
Hardware/software codesign of configurable fuzzy control 
systems

A. Cabrera a, S. Sánchez-Solano b, P. Brox b, A. Barriga b,∗, R. Senhadji b
a Dpto. Automática y Computación, Facultad de Ingenierı́a Eléctrica, ISPJAE, Calle 127 s/n, Marianao, Ciudad de la Habana, Cuba

b Instituto de Microelectrónica de Sevilla, Centro Nacional de Microelectrónica, CSIC, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

Abstract

Fuzzy inference techniques are an attractive and well-established approach for solving control problems. This is mainly 
due to their inherent ability to obtain robust, low-cost controllers from the intuitive (and usually ambiguous or incomplete) 
linguistic rules used by human operators when describing the control process. This paper focuses on the hardware/software 
codesign of configurable fuzzy control systems. Two prototype systems implemented on general-purpose development boards 
are presented. In both of them, hardware components are based on specific and configurable fuzzy inference architecture 
whereas software tasks are supported by a microcontroller. The first prototype uses an off-the-shelf microcontroller and a 
low-complexity Xilinx XC4005XL field programmable gate array (FPGA). The second one is implemented as a system on 
programmable chip (SoPC), integrating the microcontroller together with the fuzzy hardware architecture and its interface 
circuits into a Xilinx Spartan2E200 FPGA.

Keywords: Fuzzy controllers; Codesign techniques; SoPC; FPGA

1. Introduction

Fuzzy logic-based inference techniques provide a
practical mechanism for describing the behavior of a
complex system by means of linguistic terms similar
to those employed in natural language. The capabil-
ity of fuzzy controllers to capture the knowledge of
a human expert and translate it into a robust control
strategy without a mathematical model of the system
under control has motivated a great increase in the
number of control applications using these techniques
in the last years[1–4].

∗ Corresponding author. Tel.:+34-9550-56-666;
fax: +34-9550-566-86.
E-mail addresses:alex@electrica.cujae.edu.cu (A. Cabrera),
santiago@imse.cnm.es (S. Sánchez-Solano), barriga@imse.cnm.es
(A. Barriga).

Although they can be the base for approximate rea-
soning mechanisms, fuzzy inference techniques pro-
vide systematic and deterministic algorithms that can
be easily programmed in a general-purpose processor
or implemented as an electronic circuit. Thus, there
are basically two alternatives for fuzzy controller im-
plementation: one of them is based on software and
the other on hardware. The software solution offers
flexibility as one of its main features: the designer
can choose any type of fuzzy sets, operators, and
rule bases. Many fuzzy controllers have been imple-
mented in software on general-purpose computers
by describing the fuzzy algorithm with a high-level
programming language. In applications where there
are cost, weight, size, or power constraints, as oc-
curs with consumer electronics, standard microcon-
trollers have been usually employed[2,4]. Both types
of software implementations (microcomputer- and



microcontroller-based) have the same speed limita-
tion due to the inherent sequential program execution,
so that they are not adequate for many real-time con-
trol applications and a hardware approach must be
used. Full hardware implementations achieve a very
high inference speed but are characterized by their
lack of flexibility because some limitations must be
adopted in order to obtain a cost-effective dedicated
hardware. Several microelectronics implementations
of fuzzy controllers have been proposed in the last
few years[5]. Both, digital and analog architectures
have been developed, with the digital ones being the
most widespread because their design is facilitated by
the use of well-established design methodologies and
the advances in computer aided design (CAD) tools.

Halfway between full software and full hardware
implementations, hardware/software (HW/SW) code-
sign techniques try to obtain an appropriate trade-off
between the advantages and drawbacks of both ap-
proaches[6]. In particular, the application domains
we are dealing with, such as embedded, real-time, and
reactive systems, are the applications areas for which
HW/SW codesign techniques are most effective. The
hardware–software partitioning of the tasks to be car-
ried out by the fuzzy controller allows for both a flex-
ible and high-speed system. Higher time-consuming
tasks should be implemented in hardware while those
related to system configuration are better executed
by software. As a result, an efficient low-cost fuzzy
controller can be developed by means of codesign
methods.

The rapid transition in silicon technologies
has not only increased the number of devices in
application-specific integrated circuits (ASICs) but
has also allowed programmable logic devices like
FPGAs to increase in density and reduce costs, so
that hardware platforms based on FPGAs can be used
for rapid prototyping approaches as well as for final
solutions which greatly shorten the time-to-market
of new products. The current availability of low-cost
large-capacity FPGAs, an increasing number of cir-
cuit components described as intellectual property
(IP) modules, and powerful CAD tools make it pos-
sible to develop a whole system on a programmable
chip (SoPC).

The above considerations have led us to develop
fuzzy control systems by means of a codesign method
and based on FPGA platforms. This paper presents

two of these developments in which specific hard-
ware components for the fuzzy controller are de-
signed according to a configurable architecture for
fuzzy inference systems whereas software tasks are
supported by microcontrollers. One of the systems
uses a small-size Xilinx XC4005XL FPGA and an
off-the-shelf microcontroller. The second one is a
fuzzy controller implementation as a SoPC which
integrates the microcontroller and the fuzzy hardware
architecture into a Xilinx Spartan2E200 FPGA.

The paper is organized as follows. After describ-
ing briefly the structure of a fuzzy control system and
the tasks it has to carry out,Section 2summarizes
the codesign alternatives to implement these tasks in a
hardware/software platform. The alternative we have
followed is described in detail inSection 3, includ-
ing the specific architecture selected for the hardware
component. The designs of two FPGA-based fuzzy
control systems are explained inSections 4 and 5. Fi-
nally, some conclusions are given inSection 6.

