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Resumen

Históricamente han sido muchos los matemáticos de todas las épocas que se han

sentido atráıdos y fascinados por la existencia de grandes estructuras algebraicas

que satisfacen ciertas propiedades que, a priori, pueden contradecir a la intuición

matemática.

El objetivo de la presente Memoria es el estudio de la lineabilidad de diversas

familias de sucesiones de funciones con propiedades muy espećıficas.

La Memoria se divide en 6 caṕıtulos, donde los Caṕıtulos 1, 2 y 3 se centran en

introducir la notación básica y la terminoloǵıa principal de la teoŕıa de la Lineabilidad

y de los modos de convergencia que usaremos a lo largo de esta Memoria.

En el Caṕıtulo 4 comenzamos el estudio del tamaño algebraico de dos familias de

sucesiones de funciones con distintos modos de convergencia en el intervalo unidad

cerrado [0, 1]: convergencia en medida pero no puntual en casi todo y convergencia

puntual pero no uniforme.

En el Caṕıtulo 5 centramos nuestra atención en el marco de las funciones inte-

grables (Lebesgue). Comenzamos con sucesiones de funciones integrables y distintos

modos de convergencia en comparación con la convergencia en norma L1, y finalizamos

el caṕıtulo con el tamaño algebraico de las familias de funciones no acotadas, continuas

e integrables en [0,+∞), y las sucesiones de ellas.
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Finalmente, en el Caṕıtulo 6 trabajamos en el ámbito de las series de funciones,

obteniendo resultados positivos sobre el tamaño lineal y algebraico de la familia de

sucesiones de funciones cuya serie asociada converge uniformemente pero no verifica

las hipótesis del Criterio M de Weierstrass.
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Abstract

Historically, many mathematicians of all ages have been attracted and fascinated

by the existence of large algebraic structures that satisfy certain properties that, a

priori, contradict the mathematical intuition.

The aim of the present Dissertation is the study of the lineability of certain families

of sequences of functions with very specific properties.

The Dissertation is divided in 6 chapters, where Chapters 1, 2 and 3 focus on

introducing the basic notation and main terminology of the theory of Lineability and

modes of convergence that will be used along this Dissertation.

In Chapter 4 we begin with the study of the algebraic size of two families of

sequences of functions with different modes of convergence in the closed unit interval

[0, 1]: convergence in measure but pointwise almost everywhere and pointwise but not

uniform convergence.

In Chapter 5 we focus our attention on the setting of (Lebesgue) integrable func-

tions. We start with sequences of integrable functions with different modes of conver-

gence in comparison to the L1-convergence, and finish the chapter with the algebraic

size of the family of unbounded, continuous and integrable functions on [0,+∞) and

sequences of them.
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Finally, in Chapter 6 we turn into the setting of series of functions, obtaining pos-

itive results about the linear and algebraic size of the family of sequences of functions

whose series converges absolutely and uniformly but does not verify the hypothesis of

the Weierstrass M-test.
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Introduction

In the field of Functional Analysis, one of the branches that has experienced a

wider development in the past few decades is the theory of Lineability. In this branch

we can find the study of the existence of vector spaces inside spaces with a strong

non-linear setting, as well as the existence of linear algebras. This is precisely the

framework in which the present Dissertation is set.

The theory of Lineability started in 1966 with a paper of the Russian mathemati-

cian Vladimir I. Gurariy [30], where he proved that the family of continuous functions

in the closed unit interval [0, 1] that are nowhere differentiable contains, except for

the null function, an infinite dimensional vector space. The concept of lineability (ex-

istence of an infinite dimensional vector space) was coined by Gurariy himself. He

later partnered with R.M. Aron, F.J. Garćıa-Pacheco, D. Pérez-Garćıa, J.B. Seoane-

Sepúlveda [6] and L. Bernal [15], taking into account the topological structure of the

space, its maximal dimension, and the existence of linear algebras, introduced the

concepts of dense lineability, spaceability, maximal lineability and algebrability (see

Chapter 2 for rigorous definitions).

