
Thing Complex Fuzzy Systems by Supervised Learning Algorithms

F. J. Moreno-Velo, I. Baturone, R. Senhadji, S. Sbnchez-Solano

Instituto de Microelectr6nica de Sevilla (IMSE-CNh4)
Centro Nacional d e Microelectr6nica - CSIC

Avda. Reina Mercedes, s/n. Edif. CICA, E-41012, Sevilla, Spain
xfuzzy-team@ imse.cnm.es

Abstract

Tuning a fuzzy system to meet a given set of inpuffoutput
patterns is usually a difficult task that involves many param-
eters. This paper presents an study of different approaches
that can be applied to perform this tuning process automat-
ically, and describes a CAD tool, named xfsl, which allows
applying a wide set of these approaches: (a) a large number
of supervised learning algorithms; (b) different processes to
simplify the learned system; (c) tuning only specific param-
eters of the system; (d) the ability to tune hierarchical fuzzy
systems, systems with continuous output (like fuzzy con-
troller) as well as with categorical output (like fuzzy classi-
fiers), and even systems that employ user-defined fuzzy
functions; and, finally, (e) the ability to employ this tuning
within the design flow of a fuzzy system, because xfsl is in-
tegrated into the fuzzy system development environment
Xfuzzy 3.0.

1. Introduction

Tuning the system behavior is often one of the most dif-
ficult task in the design flow of a fuzzy system. Much of the
tuning effort is dedicated to search a proper configuration of
the system parameters, because there is usually a large
number of parameters. To confront this task, supervised
learning algorithms are commonly used as automatic tuning
methods. In supervised learning techniques, the desired sys-
tem behavior is described by a set of inpuffoutput patterns
and the objective is to minimize the error between the de-
sired and the current system behavior.

The paper is structured as follows. Section 2 presents the
different error functions that can be employed in supervised
learning. Section 3 describes briefly some families of super-
vised learning algorithms. The problem of tuning under
constraints is addressed in Section 4, while Section 5 sum-
marizes some simplification processes that can be easily
performed after tuning. Most of these possibilities has been
included into a CAD tool, named xfsl, so as to automate the
tuning process of complex fuzzy systems. This tool is brief-

ly described in Section 6. Finally, Section 7 and 8 show sev-
eral examples to illustrate the tuning of systems with either
continuous or categorical outputs.

2. The error function

The first step in elaborating a supervised learning proc-
ess supposes describing system deviation by means of a
function, known as errorfunction. A very commonly used
error function is the mean square error (MSE):

where N is the number of data patterns, M is the number of
output variables in the system, y , is the j-th output generat-
ed by the system for the i-th pattern, j.. is the correct out-
put expressed by the training pattern, and rj is the range of
the j-th output that is used to normalize the deviations.

It can be useful for the designer to select the relative in-
fluence of every output variable on the global deviation
from its intended behavior. The following function can be
used in this case:

V

where wj is the weight of the j-th output variable on the glo-
bal system error. These weights should be normalized so as
to sum 1.

It can be also useful to employ the absolute value instead
of the quadratic error, with the corresponding options of
variable normalization and weight accounting:

The above expressions assume a numerical output from
the fuzzy system. However, it is possible to define fuzzy
systems whose outputs are linguistic labels, as is the case of
classifiers. In these systems, the output value is the linguis-
tic label presenting the highest activation degree as a result
of the inference process. A common definition for the devi-

This work has been padally supported by the Spanish CICYT Project TIC2001-1726.

0-7803-7810-5/03/517.00 W O 0 3 IEEE 226 The IEEE International Conference on Fuzzy Systems

ation in the behavior of this kind of system is the number of
classification errors:

1 1 CE = - . - . z 6. . N M i , II (4)

where Si is 1 when the classification of the pattern has been
incorrect and 0 otherwise. This type of function considers
equally all classification failures, without taking into ac-
count the distance from a correct classification. To consider
this information it is necessary to add a new term like the
following:

A C E = -' Z6..
N M + I i , i rJ (5)

with

where Gj is the activation degree of the correct label, and
ai is the activation degree of the label selected by the sys-
tem.

Another way of taking into account the distances from
right classifications is to consider the following classifica-
tion square error, which is a differentiable function:

with 1 i f y . . = j . .
0 'I

0 i f y . . t j . . { 'J [J

p.. =

The choice of an adequate error function for the learning
process depends both on the type of fuzzy system to be
tuned and on the algorithm selected for performing the
process. For example, if the learning algorithm belongs to
the family of gradient descent algorithms, the error function
must be derivable, so that the classification errors CE and
ACE can not be used.