2. Codesign alternatives for fuzzy control systems

The generic structure of a closed-loop fuzzy control
system, including the controlled process, is shown in
Fig. 1. A fuzzy controller employs the same input and
output variables as its conventional counterpart. The
difference between both approaches is that in the fuzzy
case the control heuristics is defined by a rule set which
employs linguistic variables represented by fuzzy sets,
instead of being obtained as a linear combination of
the inputs. A set of sensors are in charge of acquiring
the variables defining the process status and trans-
lating them into electrical signals. Analog-to-digital
(A/D) conversion (if necessary), range adjustment,
and pre-processing algorithms required to obtain ade-
quate input signals for the inference engine are carried
out by the signal conditioning input stage. In order
to calculate the controller output, the fuzzy inference
module (FIM) must fuzzify the inputs, calculate the
new control action according to the strategy defined by
the set of inference rules, and compute the non-fuzzy
representative values of the control action through
a defuzzifier. Finally, the signal conditioning output
stage post-processes these values and adapts them to
the actuators, usually through digital-to-analog (D/A)
converters. In addition to these basic tasks, the control



Fig. 1. Block diagram of a fuzzy logic-based control system.

system should also include elements to initialize its
operation, to define the control targets, and to mon-
itor the achievement of the targets, as well as timing
elements to ensure the correct behavior of the system.

Traditionally, all of the above-mentioned tasks,
including the inference mechanism, have been per-
formed by software on a programmable processor.
Many applications for industrial or consumer products
resort to this type of implementation[2–4]. However,
when the application demands fuzzy control systems
with a high-inference speed and low size and power,
a more efficient solution using dedicated hardware
must be adopted, but this solution limits greatly the
controller flexibility. Since neither the standard full
software approaches nor the specific full hardware
ones are able to meet all of these requirements, several
codesign solutions have been reported. The codesign
process of any system has to analyze all the tasks that
the system must carry out, evaluating the impact of
the possible implementation options over the factors
defining the cost and global system functionality[6].
The main parameters to consider in this evaluation are
the task execution speed and the area required by its
hardware implementation. From the previous results,
a partitioning process is carried out to decide which
tasks should be executed by software and which ones
should be implemented on hardware.

There are different approaches for applying code-
sign techniques in the development of control systems
based on fuzzy logic. They can be distinguished by
the form and level in which the HW/SW partition-
ing is made. One of them analyzes the influence of
the instruction set of a processor over the implemen-

tation of a fuzzy inference system so as to redesign it
in such way that it supports the operations which best
contribute to increasing the inference speed. Taking
into account that many of the operations required by
the fuzzy inference to a great extend limit the opera-
tional speed of the fuzzy controller, the idea is to speed
up the execution of operations such as the maximum,
minimum, or defuzzification[7]. Thus, the processor
microprogramming is modified in some cases in order
to add functionality to the instruction set[8,9], while
in other cases, new circuitry is included in the proces-
sor architecture[10–12]. In all of these cases, the par-
titioning process is carried out at the instruction level
of the processor.

Another possibility is to implement the fuzzy in-
ference module, totally or partially, by means of
dedicated hardware with a specific architecture. This
‘a priori’ partition is based on the fact that, among all
the tasks that a fuzzy logic-based control system must
carry out, those related to the fuzzy inference calcu-
lation are the most timing consuming[7]. Therefore,
their implementation by means of specific hardware
contributes significantly to increase the controller
speed. With this approach, the hardware-implemented
FIM acts as a coprocessor of a general-purpose mi-
crocontroller which executes the rest of the tasks
implemented by software (initialization, input and
output processing, etc.). The hardware-implemented
FIM obtains the inference conclusions very fast and
communicates them back to the microcontroller which
closes the control loop (Fig. 2).

The previous codesign variant is the one we have
followed in the controllers described in this paper: the



Fig. 2. Codesign-based fuzzy controller macrostructure.

complete fuzzy inference module is implemented in
programmable hardware (FPGA development boards)
following a specific and efficient architecture whereas
the remaining control tasks are programmed in soft-
ware and executed by a standard microcontroller. The
following section describes in detail our codesign ap-
proach.

3. A codesign methodology for fuzzy control
systems

The design cycle of a microelectronic system can be
greatly accelerated by the use of a methodology which
defines the different design stages and their interre-
lations. Following a conventional codesign methodol-
ogy, the design starts with a system specification stage
which considers the requirements of the control ap-
plication. User-friendly specifications and high-level
formal languages are usually employed at this stage
and the whole control system is simulated to evaluate
and verify the system specification roughly. The hard-
ware/software partitioning is performed at the next de-
sign stage so as to decide which components of the
system will be realized in hardware and which will
be implemented in software. The third stage aims at
synthesizing the hardware components, software mod-
ules, and hardware/software interfaces. Finally, all the
modules are integrated and co-simulated to verify the
system behavior in detail.

Another fact which greatly accelerates the system
design process is the use of CAD tools which make
the carrying out of the tasks at the different stages
easier. When designing a fuzzy control system, the
central component which has to be well-specified is
the fuzzy inference module. Although the capability

of fuzzy logic is exploited to translate expert knowl-
edge expressed linguistically into an inference algo-
rithm expressed mathematically, this translation is not
easy because there are many ways to do it. For exam-
ple, different membership functions can be chosen to
represent the fuzzy sets associated with the linguistic
variables, several defuzzification methods can be se-
lected to obtain a non-fuzzy conclusion, etc. Hence, a
very important consideration is the availability of CAD
tools for the development of the fuzzy inference mod-
ule. Several CAD environments have been reported
in the literature for this purpose. We have used the
Xfuzzyenvironment[5,13], because it includes tools
not only for specifying a fuzzy system but also for re-
lating it to the other control modules, for generating
software or hardware descriptions, and for evaluating
the control system performance, so as to carry out
a complete codesign methodology[14,15]. The flow
of this codesign methodology and the tools ofXfuzzy
employed (xfc,xfsim,xflab, andxfvhdl) are shown in
Fig. 3. The methodology steps are explained in the
following.