In this sense, in 1999, V. Fonf, Gurariy and V. Kadets [28] proved that the previ-

ously defined family is spaceable in the space of continuous functions on [0, 1]. Later,

in 2013, P. Jiménez-Rodŕıguez, G.A. Muñoz-Fernández and Seoane-Sepúlveda [35],

provided the first constructive proof of the c-lineability, that is, the existence of a

c-dimensional vector space of this family, where c is the dimension of continuum.
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Finally, F. Bayart and L. Quarta [14] showed in 2007 the dense-algebrability of the

family of continuous and nowhere Hölder functions on [0, 1], which is a more restrictive

family than the initially considered by Gurariy.

Focusing our attention on the space of continuous functions with additional proper-

ties, the list of names that have dedicated their time to study the size of these families

under the point of view of Lineability increases considerably. In 2015, Bernal, M.C.

Calderón-Moreno and J.A. Prado-Bassas [17] proved that the family of continuous

functions f : [0, 1] → R2 whose image has non-empty interior and a zero-(Lebesgue)

measure boundary is maximal lineable and strongly algebrable, as well as the maximal

dense-lineability of the family of continuous functions f : [0, 1]→ R2 whose image has

positive (Lebesgue) measure. Some related results can be found in [2] and [19].

But not everything is positive, as B. Levine and D. Milman [42] already showed in

1940. In particular, the family of continuous bounded variation functions on [0, 1] does

not contain a closed infinite dimensional vector space when we consider this family

as a subspace of the space of continuous functions endowed with the topology of the

uniform convergence. On the other hand, in 2004, Gurariy and Quarta [32] proved

that in some cases, even a large linear structure cannot be found. In particular, they

proved that the family of continuous functions on [0, 1] which admit one and only

one absolute maximum is 1-lineable but not 2-lineable. Moreover, if the closed unit

interval [0, 1] is replaced by the whole real line R, they showed that the previous family

turns out to be 2-lineable, while the family of the corresponding subset of continuous

functions vanishing at infinity is not 3-lineable.

In the setting of sequences of functions and modes of convergence of them, in 2017,

G. Araújo et al. [4] showed the c-lineability of the family of sequences of (Lebesgue)

measurable functions fn : R→ R (n ∈ N) such that (fn)n converges pointwise to zero

on R and fn(I) = R for any non-degenerate interval I ⊂ R and every n ∈ N. More-

over, by considering the family of all sequences of (Lebesgue) measureable functions

fn : [0, 1]→ R (n ∈ N) such that (fn)n converges in measure to zero but not pointwise

xii
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almost everywhere on [0, 1], they were able to prove the maximal dense-lineability of

this family in the vector space of sequences of (Lebesgue) measurable functions on

[0, 1].

In the same year, A. Conejero et al. [27] focused their attention on the probability

theory setting, and they studied the lineability and algebrability of diverse problems,

with both positive and negative results about the size within martingales, random

variables, and certain stochastic processes.

Continuing within the framework of integrable functions, Muñoz-Fernández et al.

[44] proved, in 2008, the c-lineability of both the spaces Lp
(
[0, 1]

)
\ Lq

(
[0, 1]

)
for

1 ≤ p < q, and of Lp(I) \ Lq(I) for 1 ≤ q < p and any unbounded interval I ⊂ R.

Some generalizations and extensions of these results can be found in [6], [15], [18],

[19], [21], [22] and [39].

Regarding the existence of linear algebras, in 2009, Garćıa-Pacheco et al. [29]

proved the existence of an infinite generated closed algebra contained in the family

of almost everywhere continuous functions f : I → R (being I ⊂ R an arbitrary

unbounded interval) that are not Riemann integrable. Moreover, they proved that

the family of continuous and bounded functions f : I → R that are not Riemann

integrable on an unbounded interval I ⊂ R is spaceable. In addition, for the fam-

ilies of functions that are Riemann integrable but not Lebesgue integrable, and the

ones that are Lebesgue integrable but not Riemann integable, they proved its line-

ability and spaceability, respectively. In this direction, Bernal and Ordóñez-Cabrera

[19] showed in 2014 the maximal dense-lineability of the family of continuous and

Riemann integrable functions on [0,+∞) which do not belong to Lp([0,+∞)) for any

0 < p < +∞.

Going back to continuous functions, in the setting of sequences of functions there

are, up to our knowledge, only few and recent results concerning its lineability. In fact,

the first result is ascribed to Bernal and M. Ordóñez-Cabrera [19] in 2014, when they

xiii
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considered the family of sequences of continuous bounded and integrable functions

fn : R → R (n ∈ N) such that ‖fn‖∞ → +∞ (n → ∞), sup
{
‖fn‖1 : n ∈ N

}
< +∞

but ‖fn‖1 6→ 0 (n→∞), and proved its maximal lineability.