3. Supervised learning algorithms

Since the objective of supervised learning algorithms is
to minimize an error function, they can be considered as al-
gorithms for function optimization. Some supervised learn-
ing algorithms that can be used to tune fuzzy systems are
briefly described in the following.

3.1. Gradient descent algorithms
The equivalence between fuzzy and neural networks led

to apply the neural learning processes to fuzzy inference
systems. In this sense, a well-known algorithm employed in
fuzzy systems is the BackPropagation algorithm, which

modifies the parameter values proportionally to the gradient
of the error function in order to reach a local minimum.
Since the convergence speed of this algorithm is slow, sev-
eral modifications were proposed like using a different
learning rate for each parameter or adapting heuristically
the control variables of the algorithm, thus leading to Back-
Propagation with Momentum, Adaptive Learning Rate,
Adaptive Step Size or Manhattan algorithms. An interesting
modification that improves greatly the convergence speed is
to take into account the gradient value of two successive it-
erations. This idea is followed by the algorithms Quickprop
and RProp [l].

3.2. Conjugate gradient algorithms
Since the gradient indicates the direction of maximum

function variation, it may be convenient to generate not only
one step but several steps which minimize the function error
in that direction. This idea, which is the basis of the'steep-
est-descent algorithm, has the drawback of producing a zig-
zag advancing because the optimization in one direction
may deteriorate previous optimizations. The solution is to
advance by conjugate directions that do not interfere each
other. The several conjugate gradient algorithms reported in
the literature (like Polak-Ribiere, Fletcher-Reeves,
Hestenes-Stiefel, and One-step Secant) differ in the equa-
tions used to generate the conjugate directions. The main
drawback of the conjugate gradient algorithms is the imple-
mentation of a linear search in each direction, which may be
costly in terms of function evaluations. The line search can
be avoided by using second-order information, as done by
the scaled conjugate gradient [2] .

3.3. Second-order algorithms
A forward step towards speeding up the convergence of

learning algorithms is to make use of second-order informa-
tion of the error function. Since the calculus of the second
derivatives is complex, one solution is to approximate the
Hessian by means of the gradient values of successive iter-
ations. This is the idea of the algorithms of Broyden-Fletch-
er-Golds@-Shanno and Davidon-Fletcher-Powell [3]. An
special case is when the function to minimize is a quadratic
error because, in this case, the Hessian can be approximated
by only the first derivatives of the error function, as done by
the Gauss-Newton algorithm. Since this algorithm can lead
to instability when the approximated Hessian is not defined
positive, the Marquardt-Levenberg algorithm solves this
problem by introducing an adaptive term.

3.4. Algorithms without derivatives
The gradient of the error function can not be always cal-

culated because it can be too costly or not defined. In these
cases, optimization algorithms without derivatives can be

227 The IEEE International Conference on Fuzzy Systems

employed. An example is the Downhill Simplex algorithm,
which considers a set of function evaluations to decide a pa-
rameter change. Another example is Powell’s method,
which implements linear searches by a set of directions that
evolve to be conjugate 141. These algorithms are too much
slower than the previous ones, A best solution can be to es-
timate the derivatives from the secants or to employ not the
derivative value but its sign (as RProp does), which can be
estimated from small perturbations of the parameters.

3.5. Statistical a lgo r i thm

All the above commented algorithms do not reach the
global but a local minimum of the error function. The statis-
tical algorithms can discover the global minimum because
they generate different system configurations that spread
the search space. One way of broadening the space explored
is to generate random configurations and choose the best of
them. This is done by the blind search algorithm whose
convergence speed is extremely slow. Another way is to
perform small perturbations in the parameters to find a bet-
ter configuration as done by the algorithm of iterative im-
provements. A better solution is to employ simulated
annealing algorithms [4]. They are based on an analogy be-
tween the learning process, which is intended to minimize
the error function, and the evolution of a physical system,
which tends to lower its energy as its temperature decreases.
Several annealing schemes (like linear, exponential, classic,
fast or adaptive) have been proposed, producing different
versions of the simulated annealing algorithm.

