmitted
along the chain, and determined the corresponding coefficients of trapping,
reflection and transmission, defined as the corresponding fraction of power
(energy). Fig. 5 summarizes the relevant numerical results.
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Fig. 5. Power trapping (left), reflection (center) and transmission (right) coefficients
as function of impurity parameter α and initial thrust q. In all cases ε = 1.

We can essentially distinguish four fundamental regimes:

(a) Trapping. If parameters q and α are small enough, and the impurity is
attractive, nearly all the energy remains trapped at the impurity, and only
a small fraction of energy is lost by means of phonon radiation. An example
of this phenomenon is shown in Fig. 6 (left). In this case, the central power
(power around the impurity) before the collision is nearly zero. When the
localized mode reaches the impurity, the former loses power as phonon
radiation and remains trapped. The analysis of the Fourier spectrum of this
trapped breather, carried out after the initial decay and at an early stage
of the evolution, shows a frequency close to the initial soliton frequency, as
shown in Fig. 6 (right). We have observed that, in general, this frequency is
slightly smaller than that of the incident soliton, and, in consequence, it has
even smaller energy (in absolute value) and power than the corresponding
nonlinear mode with the frequency of incident soliton. In this particular
case, corresponding to q = 0.3 and α = 0.2, the initial incident wave
(after perturbation) has power P = 2.61 and energy E = −5.40 and the
stationary mode, trapped at the impurity, with the same frequency, has
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P = 2.17 and E = −4.73. Thus, the incident breather can activate this
nonlinear mode, and nearly all energy and norm remains trapped.
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Fig. 6. Trapping: Contour plot corresponding to the power of the soliton P as
function of site n and time t (left panel) and Fourier power spectrum of the trapped
soliton calculated soon after the collision (right panel). The parameters are α = 0.2,
q = 0.3, Λ = 2.5, ε = 1 and the impurity is located at n = 0.

(b)Trapping and reflection. If the impurity is attractive, but strong enough,
some fraction of energy remains trapped by the impurity, but a consider-
able amount of it is reflected. The reflected excitation remains localized.
This case is similar to the previous one, but now the incident traveling
structure has enough energy and norm to excite a stationary mode cen-
tered at the impurity, remaining localized and giving rise to a reflected
pulse. A typical case is shown in Fig. 7, that corresponds to q = 0.6 and
α = 1.0. The incident wave has power and energy P = 2.61 and E = −4.79,
and the stationary nonlinear mode centered at the impurity, with the same
frequency, P = 0.76 and E = −1.79. When the incident breather reaches
the impurity, it excites the nonlinear mode, and, after losing some power,
part of it remains localized, and another part is reflected. Also, in our
numerical simulations, we have detected, as in the previous case, that the
frequency of the remaining trapped mode is slightly lower than that the
incident breather, so it has even smaller power than the corresponding
nonlinear mode with the frequency of incident soliton.
In general, we have found that a necessary condition to trap energy and
power by the impurity is the existence of a nonlinear localized mode cen-
tered at the impurity, with similar frequency, and energy (in absolute
value) and power smaller than that of the corresponding incident soliton.

(c) Reflection with no trapping. Here, we have to distinguish two cases. If the
impurity is repulsive, and q small enough, neither trapping, nor trans-
mission occur. Instead, all energy is reflected, and the traveling nonlinear
excitation remains localized. In this case, as shown in Fig. 8 (left), the
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Fig. 7. Trapping and reflection: Contour plot corresponding to the power of soliton
P as a function of site n and time t (left panel) and Fourier power spectrum of the
trapped soliton calculated soon after the collision (right panel). The parameters are
α = 1.0, q = 0.6, Λ = 2.5, ε = 1 and the impurity is located at n = 0.
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Fig. 8. Reflection with no trapping (left panel) corresponding to parameters
α = −0.5, q = 0.6 and Λ = 2.5 and transmission with no trapping (right panel)
corresponding to parameters α = 0.1, q = 0.7 and Λ = 2.5. In both cases we repre-
sent a contour plot corresponding to the power of the soliton P as function of site
n and time t, ε = 1 and the impurity is located at n = 0.