In the setting of series of functions, we can find a wide plethora of results concerning

the study of the divergence of the series and its algebraic size. Its origin goes back to

E. du Bois-Reymond (1873, see [40]), who was the first one to exhibit an example of

a continuous function f on the unit circle T whose Fourier series diverges at a point.

This was later improved in 1966 by J.P. Kahane and V. Katznelson (see [36],[38]),

extending the divergence to a set E ⊂ T of (Lebesgue) measure zero. If we drop

away the continuity of the functions, in 1926 A. Kolmogorov [41]) was able to find a

function f ∈ L1(T) such that its Fourier series diverges everywhere on T.

In 2005 Bayart [13] showed that the set of continuous functions on T whose Fourier

series diverges on a set E ⊂ T of measure zero is dense-lineable. A year later, Aron

et al. stated its dense-algebrability. When E is countable, results on lineability of

divergent Fourier series with additional properties are obtained in [16] or [43].

Again Bayart [12], [13] showed that the set of Dirichlet series f(s) =
∞∑
n=1

ann
−s

that are bounded in the right half-plane and diverge everywhere in the imaginary axis

is lineable and spaceable. Together with Quarta [14], they were also able to establish

the algebrability.

In the setting of Banach spaces, A. Aizpuru, C. Pérez-Eslava and Seoane-Sepúlveda

in 2006 [1], asserted that the set of unconditionally convergent but not absolutely

convergent series of any infinite dimensional Banach space is c-lineable. Moreover, the

set of sequences such that its partial sums are bounded but the series diverges is also

c-lineable. If we focus on the complex plane, in 2011 A. Bartoszewicz, S. Glab and

T. Poreda proved in [11] that the set of non-absolutely convergent complex series and

the set of divergent complex series with bounded partial sums are c-algebrable.
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Following with sequences of real numbers, in 2013 Bartoszewicz and Glab [10]

showed that c0 \
⋃
p≥1

`p is densely strongly c-algebrable, where c0 denotes the set of all

real sequences converging to zero, and `p is the set of all p-sumable real sequences.

Later, in 2017, Araújo el al. [4] studied the linear structure of sequences of real

numbers such that its series fails the root and ratio test. Concretely, they show that

the set of sequences in `1 that generate series for which the ratio or the root tests fail

and the set of sequences in ω (the vector space of all real sequences endowed with the

product topology) that generate divergent series for which the ratio and the root tests

fail are c-dense-lineable in `1 or ω.

In the present Dissertation we generalize and extend some of the previous results.

In Chapter 1 we establish the main notation and basic definitions that are needed to

the correct development of this Dissertation.

In Chapter 2, definitions of the theory of Lineability are introduced, as well as

different relations among them, with some general results about the existence of these

linear structures.

In Chapter 3 we recall different modes of convergence in the setting of function

sequence spaces. We show the different relations among them, including counter-

examples when the reciprocals are not true.

Chapter 4 brings modes of convergence into the setting of Lineability. We focus our

attention on sequences of functions with different modes of convergence, and study the

size of these families under the point of view of Lineability, providing positive results

about the existence of both linear and algebraic structures. In particular, we show

the spaceability and strong c-algebrability of the family of sequences of (Lebesgue)

measurable functions fn : [0, 1] → R (n ∈ N) such that they converge to zero in

measure but not pointwise almost everywhere on [0, 1], extending the work in [4], and

the maximal dense-lineability, spacebility and strong c-algebrability of the family of

sequences pointwise but not uniformly convergent to zero on [0, 1], satisfying that for

xv
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any ε > 0 there is a measurable set E ⊂ [0, 1] with m(E) < ε such that ess sup
[0,1]\E

|fn| → 0

(n→∞).

In Chapter 5 we focus our attention on the setting of (Lebesgue) integrable func-

tions. First, we recall the convergence in L1-norm, and complete the results of

Chapter 3 with the existence of sequences of functions fn : [0,+∞)→ R converging to

zero in measure but not in L1-norm, converging to zero in L1-norm but not uniformly

on [0,+∞), and converging to zero uniformly on [0,+∞) but not in L1-norm. In fact,

we study the algebraic size of this last family, obtaining its maximal dense-lineability,

spaceability and strong c-algebrability. Later, we consider unbounded, continuous and

integrable functions and sequences of them, and show that they are ℵ0-algebrable and

maximal dense-lineable. We finish this chapter with some final remarks about the

maximal possible convergence of the sequences of functions, its growth and smooth-

ness.