4. Tuning fuzzy systems under constraints

The parameters to adjust in a fuzzy system usually have
to meet several constraints. For instance, when tuning the
parameters of a Gaussian membership function, the learning
algorithms should always reject a negative value for the pa-
rameter representing the width of the function. The con-
straints that usually appear when tuning a fuzzy system
parameter.pi, are the following: “pi <= constant”, < con-
stant”, ‘pi >= constant”, “pi > constant”, or ‘>i < pj”. The
latter ones appear, for instance, between the three points
that can define a triangular membership function. They are
the most difficult constraints to maintain and should be
avoided as much as possible. In this sense, a triangular func-
tion is better defined by its center, width, and slope.

Statistical algorithms manage constraints easily, by di-
rectly rejecting the random configuration generated if it
does not meet the constraints. On the other hand, the algo-
rithms based on any kind of gradient descent generate the
same (detenninistic) displacement at a given iteration, so
that the solution is not to reject it if it is forbidden (it would
be again generated in the next iteration) but to change it into
another displacement accepted by the system. The usual so-

P2 P2

I I c I I

Figure 1: Learning under constraints.

lution is to try an smaller displacement in the same direc-
tion, as shown in Figure la. The problem is that this solution
does not distinguish between parameters, so that the con-
straint on one parameter can limit not only the displacement
of that parameter but also of other ones (as shown in Figure
la). This problem can be avoided by managing the parame-
ters independently. This means, in the example of Figure I ,
that the system could be moved to the final point shown in
Figure Ib. For those constraints relating several parameters
(as those of the triangle shown in Figure IC), a good solution
is to consider them as particles subject to inelastic collisions
in a one dimensional space (Figure Id).

Another interesting point to remark is that the stable
point reached by the system after learning under constraints
will provide or not the minimum possible error depending
on the tuning algorithm employed. When the proposed dis-
placement follows the gradient direction, the system
evolves to a point where the gradient components over the
non constrained parameters are null, that is, to the point of
the frontier where the error is minimum (the point “b” in
Figure 2). On the other hand, if the learning algorithm gen-
erates a direction which is not parallel to the gradient (like
that shown with a dashed line in Figure 3). the stable point
of the system will not provide a minimum error (the point
“ 1, . a in Figure 2).

5. Simplification processes

Supervised leaming can be used not only to tune fuzzy
systems but also to help obtaining fuzzy models in identifi-

forbidden region

Figure 2: Stable points depending on the algorithm.

228 The IEEE International Conference on Fuzzy Systems

cation problems. Simplifying the fuzzy system obtained
after a tuning process allows extracting a valuable informa-
tion about the logical structure of the system. One of these
simplification process consists in detecting and deleting
those fuzzy rules and membership functions that are never
activated sufficiently by any of the training inputloutput
patterns.

A typical result of the tuning process is that the member-
ship functions covering the output variables overlap each
other in a high degree. A clustering process over these func-
tions drives to a good and simpler fuzzy system. This clus-
tering can be made automatically by means of the Hard C-
means algorithm, where the number of cluster can be fixed
manually, or can be selected by some cluster evaluation
functions [5] .

6. The Xfsl tool

In order to automate the tuning process of a fuzzy system
we have developed the tool xfsl. Xfl includes all the error
functions and supervised learning algorithms described in
Sections 2 and 3, and apply the solutions described in Sec-
tion 4 to allow learning efficiently under constraints. Sim-
plification methods described in Section 5 are also included
and can be executed prior to or after the learning algorithms.
In addition, the system parameters to tune can be selected
by a graphical interface.

Xjsl allows the user to apply supervised learning algo-
rithms to fuzzy systems specified with the XFL3 language
[6], the formal language of Xfuzzy 3.0 [7]. XFL3 permits
the description of complex fuzzy systems with hierarchical
rule bases. Besides, there is no limitation in the number of
rules within a rule base, linguistic variables, or linguistic
labels covering the variables. The rules support complex
logic relations in the premise part (with conjunctions, dis-
junctions, and linguistic hedges), and these operators as
well as the implication operators, membership functions, or
defuzzification methods can be defined freely by the user.
The language XFL3 is the nexus between the different

Figure 3: Main window of the tool xjsl.

229

Xfuzzy 3.0 tools (dedicated to description, learning, verifi-
cation, or synthesis of fuzzy systems).

Figure 3 illustrates the main window of xfsl. This win-
dow is divided into four parts. The left upper corner is the
area to configure the learning process. The process state is
shown at the right upper part. The central area illustrates the
evolution of the learning, and the bottom part contains sev-
eral control buttons to run or stop the process, to save the re-
sults, and to exit.