3.1. System specification and verification

Xfuzzyeases the description of the fuzzy inference
module with the XFL language, a formal specifi-
cation language for fuzzy systems which is shared
by all the tools of theXfuzzy environment [16].
The XFL language allows the user to define the
universes of discourse of the fuzzy controller vari-
ables, their associated membership functions, and the
rule bases employed, as well as to choose the set
of fuzzy operators which implement the antecedent
connection, the implication function, the mecha-
nism for rule aggregation, and the defuzzification
method. The graphical user interfaces (GUIs) pro-
vided by Xfuzzymake this definition more comfort-
able.Fig. 4 shows the interfaces employed to define
the membership functions and singleton values as-
sociated to the input and output variables of a fuzzy
controller.

In order to verify the behavior of the whole control
system, the “XFL to C compiler” (xfc) tool included
in the Xfuzzyenvironment is employed to obtain a
C description of the fuzzy inference module from
its XFL specification. The code generated byxfc,
together with the programming code associated to



Fig. 3. Codesign flow and CAD tools for FPGA-based fuzzy controllers.

Fig. 4. GUIs provided byXfuzzyto define membership functions of linguistic variables.



the rest of the control tasks, can be combined with
a C model of the process under control to simulate
the behavior of the closed-loop control system. This
simulation, which is known as off-line simulation, is
carried out within theXfuzzyenvironment using the
xfsimtool. This simulation tool is very useful to obtain
a preliminary adjustment of the control system pa-
rameters. However, since the model used to represent
the process is usually a first-order approximation, the
results of this simulation could not be reliable enough
for control systems of a certain complexity. In these
cases, the actual process may be analyzed to obtain
a better adjustment of the control system parameters.
One solution we have explored is to include the actual
process into the control loop where the whole control
system, including the FIM, is implemented by soft-
ware over a computer running a C program. This is
known as on-line verification. It is important to notice
that this verification is possible whenever the response
time of the computer meets the process dynamic
requirements.

The toolxflabprovides the needed mechanisms for
communicating the computer which runs the C code
of the fuzzy control system with the process under
control via a data acquisition board connected to
the internal bus of the computer[17]. Xflab contains
drivers to read and write data from and in the board,
so that the model of the process used in the off-line
simulation can be replaced by a function which al-
lows us to monitor the true process, thus obtaining
the required information to execute the fuzzy con-
trol, as well as acting over the process providing the
control action via the output channels.Xflab eases
the configuration of the data acquisition board, the
codification of the required pre- and post-processing
procedures, and the integration of these tasks with
both the software implementation of the controller
and the routines to access the actual process. One of
the most relevant advantages offered by this tool is
the capability of monitoring the behavior of the whole
system in real time, allowing the evaluation of a great
variety of operation conditions as well as the influ-
ence of the different control parameters on the system
efficiency.

Once the control system has been adjusted conve-
niently, a software implementation of the control sys-
tem which is quite operative is available to proceed to
the next methodology step.

3.2. HW/SW partitioning and component description

In the hardware/software partitioning stage the dif-
ferent tasks identified in the specification phase must
be assigned to hardware or software resources and
each of these components must be conveniently de-
fined. The partitioning of the different tasks to be per-
formed by the control system is done according to the
considerations mentioned inSection 2: the FIM will
be implemented in hardware with a specific circuit ar-
chitecture, while the routines for processing the input
and output variables of the fuzzy controller, together
with all the other control tasks, will be implemented
in software on a microcontroller. The use of devel-
opment tools and program debuggers (assemblers,
compilers, simulators, etc.) eases the programming of
the tasks to be performed by the microcontroller. The
availability of C compilers for the chosen microcon-
troller is a factor to take into account since it reduces
greatly the development time. The memory capacity
of the microcontroller must also be considered.

The design of the hardware components for the
fuzzy system can be accelerated with the employ-
ment of specific tools.Xfuzzyis distinguished from
other fuzzy environments by its development tools for
hardware support. Thexfvhdl tool included inXfuzzy
allows us to obtain a VHDL description of a fuzzy
inference module starting from its XFL specification
[18]. Xfvhdl uses a cell library containing the param-
eterized VHDL description for a set of basic building
blocks required to implement an efficient specific
architecture[19].

An efficient architecture is required to meet re-
strictive requirements in terms of speed, size, and/or
power. Some key points to achieve low-cost and
high-speed digital fuzzy inference modules are: (a)
to evaluate only the contribution of the active rules;
(b) to restrict the shapes of the fuzzy set membership
functions; and (c) to use simplified defuzzification
methods[19]. The overall impacts of these consider-
ations are the following.

(a) Active rule processing means that only those rules
which contribute to the final solution are processed
instead of the whole rule memory. Consider an “I”
input fuzzy controller, with “L” fuzzy sets with
a “D” overlapping degree. The total number “Rt”
of fuzzy rules isRt = LI . However, the number



“Ra” of active rules is onlyRa = DI . For instance,
if the fuzzy controller has two inputs and seven
fuzzy sets per input with an overlapping degree
of 2, an active rule-driven architecture must only
process 4 instead of 49 rules.