Finally, in Chapter 6 we deal with series of functions, inspired in the previous

existing results about convergence of the series. In particular, we study the existence

of vector spaces and linear algebras inside the family of uniformly and absolutely

convergent series on a closed interval [a, b] ⊂ R that do not fulfill all the hypothesis of

the Weierstrass M-test.

Most of all the results exposed in Chapters 3, 4, 5 and 6 are original. The results

from Chapters 3, 4 and 5 are published in [24] and [25]. The ones from Chapter 6 are

collected in [26].

xvi



Chapter 1

Preliminaries

1.1 Basic concepts and definitions

In order for this Dissertation to be as self-contained as possible, in this first Chapter

we include basic concepts and definitions with which we deal in this work, as well as

many results that will become useful while developing the upcomings chapters.

By N, Q, R and C we denote the set of all natural numbers, the set of rational

numbers, the real line and the complex plane, respectively. By K we will denote

indistinctly the set of real or complex numbers, that is, K = R or K = C. The

cardinality of N will be ℵ0, and the continuum c will be the cardinality of the real line

R. The different concepts that we introduce next can be briefly consulted in [3], [49],

[53].

Let X 6= ∅ be a set. An application d : X × X → [0,+∞) is a metric over

X if for any x, y, z ∈ X we have d(x, y) = 0 ⇔ x = 0; d(x, y) = d(y, x); and

d(x, y) ≤ d(x, z) + d(z, y). The pair (X, d) is called metric space. A topologic space

(X, τ) is metrizable if there exists a metric d over X which induces the topology τ ,

1
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that is, the family of open balls

B(x, ε) := {y ∈ X : d(x, y) < ε}, (x ∈ X, ε > 0)

is a basis of τ . When X is a vector space and τ is a topology on X where the singletons

are closed and compatible with the linear structure, that is, the applications of addition

+ : (x, y) ∈ X×X 7→ x+y ∈ X and product by scalars · : (λ, x) ∈ K×X 7→ λ ·x ∈ X
are continuous, we say that (X, τ) is a topological vector space. A metric d defined on a

vector space X is translation-invariant if d(x+z, y+z) = d(x, y) for every x, y, z ∈ X.

A metric space (X, d) is complete if every Cauchy sequence (xn)n ⊂ X is convergent

on X, that is, there exists x ∈ X such that for every ε > 0 there is N ∈ N such that

d(xn, x) < ε for every n ≥ N . We denote by lim
n→∞

xn = x or xn → x (n → ∞) the

convergence of a sequence (xn)n to an element x.

A topological vector space X which is metrizable by a translation-invariant metric

and complete is called an F-space. If, in addition, the F-space X is locally convex, we

say that X is a Fréchet space. Recall that a topological vector space is locally convex

if it is Hausdorff and the zero element has a neighbourhood basis formed by convex

sets.

For any Fréchet space (X, d), the application ‖ · ‖ : X → [0,+∞) defined as

‖x‖ := d(x, 0) is a seminorm, that is, ‖x + y‖ ≤ ‖x‖ + ‖y‖ and ‖λx‖ = |λ| · ‖x‖. If,

in addition, ‖x‖ = 0 if and only if x = 0, we have that ‖ · ‖ is a norm and (X, ‖ · ‖) is

a complete normed space, that is (X, ‖ · ‖) is a Banach space.

Let (X, τ) be a topological space. Given A ⊂ X we denote by int(A) and A the

interior and, respectively, the closure of A. We will use the following category concepts

to study the topological size of some sets. A set A ⊂ X is said to be:

(1) dense in X if A = X;

(2) nowhere dense in X if int
(
A
)

= ∅;

2
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(3) of first category if A =
∞⋃
n=1

Fn, where each Fn is nowhere dense in X;

(4) of second category if A is not of first category; and

(5) residual if its complement Ac := X \ A is of first category.

A topological space (X, τ) is a Baire space if any countable intersection of dense

open sets is also dense in X.