7. Fuzzy systems with continuous output

Since fuzzy systems with continuous output can be seen
as interpolators, let us consider, as example, the problem of
approximating the function shown at Figure 4a. We con-
sider a two-input fuzzy system with 7 Gaussian member-
ship functions per input, thus containing 49 rules. The
Weighted Fuzzy Mean is selected as defuzzification
method. Initially, input membership functions are homoge-
neously distributed in their universe of discourse, while the
49 output functions are equal and centered in their uni-
verse. All the parameters of these membership functions as
well as the weights are going to be tuned, which means 126
parameters.

Figures 4b, c, and d show the evolution of the system
behavior while being tuned by the different learning algo-
rithms provided by xfsl. The gradient descent algorithms
are shown in Figure 4b. It can be seen that modifications to
the BackPropagation algorithm notoriously increase the
convergence speed. Figure 4c is dedicated to the conjugate
gradient and second order algorithms. As it is shown on
this figure, these algorithms are significantly faster than the
steepest descent algorithm, especially BFGS and Mar-
quardt-Levenberg algorithms. Algorithms without deriva-
tives and statistical algorithms are shown in Figure 4d.
These algorithms are several orders of magnitude slower
than the previous ones, so their use is only recommended
when those are discarded (in non-derivable systems, for
instance). It can be seen that Powell's algorithm is much
faster than Downhill Simplex algorithm. Concerning the
statistical algorithms, Simulated Annealing increases the
convergence speed with respect to Blind Search or Iterative
Improvement algorithms.

The existence of non-linear parameters generates the
presence of several local minima in the tuning process.
Therefore, it is not possible to assert what is the best algo-
rithm, since a very fast algorithm may be sometimes driven
to a local minimum far away from the optimum behavior. A
solution to this problem is to make several tuning processes
with different random initial configurations, selecting the
best of the learning results.

Within the learning process. the membership functions
of the output variable tend to group around some common

The IEEE International Conference on Fuzzy Systems

3 Adaptive Learning
Rate

\ ' I
lo3 lo4 CPUTime

1 obf

RMSE (b)
100 10' td

1 U-

10.'

1 0-2

10-3

104

10-5

1 SteepestDescent
2 CcnjugateGradient
3 Scaled Conjugate-

Gradient
4 BFGS

5 1 5DFP

1
IO*$ 10 10' le lo3 IO' CPU Time

RMSE (C)

1 Downhill Simplex
2 Powell
3 Blind Search
4 Iterative Impmve-

5 Sim. Annealing
ment

to*
10 10' le 10' I O 4 10 CPUTime

(d)

Figure 4: Comparison of the different algorithms.

forms (Figure 5a). Applying the clustering process sup-
ported by x f l , the 49 membership functions are reduced to
6 (Figure 5b). This reduction leads to the simplified rule
base shown in Figure 5c.

The use of hierarchical structures allows simplifying the
description of a system because complex behaviors can be
generated by composing simple rule bases. A relevant ad-
vantage of the xfs/ tool is its ability to adjust hierarchical
systems. To illustrate this type of learning process, we will
consider again the problem of approximating the behaviour
at Figure 4a, but now using a hierarchical fuzzy system with
two cascaded rule bases, like that shown in Figure 6a. The
initial description we have taken for the first rule base is
very simple: two fuzzy sets for each input variable and four
singleton values for the output, thus giving 4 rules (Figure
6b). The second rule base employs only one fuzzy set for the

21 21 22 23 zS 26 26
z l z l 21 B 23 z5 26

Figure 5: Rule base obtained after learning and clustering.

input because two other ones are generated by using linguis-
tic hedges, and three singleton values for the output (Figure
6c). The defuzzification method performed by both rule
bases is the Fuzzy Mean method. Since initially all the out-
put values are equal, the input-output relation provided by
this system is flat.

The influence of the parameters on the global behavior of
a hierarchical system is complex. In terms of learning, this
means the existence of a lot of local minima which make no
useful the application of gradient based learning algorithms.
Contrary to the previous example, the statistical algorithms
provide now better results. In particular, we have used the
Blind Search algorithm followed by Marquardf-Leven-
berg's algorithm. In the latter algorithm, xfsl does not com-
pute the derivatives (it is not possible in hierarchical
systems) but estimates them from small parameter modifi-
cations.