(b) Constraining the shapes of the input fuzzy sets by
limiting its overlapping degree makes it possible
to reduce the number of active rules as mentioned
above. In addition, if the input fuzzy sets are
also constrained to normalized piecewise-linear
functions, the membership function degree can be
obtained by arithmetic methods and also the de-
fuzzification process can be simplified if product
is used as the rule-antecedent connective operator.

(c) Traditional defuzzification methods, usually em-
ployed in software implementations, must sweep
the whole universe of discourse in order to obtain
the output crisp value. Hardware realization of
such methods leads to the intensive use of paral-
lel architectures or sequential techniques but both
solutions are inefficient in terms of circuit area
consumption or inference speed. Thus, the use of
simplified defuzzification methods in which the
conclusion obtained from a fuzzy rule is repre-
sented by the rule consequent “ci” and its weight
“wi”, must be adopted. Using simplified defuzzi-
fication methods makes it possible to obtain the
output crisp value “y” as the average of the differ-
ent conclusions weighted by the activation degrees
“hi” of the corresponding rules, as expression (1).

y =
∑

i hiciwi∑
i hiwi

(1)

The meaning ofwi in (1) leads to different de-
fuzzification methods. The fuzzy mean method
(FM) is the simplest one and it is obtained ifwi =
1. This method does not consider the area and
support of the output fuzzy sets. Others simpli-
fied defuzzification methods such as the weighted
fuzzy mean (WFM) and the quality method (QM)
can be achieved giving different meanings to the
wi parameter[5,20].

A configurable architecture suitable for an efficient
hardware realization of fuzzy inference modules based
on the above concepts is depicted inFig. 5. The mem-
bership function circuits (MFCs) determine the active
antecedents for each input value, and provide as many

pairs (label, activation level) as overlapping degree has
been fixed for the system. The inference process is car-
ried out by processing sequentially the active rules by
means of an active rule selection circuit composed of a
counter-controlled multiplexer array. In each clock cy-
cle, the membership degrees “µi” of rule antecedents
are combined within the connective-antecedent oper-
ator circuit to calculate the activation level of the rule
“hi”, while the antecedent labels “Li” address the po-
sition in the rule memory containing the parameters
(ci, wi) which define the corresponding consequent.
Finally, a configurable defuzzifier block is used to ob-
tain the output crisp value[19].

System configurability is achieved by choosing dif-
ferent circuit level solutions to implement the building
blocks ofFig. 5. Membership function circuits can be
built resorting to either memory-based or arithmetic
approaches. Memory-based MFCs store the labels and
the membership degrees corresponding to each point
of the input universe of discourse.Fig. 6 represents a
memory-based MFC considering an overlapping de-
gree of two. The total number of memory locations
depends on the input resolution bits and each location
stores the pair values of label-activation degree. The
fuzzification process is carried out by a simple access
to this memory using the input binary value as its ad-
dress. Note that if labels “La” and “Lb” are binary
coded, only one of them “La” must be included into
each memory location because the other one can be
easily obtained by adding “1”. Memory-based MFCs
allow us to define unrestricted fuzzy set shapes but
each input needs a memory capacity, AMi, expressed
by (2).

AM i = 2B × [2N + ⌈
log2 L

⌉
]bits (2)

whereB is the input resolution bits,N the bit number
for the membership degree, andL is the number of
fuzzy sets. Note that memory-based MFCs may con-
sume a high circuit area unless the target device has
dedicated resources for memory implementation.

When a reduced area is a primary target and there
are no dedicated memory resources, an arithmetic
block implementing normalized triangular functions
may provide better results for MFC.Fig. 7 shows
a schematic implementation for an arithmetic-based
MFC. The intersecting points “ai” and slopes “mi” of
the linear portions of each input are stored in a com-
mon parameter memory. Each input has an arithmetic



Fig. 5. Block diagram for the fuzzy inference module architecture.

Fig. 6. Memory-based MFC illustration.

circuit which resolves a straight line equation in order
to calculate the corresponding membership function
degree. A counter accesses the parameter memory
sequentially and the arithmetic circuit calculates and
stores the membership function degree (and also the
counter output) as long as the input value is greater
than the intersection value. The last stored values
correspond to the desired membership degree and its
corresponding label. Due to the use of normalized
functions, the second membership degree is easily

Fig. 7. Arithmetic-based MFC illustration.

obtained by a 1’s complement circuit. The common
parameter memory which is shared by all inputs has
a capacity, PM, expressed by (3).

PM = L[I(B + S)]bits (3)

where “I” is the number of inputs, and “S” is the slope
codification bits. Note that this memory has few lo-
cations but they are very wide. For instance, if 8 bits
are used to codify all the parameters ofFig. 7(L = 4,
I = 2), a 4× 32 bit memory is required. Thus, its



Fig. 8. Block diagram for a configurable defuzzifier module.

implementation on dedicated memory resources is not
recommended unless these resources would remain
unused.

There are also different options for implement-
ing the defuzzifier block according to the simplified
method chosen. A circuit composed of two multipli-
ers, a divider, and two adders as shown inFig. 8 may
implement all the defuzzification methods described
by (3). As a particular case, for fuzzy mean imple-
mentation (wi = 1) only one multiplier is needed.
Also, if normalized input membership functions are
used and the product is selected as the antecedent
connective operator, the denominator in expression
(1) is always 1, and the divider circuit can be removed
from the block diagram inFig. 8.

Using xfvhdl, the VHDL code for the specific ar-
chitecture described above is generated from the XFL
specification of the fuzzy module. The architectural
options (memory- or arithmetic-MFCs and defuzzifi-
cation method) and the resolution bits are defined by
the user when the tool is executed.