incident wave has no energy and power to excite the localized mode. In a
typical case, i.e., Λ = 2.5, q = 0.6 and α = −0.5, the incident soliton has
energy and power E = −4.79 and P = 2.61, and the nonlinear localized
mode on the impurity with the same frequency E = −8.038 and P = 3.77.
No trapping phenomenon occurs, and the pulse is reflected.
On the other hand, if the impurity is attractive and strong enough, i.e.,
q = 0.7, Λ = 2.5 and α = 2.0, the frequency of the soliton is smaller than
the one corresponding to the linear impurity mode (ΛL ' 2.82), and all the
energy is reflected. This is in accordance with the necessity of a nonlinear
localized mode at the impurity site in order for the trapping to occur.
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Fig. 9. Contour plot of the phenomenon of reflection of a soliton corresponding
to thrust parameter q = 0.6 (left panel). Potential barrier calculated as described
in text (right panel). In both cases α = −0.2, ε = 1, Λ = 2.5 and the impurity is
located at n = 0.

(d)Transmission with no trapping. If |α| is small enough, and q high enough,
transmission with no trapping occurs, as shown in Fig. 8 (right). There
exists a critical value of q = qc > 0 such that, if q > qc, the incident soliton
crosses through the impurity. The value of qc grows with |α|. In the case
where q < qc, if α < 0, reflection with no trapping occurs, while if α > 0,
trapping with no reflection phenomenon takes place.

Our results related to trapping, reflection and transmission phenomena are
in agreement with some results recently obtained, using a different approach,
in a similar system [19]. In this work, where approximate discrete moving
solitons with fixed amplitude are generated using a continuous approximation,
the authors study the trapping process by a linear and a nonlinear attractive
impurity. In the former framework, trapping can be explained by means of
resonances with the linear localized mode. In our case, where nonlinear effects
become stronger, the phenomena are related to resonances with a nonlinear
localized mode.

Finally, a very interesting phenomenon occurs when the parameter α is
repulsive and small enough (in absolute value). In this case, the solitary wave
can be reflected or transmitted depending on its velocity. Also, when it is
reflected, our numerical tests show that its velocity is similar to its incident
velocity. Thus, if we consider the soliton as a “quasiparticle”, the effect of
the impurity is similar to the effect of a potential barrier. To determine this
potential barrier for a given value of parameter α, we have used a method
similar to the one described by Ref. [36]. We have considered different values of
the thrust parameter q corresponding to the reflection regime, and determine,
for each value, the turning point, X(q). Thus the translational energy of the
barrier for this value of q is defined as the difference between the energy of
the moving soliton and the stationary state of the same frequency far from
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the impurity. It can be written as V (q) = C sin(q/2)|P (q/2)|, with P (q) =
i
∑

n ψ∗nψn+1 − ψ∗nψn−1 being the lattice momentum, as defined in Ref. [37].
Results are shown in Fig. 9, which exhibits, as expected, an irregular shape,
whose origin lies in the nonuniform behavior of the translational velocity due
to the discreteness of the system.

On the other hand, if the parameter α is small enough, and positive (at-
tractive), the solitary wave faces a potential “well” and can be trapped if its
translational energy is small or, if the translational energy is high enough, it
may be transmitted, losing energy that remains trapped by the impurity, and
decreasing its velocity.

To sum up, we have examined in detail for both impurity cases (attractive
and repulsive) the interaction of the impurity with a moving localized mode
initiated away from it. The principal regimes that we have identified as a
function of the impurity strength (and sign) and initial speed are trapping,
partial trapping and partial reflection, pure reflection and pure transmission.
In general, if the impurity is repulsive, and the speed small enough, the wave
is always reflected. If the impurity strength (in absolute value) is small enough
and the speed is high enough, then transmission can take place. On the other
hand, if the impurity is attractive, trapping can occur, and if the speed is high
enough two different effects are observe: for small values of α, transmission
takes place and for high values of α, the trapping is accompanied by a partial
reflection (for intermediate values of α, the trapping is pure). If the impurity is
attractive and sufficiently strong, the frequency of the soliton is smaller than
the one corresponding to the linear localized impurity mode and the wave is
reflected.