X

Y

(b) (4
Figure 6. Tuning a hierarchical system

230 The IEEE International Conference on Fuzzy Systems

After learning, the global system behavior approximates
the target behavior with an RMSE of 0.41%. What is very
interesting is that the rule bases have learnt the intrinsic
composition of the target function. The first rule base iden-
tifies a subtracting relation between y and x (with a certain
scaling factor), while the second rule base identifies an step-
wise relation. Between 25 and 36 rules are required by a
grid-based fuzzy system (using the Fuzzy Mean defuzzifi-
cation method) to perform as well as a hierarchical system
with only 7 rules, thus showing the importance of tuning hi-
erarchical descriptions for a CAD tool.

8. Fuzzy systems with discrete output

A fuzzy classifier can be seen as a fuzzy system in which
the membership functions of the output variable represent
the different categories to which the output may belong. The
output provided by a fuzzy classifier is generally the output
membership function with the highest activation degree.
Since the output values of these systems are categories, the
learning process faces an additional obstacle. It should
modify the parameters of the membership functions associ-
ated to the input variables to improve the success rate of the
classification. Contrary to the case of fuzzy interpolators,
fuzzy classifiers can perform better when reducing their rule
bases since classification boundaries not parallel to the grid
partition can be obtained.

As an example of tuning a fuzzy classifier, let us consid-
er the problem illustrated in Figure 7. It shows a set of 80
data grouped into 4 different categories with 20 data each
one (Cl, C2, C3, and C4). The fuzzy classifier to be tuned
by ~fsl contains 9 rules initially, with 3 membership func-
tions covering each input variable, as shown at the top and
left parts of Figure 7.

Figure 7: Example of a classification problem.

Applying the pruning process of xfsl, the 9 rules are re-
duced to 6, and the membership functions are learned as
shown at the bottom and right parts of Figure 7. The classi-
fication boundaries implemented by the 6 rules reach a clas-
sification rate of 100%. as shown in Figure 7.

9. Conclusions

The tool xfsl presented herein represents an important ef-
fort towards the.automatization of the learning process in
the design of fuzzy systems. The wide set of algorithms in-
cluded (from gradient-based to statistical) allows solving
many application problems. The incorporated methods of
clustering and pruning permits the simplification of the
fuzzy system considered. Its capability of tuning hierarchi-
cal fuzzy systems makes it also possible to simplify the de-
scription of a system because complex behaviors can be
usually generated by composing simple rule bases. Its abil-
ity to work with systems that employ linguistic hedges al-
lows adjusting the system as well as maintaining its
linguistic meaning, which is very interesting when extract-
ing knowledge from data. Since the tool is integrated into
the environment Xfuzzy 3.0, it is possible not only to tune a
system but also using other tools to graphically define it, to
represent its behavior by 2-D or 3-D plots, and to simulate,
monitor or synthesize software descriptions of it. As part of
Xfuzzy 3.0, xfsl is distributed freely under the GNU General
Public License from the Xfuzzy official web page (http://
www.imse.cnm.es/Xfuzzy/).

References

[I] S. Haykin, “Neural Networks. A Comprehensive Founda-
tion”, IEEE Press Macmillan, 1994.

[2] Mgller, M.F., “A Scaled Conjugate Gradient Algorithm for
Fast Supervised Leaming”, Neural Networks, Vol. 6, pp. 525-
533.1993.

[3] Scales, L.E.. “Introduction to Non-Linear Optimization”,
Springer-Verlag New York Inc., 1985.

[4] Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flmnery,
B.P., Numerical Recipes in C, Cambridge University Press,
1997.

[SI Bezdek, J.C., Pal, N.R., “Cluster validation with generalized
Dum’s indices”, Proc. 2nd NZ Int. Two-Stream Conf. on
ANNES, pp. 190-193, Dunedin, 1995.

[6] F. I. Moreno-Velo, S. Sinchez-Solano, A. Baniga, 1.
Baturone, D. R. Lopez, “XFL3: A New Fuzzy System Speci-
fication Language”, Mathware & Soft Computing, pp. 239-
253, December 2M)I.

[7] F. J. Moreno-Velo, I. Baturone, S . Sinchez-Solmo, A. Barri-
ga, “Rapid Design of Fuzzy Systems with XFUZZY, sub-
mitted to FUZZ-lEEE2003.

231 The IEEE International Conference on Fuzzy Systems