Once the hardware and software modules have been
generated, the next methodology step is to integrate
them.

3.3. HW/SW development and integration

The VHDL description of the fuzzy module is the
starting point to implement it on an FPGA. In this
step the FIM should be simulated to verify its perfor-
mance again. A VHDL simulator such asModelSimof
Mentor Graphics can be used for this purpose. Next,
we proceed to its logic synthesis and its implementa-
tion on the FPGA using specific CAD tools such as
those provided by Synopsys (FPGA Compiler 2and
FPGA Express) and Xilinx. To accelerate this design
stage, the toolxfvhdl produces as output not only the

VHDL files describing the fuzzy module but also a
testbench file which eases the fuzzy module simula-
tion and script files containing command procedures
for batch executing the synthesis and implementation
processes on Xilinx FPGAs. These files, together with
those describing the interface of the fuzzy module
with the microcontroller, are combined into a standard
FPGA design flow, thus obtaining the hardware com-
ponent implementation of the fuzzy control system.

The whole fuzzy control system can be inte-
grated basically by following two approaches: (a) the
hardware component implemented on an FPGA is con-
nected to an off-the-shelf microcontroller which im-
plements the software component; or (b) the hardware
and software components are both implemented on an
FPGA as a system on programmable chip (SoPC). The
first approach allows rapid system integration thanks
to the availability of FPGA development boards which
include a general-purpose microcontroller. The code-
sign implementation of the fuzzy control system fin-
ishes by downloading the executable microcontroller
program and the FPGA bit stream configuration file
to the development board. A fuzzy controller based
on this approach is described inSection 4.

The second approach allows for a more customized
design, and, hence, better performance in terms of
area, power, and speed can be obtained. This approach
is currently facilitated by several facts. (a) the avail-
ability of large and powerful FPGA devices with mil-
lions of gates-equivalent inside. Some FPGA devices
include not only general logic but also dedicated logic
as memory structures, hardware multipliers, and even
microprocessors. Using these components, a very
complex system can be included into a programmable
device. (b) The existence of many systems compo-
nents available as intellectual property modules (such
as interfaces and cores for processors or microcon-
trollers), which can be easily included in a design.
(c) The application of design techniques for reusabil-
ity (based in the intensive use of IP modules) which
reduce the increased gap between integration and de-
sign capacities. Since the implementation details of
different parts of a system can be reduced or avoided
by using IP modules, designers can work more on
the behavioral level of a system than on the structural
one. (d) The existence of powerful CAD tools which
ease the integration of component descriptions and IP
modules with optimizations for a target programmable



device. Section 5 describes how these facts have
been applied in the codesign of a fuzzy controller as
a SoPC.

4. A fuzzy controller using an off-the-shelf
microcontroller

As mentioned above, one of the approaches for
integrating a fuzzy control system is to connect the
hardware component implemented on an FPGA to
the software component implemented on an off-the
shelf microcontroller. Among the development boards
which include a general-purpose microcontroller with
an FPGA, we have used an XS40-005XL board
from XESS Corporation[21]. This board has an
Intel 8031 microcontroller, a low-complexity Xil-
inx XC-4005 FPGA (196 configurable logic blocks,
CLB), 32 Kbytes of SRAM, a programmable clock
circuit, a seven-segment LED display, and connectors
for communicating the board with a PC via a parallel
port and other interfaces. The board is provided with
software facilities to program the clock and to down-
load the FPGA configuration and the microcontroller
program among others.

To illustrate the above described codesign method-
ology with this approach, let us consider a typical
control problem of designing a level controller for a

Fig. 9. Experimental set up: (a) dosage system; (b) control system implementation.

dosage system by means of a fuzzy controller. The
dosage system considered is shown inFig. 9a. It is
composed of two independent cylindrical tanks both
with an electronic valve at the top which control the
liquid injection, with a pressure sensor at the bottom
to provide a measure of the liquid level, and with a
manually-controlled valve also at the bottom which
determines how fast the liquid is discharged into a
shared container. A voltage-controlled water pump
moves the liquid up to the tanks from the shared con-
tainer. The pressure sensors provide a current out-
put signal between 4 and 20 mA, while the electronic
valves and the water pump are controlled by voltage
input signals between 0 and 10 V. Additional condi-
tioning circuitry (in particular A/D and D/A convert-
ers) have been employed to adapt the signals provided
by the sensors to the development board as well as
to adapt the output signals of the board to those em-
ployed by the actuators (Fig. 9b).

The control strategy applied is the fuzzy version of
a PI controller with an incremental output. This means
that the fuzzy controller requires two input signals (the
error and its variation) for each tank, and provides an
output signal which represents the change of its corre-
sponding valve aperture. The water pump is governed
by the bounded sum of both controller outputs. Due
to the symmetry of the two tanks, their fuzzy infer-
ence modules are identical, so that we can implement



in hardware only one of them if the inference pro-
cesses are executed sequentially. This solution permits
a great area reduction without increasing the response
time significantly.

Starting from the XFL specification of the fuzzy
inference module, off-line simulation and on-line
verification stages were carried out withxfsim and
xflab, respectively. In the off-line simulation stage a
first-approximation model coded in C language was
used to describe the behavior of the dosage system.
In the on-line simulation, this model was replaced by
the actual plant connected via a National Instruments
PCI-1200 data acquisition board to the PC running
the software implementation of the fuzzy controller.
Using these tools it was very easy to change the
controller behavior (modifying the XFL specification
file) and to record the system performance. Thus,
different conditions were studied in order to select
the better options for the hardware implementation.
The defuzzification method chosen was the fuzzy
mean so that the rule consequences are represented
by singleton values. The final membership functions
for the error input and the singleton values for the
consequences were shown inFig. 4.