Theorem 1.1 (Baire’s Theorem). Every complete metric space (X, d) is a Baire

space.

In particular, we have the following result.

Corollary 1.2. Let (X, d) be a complete metric space and A ⊂ X be a subset. If A

is of first category, then X \ A is dense in X.

1.2 Some classical spaces

In this Section we recall some well-known spaces which we will use in this work.

1.2.1 Continuous functions

Let [a, b] ⊂ R be a closed interval of the real line, where in R we consider always

the euclidean norm. We define C([a, b]) as the space of all functions f : [a, b]→ K that

are continuous on [a, b]. This space becomes a separable Banach space when endowed

with the supremum norm ‖ · ‖∞ given by

‖f‖∞ := sup
x∈[a,b]

|f(x)|, for every f ∈ C([a, b]).
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The space of all sequences of continuous functions on [a, b] will be denoted by

C([a, b])N, and it becomes a separable Banach vector space when endowed with the

norm ‖(fn)n‖ := sup
n∈N
‖fn‖∞.

For the interval [0,+∞), we can consider the space C([0,+∞)) of all functions

f : [0,+∞)→ K that are continuous on [0,+∞). Although it is not a Banach space,

it does become a Fréchet space when endowed with the compact-open topology. Recall

that for this topology we can consider the metric

d(f, g) :=
∞∑
n=1

1

2n
· ‖f − g‖∞,n

1 + ‖f − g‖∞,n
,

where ‖h‖∞,n := sup
{
|h(x)| : x ∈ [0, n]

}
for any h ∈ C([0,+∞)) and n ∈ N. We

have that fn → f (n→∞) in the metric d if and only if fn → f (n→∞) uniformly

on compacta if and only if ‖fn − f‖∞,n → 0 (n→∞).

1.2.2 Sequence spaces

The `p sequence spaces for 1 ≤ p < +∞

Let p ∈ [1,+∞). Given a sequence (xn)n ⊂ K we define its `p-norm or simply

p-norm as

‖xn‖p =

(
∞∑
n=1

|xn|p
)1/p

.

The sequence space `p is defined as those sequences (xn)n ⊂ K for which its `p-norm

is finite, that is,

`p :=
{

(xn)n ⊂ K : ‖xn‖p < +∞
}
,

and its becomes a (separable) Banach space when endowed with the ‖ · ‖p norm for

every 1 ≤ p < +∞.
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The `∞ sequence space

For the case p = +∞, the `∞-norm is taken slightly different. We define the

`∞-norm, ∞-norm or supremum norm as

‖xn‖∞ := sup
n∈N
|xn|.

The sequence space `∞ is defined as those sequences (xn)n ⊂ K for which its ∞-norm

is finite, that is,

`∞ :=
{

(xn)n ⊂ K : ‖xn‖∞ < +∞
}
.

The pair (`∞, ‖ · ‖∞) becomes a Banach space, whose elements are precisely those

sequences (xn)n ⊂ K that are bounded. Moreover, the space (`∞, ‖ · ‖∞) is not

separable.

The c0 and c00 sequence spaces

The family of all sequences (xn)n ⊂ K converging to zero is denoted by c0, that is,

c0 :=
{

(xn)n ⊂ K : xn → 0 (n→∞)
}
.

Observe that c0 is a subspace of `∞, since convergence of a sequence implies its

boundedness. Furthermore, if we endow c0 with the supremum norm of `∞, we obtain

that (c0, ‖·‖∞) is a closed subspace of (`∞, ‖·‖∞), and hence it is also a Banach space.

If we consider the family c00 of all vanishing sequences, that is,

c00 := {(xn)n ⊂ K : there exists N ∈ N such that xn = 0 for every n ≥ N},

then c00 is a dense subspace of (c0, ‖ · ‖∞). Indeed, for any x = (xn)n ∈ c0, the

sequences ωk = (ωkn)n = (x1, x2, . . . , xk, 0, 0, . . .) ∈ c00 verify

‖ωk − x‖∞ = sup
n∈N
|wkn − xn| = sup

n≥k
|xn|.

5
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But x ∈ c0, so given ε > 0, there exists N ∈ N such that |xn| < ε for every n ≥ N .

Hence, ‖ωk − x‖∞ < ε for any k ≥ N .

In fact, the set

{(rn)n ⊂ Q : there exits N ∈ N such that rn = 0 for n ≥ N}

is also dense in c0, and hence, (c0, ‖ · ‖∞) is separable.