The above described scenario is slightly different to the shown in [19],
where small-amplitude solitons are considered. Contrary to the high-amplitude
solitons considered in [22] where the trapping was shown to be originated by
the excitation of a nonlinear localized mode centred at the impurity site, in
[19], the trapping is due to excitations of linear localized modes, as the fre-
quency of small-amplitude solitons are close to the phonon band. Thus, the
scenario observed for attractive impurities is the following: for small impurity
strength, the soliton is transmitted; above a critical value of α, the soliton
is trapped partially, with the reflected fraction increasing with the impurity
strength.

4 Comparison with other related models

The findings herein, while presented for a linear impurity are representative
of other models including DNLS lattices with nonlinear impurities and Klein–
Gordon lattices. We briefly expose hereafter the main similarities and differ-
ences between them.
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4.1 Nonlinear impurities

Stationary solitons with a quintic nonlinear impurity were considered in [20]:

iu̇n + |un|2un + ε(un+1 + un−1 − 2un) + αδn,0|un|4un = 0, (15)

In that work, only attractive impurities were considered. The bifurcation
diagram of solitons close to the impurity site is similar to the one found for
linear impurities (see Fig. 2). By means of a variational approximation the
value of the impurity strength at which the branches corresponding to solitons
centred at n = 0 and n = 0.5 merge. The dependence of this critical value
with the frequency is:

αc(Λ) = −16π4ε3

Λ4
exp

(
−π2

√
ε

Λ

)
. (16)

This dependence was approximated in the linear impurity case by means
of an invariant manifold approximation (see Section 2.3).

The interaction of small-amplitude moving solitons with nonlinear impu-
rities has been briefly considered in [19], where, contrary to (15), a nonlinear
cubic impurity was considered:

iu̇n + (1 + αδn,0)|un|2un + ε(un+1 + un−1) = 0. (17)

The observed scenario for attractive impurities was the following: for small
α, the soliton is transmitted and, above a threshold value, the soliton is
trapped without reflection. If the impurity is increased, the soliton is to-
tally reflected, and, surprisingly, for relatively high values of α, the soliton
is trapped again.

4.2 Comparison with Klein–Gordon breathers

The interaction of moving localized in a Klein–Gordon (KG) chains (called
discrete breathers) with a point inhomogeneity in the substrate potential was
considered in [38]. The model equation is given by:

ün + V ′
n(un) + C(2un − un+1 − un−1) = 0 (18)

with V (un) = (1 + αδn,0)(exp(−un) − 1)2/2 being the Morse substrate po-
tential (for different potentials or kinds of impurities, the reader is referred to
[39]). In this setting, for α > 0 (α < 0) the impurity is repulsive (attractive)
contrary to the DNLS case shown throughtout the present chapter.

The observed regimes for KG breathers are qualitatively equivalent to
those of DNLS solitons. An important analogy in both settings is the necessary
condition for the trapping; i.e. the energy of the moving localized mode must
be higher (in absolute value) than that of the stationary localized mode cen-
tred at the impurity (with the same frequency of the moving soliton/breather).
This result for Klein–Gordon lattices was established in [38, 40].
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It is worth mentioning the study performed in [27] where many existence
conditions are established for stationary Klein-Gordon breathers in inhomo-
geneous lattices based on a centre manifold approach. The latter work also
predicted and illustrated gap breathers, that is breathers whose frequency lies
in the gap left in the phonon band by the linear localized mode when depart
from it. These structures, however, do not exist in DNLS lattices.

5 Summary and future challenges

In the present chapter, the existence and stability of discrete solitons close
to a local inhomogeneity in a 1-D DNLS lattice have been studied. A sys-
tematic study of the interaction of a moving discrete soliton with that local
inhomogeneity has been performed. Finally, a brief comparison of these results
with other related settings, such as DNLS lattices with nonlinear impurities
or Klein–Gordon lattices, was given.

Further development of this direction of research could include the con-
sideration of saturable nonlinearities which can describe nonlinear waveguides
made of photorefractive materials. This kind of nonlinearity may enhance the
mobility of solitary waves in isotropic two-dimensional lattices [41], whereas
moving solitons only can take place in anisotropic 2D lattices for cubic lat-
tices [42]. A similar study to that shown in the present section could be done
in both settings. Another interesting direction could be the inclusion of two
or more local inhomogeneities and the examination of the interplay between
them.
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