The VHDL description of the fuzzy controller was
obtained from its XFL specification with the aid of
thexfvhdl tool of Xfuzzy. On the other side, the FPGA
synthesis and implementation process were carried out
with SynopsysFPGA Expressand Xilinx Foundation
4.1i, respectively. Since the fuzzy inference engine
implemented in the FPGA works as a coprocessor
of the 8031 microcontroller, several interface circuits
also had to be added into the FPGA. The timing task
is implemented by one of the timers available in the
microcontroller. Using 6 bits for input/output resolu-
tion, 5 bits for coding the membership degree, and
memory-based MFCs, 98% of the FPGA CLBs were
employed, and the maximum operational frequency
was able to reach 20 MHz. However, the general clock
frequency for both the FPGA and the microcontroller
was lower than 20 MHz because the on-board 8031
highest operating frequency is 12 MHz. At a 10 MHz
frequency, the fuzzy inference cycle takes 700 ns,
which is shorter than the execution time of a single
microcontroller instruction.

The software implementation in the 8031 was per-
formed by using several development tools available
for the MCS51 family. The code downloaded to the

Fig. 10. Experimental results.

microcontroller covers the typical tasks of a control
cycle (acquisition and pre-processing, communication
with the inference engine, post-processing and output
generation), and includes several interrupt service rou-
tines as well as routines to allow communication with
a PC in order to evaluate the system performance.

The controller thus designed has proved to be sat-
isfactory in different experimental tests, providing a
robust control and ensuring a good behavior of the
dosage system even under hard changes in the aper-
ture of the manually-controlled valves. As an exam-
ple, Fig. 10 shows some of the experimental results
obtained with this HW/SW fuzzy control system. It
represents the evolution of the liquid level in one of
the tanks versus the number of samples when the re-
quired level changed from 50 to 40 cm and then to 80
and 50 cm again. A sample was taken every 100 ms.
The ripple shown in the figure is due mainly to hav-
ing used only 6 bits in the hardware implementation
of the system.

5. A fuzzy controller as a system on
programmable chip

The above controller realization can be improved by
including an embedded microcontroller together with



the fuzzy inference module into an FPGA. Thus, di-
rect interfacing between both is possible while exter-
nal connections are eliminated. This is an important
advantage over the previous system in which the com-
munication between the external microcontroller and
the fuzzy inference module within the FPGA is car-
ried out through external data buses and, hence, some
8031 resources can remain unexploited. Including the
embedded microcontroller allows for complete use of
all of its resources. Consequently, the fuzzy inference
architecture can be easily reconfigured using the mi-
crocontroller I/O ports.

This is not the only advantage of using a SoPC ap-
proach. There are a lot of embedded cores of standard
processors which run faster than the original ones, so
an important speed increment can be obtained. This
speed increment is due to advances in the processor
architecture design. For instance, there are 8051 cores
which can run up to twelve times faster than the stan-
dard by following a RISC approach and reducing the
number of clocks per machine-cycle[22]. In addi-
tion, programmable device technology usually offers
operating frequencies higher than classical microcon-
trollers. Therefore, the total speed increment can be
significant.

Of course, a larger FPGA included in another devel-
opment board is needed for a SoPC approach. We have
employed the Digilab2E (D2E) FPGA-based develop-
ment board, which is an adequate prototyping plat-
form for low-cost moderate-to-complex SoPC[23].

Fig. 11. Membership functions for the Fuzzy-PID controller.

The D2E board includes a medium-complex Spar-
tan2E XC2S200E FPGA from Xilinx with 1176 CLBs.
The board also includes a serial interface to accom-
modate a RS-232 standard port and a parallel interface
for JTAG programming and parallel communication.
A set of connectors allows the D2E board to be con-
nected to external devices.

The size of the available FPGA allows us to tackle
more complex control problems. In fact, the fuzzy in-
ference module chosen as an example corresponds to a
fuzzy-PID controller with three 8-bit inputs (five fuzzy
sets each) and one 8-bit output. Membership functions
for the FIM are shown inFig. 11. Fuzzy mean was
again used for defuzzification. Note that, unlike in the
previous controller, where only 9 (3× 3) rules were
used to define the control strategy, the amount of rules
grows now to 125 (5× 5 × 5). Thus, the approaches
employed to store the knowledge base deserve a more
detailed discussion.

The functionality of a fuzzy system is determined
by the contents of its knowledge base (membership
functions used in antecedents and consequences, and
fuzzy rules). From the point of view of implementa-
tion, both the antecedent and the rule memories can
be implemented by different approaches: using RAM
or ROM memory (depending on if it is necessary
or not to modify the system knowledge base concur-
rently with its operation) or with combinational cir-
cuits (which allows a reduction of the size of the
logic).



Many FPGA devices store the internal configura-
tion in RAM, thus allowing us to change the circuit
functionality by reprogramming the FPGA. This char-
acteristic makes it possible to actualize the knowl-
edge base of the fuzzy system even when it has been
implemented with ROM or combinational logic. The
availability of automatic CAD tools which allow for a
quick obtaining of the FPGA configuration file from
the high-level system specifications eases this process
greatly.

When the change in the knowledge base must be
realized concurrently with the system operation (for
instance, in adaptive systems) it is necessary to use
RAM memory. The basic building blocks of certain
FPGAs, such as those provided by Xilinx, are made up
of small memories working as look-up tables (LUTs)
able to implement any logic function of a certain num-
ber of inputs. These elements can be configured to
form distributed RAM blocks which can be used by the
designer. Additionally, some FPGA devices, such as
the Spartan2E offer new implementation alternatives
because they incorporate specific block RAM mem-
ories (BRAM) which admit different configurations.
Using BRAM for the memories frees CLB resources
and more logic can be included.