1.2.3 The space L0(X,µ)

Let X 6= ∅ be a non-empty set. A family M of subsets of X is a σ-algebra on X

if ∅, X ∈M; X \ A ∈M whenever A ∈M; and every countable union of sets of M
is again a member of M.

An application µ : M → [0,+∞) is a measure on the σ-algebra M if µ(∅) = 0;

and µ

(
∞⋃
n=1

An

)
=

∞∑
n=1

µ(An) for every collection (An)n ⊂ M of pairwise disjoints

elements. The triplet (X,M, µ) is called measure space over X.

A function f : X → K is measurable (with respect to the measure µ) on X if for

every open subset B ⊂ K we have that f−1(B) ∈ M. We denote by L0(X,µ) the set

of all measurable functions from X into K.

Given two functions f, g ∈ L0(X,µ) we say that f = g almost everywhere,

and we denote it by f ∼ g, if there exists a measurable set A ∈ M such that

µ(A) = 0 and f = g on X \ A. This is a relation of equivalence, and we denote

by [f ] := {g ∈ L0(X,µ) : f ∼ g} the equivalence class of a measurable function f ,

and by L0(X,µ) the quotient space under this relation, that is,

L0(X,µ) := L0(X,µ)/ ∼ .

It is known that for any pair f and g of measurable functions such that f ∼ g, the

Lebesgue integrals for f and g in any A ∈ M with respect to µ are equals. So, the

6
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application ‖ · ‖1 : L0(X,µ)→ [0,+∞] given by

‖f‖1 :=

∫
X

|f | dµ,

is well-defined.

We define the space L1(X,µ) as all the classes of measurable functions that are

integrable over X, that is,

L1(X,µ) :=
{
f ∈ L0(X,µ) : ‖f‖1 < +∞

}
.

In L1(X,µ), the application ‖ · ‖1 defines a norm. In fact, there is no problem if we

consider powers of the functions.

1.2.4 Lp(X,µ) spaces of functions for 1 ≤ p < +∞

Let f : X → K be a measurable function on X. For 1 ≤ p < +∞ we define the

Lp-norm or simply p-norm as

‖f‖p :=

(∫
X

|f |p dµ
)1/p

.

The space Lp(X,µ) will denote the collection of all measurable (classes of) functions

f such that ‖f‖p < +∞. The pair (Lp(X,µ), ‖·‖p) becomes a separable Banach space

for every p ∈ [1,+∞).

1.2.5 L∞(X,µ) space of functions

Notwithstanding, in order to study the case p = +∞ we have to be more precise.

If we try to reason as in the case of sequences of scalars, we see that the supremum

over the whole space is not well-defined among classes of measurable functions. For

instance, the functions f(x) = 1, and g(x) = 1 if x ∈ [0, 1] \ {1/n} (n ∈ N) and

g(1/n) = n (n ∈ N) represent the same class in L0([0, 1],m) (where m denotes the

7
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Lebesgue measure), but sup
[0,1]

f = 1 and sup
[0,1]

g = +∞. So we need to consider a new

concept, the essential supremum.

Let f : X → R be a measurable function, and define the set Sf by

Sf :=
{
α ∈ R : µ(f−1((α,+∞])) = 0

}
.

It turns out that Sf collects the bounds of f except for a set of measure zero, that is,

α ∈ Sf if and only if µ
(
{x ∈ X : f(x) > γ}

)
= 0 for all γ > α, and, in particular, if

f is bounded, sup f ∈ Sf .

We define the essential supremum of the function f as

ess sup f = inf Sf .

If Sf = ∅, then ess sup f = +∞, and we always have ess sup f ≤ sup f (even if f is

unbounded). Observe that, by the definition of β := ess supf , we have

µ
(
f−1((β,+∞])

)
= µ

(
∞⋃
n=1

f−1

((
β +

1

n
,+∞

]))

≤
∞∑
n=1

µ

(
f−1

((
β +

1

n
,+∞

]))
= 0.

Thus, µ (f−1 (ess sup f,+∞]) = 0.