In general, the use of BRAM to accommodate the
rule memory may contribute to a great area reduc-
tion if there are a lot of rules (i.e. there are a lot of
inputs and/or many input fuzzy sets). In the case of
MFCs the use of BRAM may be useful in order to
avoid the high area consumption problems related to
the exponential growth of memory-based MFCs. For
instance, the memory-based MFCs required in the ap-
plication example of the previous section are 64× 12
bits each, but when the input resolution is increased
to 8 instead of 6 bits, the memory capacity required
is quadruplicated and may consume a great FPGA
area. Therefore, the use of BRAM in order to imple-
ment memory antecedents is a very attractive option.
However, although arithmetic-based MFCs also need
memory, as a consequence of its spatial structure, the
BRAM implementation of this memory is not recom-
mended due to its inherent inefficient utilization. For
instance, if the input membership functions required
in the application example of the previous section are
provided by arithmetic-based MFCs (using also 6 bits
for the slope codification), the parameter-memory ca-
pacity PM would be 4×24 bits and the implementation

Table 1
Comparative implementation results (in % CLBs) among different
architecture options

MFC Block
RAM
(%)

Distributed
RAM (%)

ROM
(%)

Logic
(%)

Memory-based 9 80 34 29
Arithmetic 14 33 17 17

of this very simple memory would need two BRAM
in a Spartan2E which would be highly under used.

Table 1shows the Spartan2E200 FPGA area con-
sumption (in CLBs percent) for different implemen-
tation options of the fuzzy inference module required
for the application example. The columns reflect the
implementation options whereas the rows show the
type of MFC used. For memory-based MFCs, the
“Block RAM” option leads to the lowest CLB con-
sumption. In this case, seven BRAM are needed:
one for the rule memory and two for each 256× 18
antecedent memory. The “Distributed RAM” option
has the highest area due to the intensive use of CLBs
to implement the antecedent and rule memories. Its
use makes no sense unless a programmable knowl-
edge base is required. The last two columns show the
area occupation when the contents of the database
are fixed at implementation time: the “ROM” column
refers to a ROM extraction done by XST whereas the
“Logic” column refers to a ROM implementation as
distributed logic. The 5% difference between both is a
consequence of the logic reduction which can be car-
ried out in the latter case. The second row ofTable 1
shows that all the options are very similar when
arithmetic-based MFCs are used. This is due to the
reduced size of the memory needed to store the mem-
bership function parameters. One BRAM is needed
again to store the rule memory and three more are
used for storing antecedent parameters (a 5×48 mem-
ory structure is required) when this option is chosen.
Note again the BRAM resources which are wasted by
implementing this memory. The 5% increase over the
same option with memory-based MFCs is due to the
arithmetic circuits needed to implement the MFCs.

As a result, a more complex fuzzy controller,
with a higher resolution than the one presented in
Section 4 occupies a small portion on the Spar-
tan2E200 of a Digilab2E board (note that the one
described inSection 4occupied 98% of the FPGA),



Fig. 12. Internal structure of the fuzzy controller as SoPC.

and, hence, there are enough resources to embed a
general-purpose microcontroller. The 8051 microcon-
troller core used has been a free one from Oregano
Systems (http://www.oregano.at) which is far away
(in area and speed) from other licensed cores. This
microcontroller is basically equivalent to the 8031
used in the first prototype (the 8031 microcontroller
is actually an 8051 without internal ROM). The sys-
tem also integrates the interface circuits between the
microcontroller and the fuzzy module. Although the
microcontroller core is not an optimum one, the imple-
mentation reports a 78% FPGA area utilization using
the BRAM memory-based option and an 86% using
an arithmetic MFC implemented as ROM option, from
which 69% corresponds to the microcontroller core.

Additional memories have to be considered in the
codesign of a fuzzy controller as a SoPC. The micro-
controller core needs its proper internal data and code
memory, so that some BRAM (organized as 512× 8
bits) can be used to accommodate both memories. In-
ternal data memory lies in only one BRAM whereas
the number of BRAM for code memory depends on
the final code size. The whole control program lies in
two BRAMs of the Spartan2E200.Fig. 12shows the
internal structure of the final control system.

These results not only show that SoPC is a good
choice for codesigning fuzzy controllers but open
an interesting way of expanding the fuzzy inference
architecture in order to achieve software-controlled
configurability for the fuzzy module as well as more
complex hierarchical structures.

6. Conclusions

The use of codesign techniques according to a
given partitioning of the tasks assigned to the hard-
ware and software components has proved to be an
efficient strategy for designing high-speed and low-
consumption fuzzy logic-based control systems. The
‘a priori’ partitioning presented here leads to a hard-
ware implementation of the fuzzy inference module
using an active-rule driven architecture and simplified
defuzzification methods whereas the other tasks are
implemented in software.

According to this strategy, a complete codesign flow
for fuzzy controllers based on programmable plat-
forms and using several CAD tools from theXfuzzy
environment has been described. Two implementation
approaches have been presented. The first one using
an external microcontroller and a medium complex
FPGA shows its success through an actual application
to solve a dosage problem.

The availability of powerful FPGAs, intellectual
properties modules, and CAD tools, together with
reuse techniques made it possible to develop the fuzzy
controller as a whole system on a programmable
chip. A SoPC implementation based on a Xilinx
Spartan2E200 FPGA is the second approach exposed.
The memory resources of the Spartan2E200 together
with the fuzzy inference architecture options allow
for different implementations in order to reduce CLB
consumption. A fuzzy controller which includes a
non-optimal 8051 microcontroller core, an 8-bit fuzzy

http://www.oregano.at


inference module, and the required interface circuits
occupies 83% of the FPGA slice resources.

These results lead us to be optimistic about the ad-
vantages of codesigning more complex configurable
and hierarchical fuzzy controllers as SoPCs.

Acknowledgements

This work has been partially supported by the Span-
ish CICYT Project TIC2001-1726.

References

[1] K.M. Passino, S. Yurkovich, Fuzzy Control, Addison-Wesley,
Reading, MA, 1998.

[2] T. Terano, K. Asai, M. Sugeno (Eds.), Applied Fuzzy Systems,
Academic Press, New York, 1994.

[3] J. Yen, R. Langari, L.A. Zadeh (Eds.), Industrial Applications
of Fuzzy Logic and Intelligent Systems, IEEE Press, New
York, 1995.

[4] L. Reznik, Fuzzy Controllers, Newness, London, 1997.
[5] I. Baturone, A. Barriga, S. Sánchez-Solano, C.J. Jiménez,

D. López, Microelectronic Design of Fuzzy Logic-Based
Systems, CRC Press, Boca Raton, 2000.

[6] B. Tabbara, A. Tabbara, A. Sangiovanni, Function/
Architecture Optimization and Co-Design of Embedded
Systems, Kluwer Academic Publishers, Dordrecht, 2000.

[7] V. Salapura, A Fuzzy RISC Processor, IEEE Transactions on
Fuzzy Systems, vol. 8, No. 6, December 2000.

[8] A.P. Ungering, K. Goser, Architecture of a 64-bit fuzzy
inference processor, in: Proceedings of the IEEE International
Conference on Fuzzy Systems, FUZZIEEE’94, Orlando,
1994, pp. 1776–1780.

[9] C. Von Altrock, Adapting Existing Hardware for Fuzzy
Computation, Institute of Physics Publishing, 1998.

[10] M.J. Patyra, E. Braun, Fuzzy/Scalar RISC processor:
architectural level design and modelling, in: Proceedings
of the IEEE International Conference on Fuzzy Systems,
FUZZIEEE’96, New Orleans, 1996, pp. 1937–1943.

[11] Y.D. Kim, H. Lee-Kwang, High speed flexible fuzzy hardware
for fuzzy information processing, IEEE Trans. Syst. Man
Cybernetics 27 (1) (1997) 45–55.

[12] A. Pagni, Digital approaches, in: Handbook of Fuzzy
Computation, Institute of Physics Publishing, 1998.

[13] D.R. López, C.J. Jiménez, I. Baturone, A. Barriga, S. Sánchez-
Solano, Xfuzzy: a design environment for fuzzy systems, in:
Proceedings of the IEEE International Conference on Fuzzy
Systems, FUZZIEEE’98, Anchorage, 1998, pp. 1060–1065.

[14] S. Sánchez-Solano, R. Senhadji, A. Cabrera, I. Baturone,
C.J. Jiménez, A. Barriga, Prototyping of fuzzy logic-based
controllers using standard FPGA development boards, in:
Proceedings of the 13th IEEE International Workshop on
Rapid System Prototyping, RSP’02, Darmstadt, 1–3 July
2002, pp. 25–33.

[15] A. Cabrera, S. Sánchez-Solano, R. Senhadji, A. Barriga,
C.J. Jiménez, Hardware/software codesign methodology
for fuzzy controllers implementation, in: Proceedings of
the IEEE International Conference on Fuzzy Systems,
FUZZIEEE’2002, Honolulu, 12–17 May 2002.

[16] D.R. López, F.J. Moreno, A. Barriga, S. Sánchez-Solano,
XFL: a language for the definition of fuzzy systems,
in: Proceedings of the IEEE International Conference on
Fuzzy Systems, FUZZIEEE’97, Barcelona, 1997, pp. 1581–
1591.

[17] R. Senhadji, S. Sánchez-Solano, D.R. López, A. Barriga,
Xflab: an on-line verification tool for fuzzy controllers, in:
Proceedings of the IPMU’2000, Madrid, 2000, pp. 44–49.

[18] E. Lago, C.J. Jiménez, D.R. López, S. Sánchez-Solano, A.
Barriga, Xfvhdl: a tool for the synthesis of fuzzy logic
controllers, in: Proceedings of the DATE’98, Paris, 1998,
pp. 102–107.

[19] S. Sánchez-Solano, A. Barriga, C.J. Jiménez, J.L. Huertas,
Design and applications of digital fuzzy controllers, in:
Proceedings of the IEEE International Conference on Fuzzy
Systems, FUZZIEEE’97, Barcelona, 1997, pp. 869–874.

[20] H. Hellendoorn, C. Thomas, Defuzzification in fuzzy
controllers, J. Intelligent Fuzzy Syst. 1 (1993) 109–123.

[21] XS40, XSP Board V1.4, User Manual, XESS Corporation,
USA, 1999.

[22] CAST 8051 Core Family: An Overview of Product Family
and Performance, CAST Inc., September 2002.

[23] Digilab 2E Reference Manual, Digilent Inc., 2002.


	Hardware/software codesign of configurable fuzzy control systems
	Introduction
	Codesign alternatives for fuzzy control systems
	A codesign methodology for fuzzy control systems
	System specification and verification
	HW/SW partitioning and component description
	HW/SW development and integration

	A fuzzy controller using an off-the-shelf microcontroller
	A fuzzy controller as a system on programmable chip
	Conclusions
	Acknowledgements
	References