We have that ess sup f = ess sup g for any f, g ∈ L0(X,µ) such that f ∼ g. Indeed,

if f(x) = g(x) for any x ∈ X \ A, where µ(A) = 0, then for any α ∈ R,

µ
(
{x ∈ X : |f(x)| > α}

)
= µ

(
{x ∈ X \ A : |f(x)| > α}

)
+ µ
(
{x ∈ A : |f(x)| > α}

)
= µ

(
{x ∈ X \ A : |g(x)| > α}

)
= µ

(
{x ∈ X \ A : |g(x)| > α}

)
+ µ
(
{x ∈ A : |g(x)| > α}

)
= µ

(
{x ∈ X : |g(x)| > α}

)
.

So, Sf = Sg and ess sup f = ess sup g. In particular, the essential supremum is well-

defined in L0(X,µ).

8
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We denote by L∞(X,µ) the space of all (classes of) measurable functions f on X

such that ‖f‖∞ := ess sup |f | < +∞.

Observe that the pair (L∞(X,µ), ‖ · ‖∞) becomes a Banach space where its ele-

ments are usually called measurable functions essentially bounded on X. In fact, the

functions of L∞(X,µ) are precisely those functions that are bounded except for a set

of measure zero.

Proposition 1.3. Let I ⊂ R be an interval, and f : I → R be a continuous function.

Then ess sup f = sup f .

Proof. We know that ess sup f ≤ sup f . Assume, by way of contradiction, that

β := ess sup f < sup f =: γ. Then, there exists α ∈ (β, γ) such that m
(
{x ∈ X :

f(x) > α}
)

= 0 and α < γ. Then, we also have that m
(
{x ∈ X : γ > f(x) > α}

)
= 0.

Observe that {x ∈ X : γ > f(x) > α} = f−1((α, γ)), which is a non-empty open set

in X. So, m
(
f−1((α, γ))

)
6= 0, which is a contradiction.

It is immediate that we also have:

Corollary 1.4. Let I ⊂ R be an interval, and f : I → R be a continuous function

except for a finite number of points. Then ess sup f = sup f .

1.3 Topology of sequence spaces

Let X be a topological vector space. We denote by XN the set of all X-valued

sequences, that is,

XN := {(xn)n : xn ∈ X for all n ∈ N}.

Over this space we can define the product topology τΠ as the strongest topology that

makes every projection (that is (xn)n 7→ xn for all n ∈ N) continuous, and V ⊂ XN is

9
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an open set for this topology if there are finitely many open sets V1, V2, . . . , VN of X

such that

V1 × V2 × · · ·VN ×X ×X × · · · ⊂ V.

If (X, d) is a complete metric space, then XN (with the product topology) is com-

pletely metrizable. Indeed, if we define, for instance,

D((xn)n, (yn)n) :=
∞∑
n=1

1

2n
· d(xn, yn)

1 + d(xn, yn)
,

for (xn)n, (yn)n ∈ XN, it is clear that D((xn)n, (yn)n) = 0 if and only if d(xn, yn) = 0

for any n ∈ N; D((xn)n, (yn)n) ≥ 0 and D((xn)n, (yn)n) = D((yn)n, (xn)n). In order

to see that D is a metric it only remains to show the triangular inequality. For this,

let us consider the function p : [0,+∞)→ [0,+∞) given by

p(x) =
x

1 + x
.

Clearly, p(x) is differentiable on [0,+∞), and

p′(x) =
1

(1 + x)2
> 0,

so p(x) is increasing on [0,+∞). In particular, as d(xn, yn) ≤ d(xn, zn) + d(zn, yn) for

any n ∈ N, we have

D((xn)n, (yn)n) =
∞∑
n=1

1

2n
· d(xn, yn)

1 + d(xn, yn)
=
∞∑
n=1

1

2n
· p(d(xn, yn))

≤
∞∑
n=1

1

2n
· p(d(xn, zn) + d(zn, yn)) =

∞∑
n=1

1

2n
· d(xn, zn) + d(zn, yn)

1 + d(xn, zn) + d(zn, yn)

=
∞∑
n=1

1

2n
· d(xn, zn)

1 + d(xn, zn) + d(zn, yn)
+
∞∑
n=1

1

2n
· d(zn, yn)

1 + d(xn, zn) + d(zn, yn)

10
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≤
∞∑
n=1

1

2n
· d(xn, zn)

1 + d(xn, zn)
+
∞∑
n=1

1

2n
· d(zn, yn)

1 + d(zn, yn)

= D((xn), (zn)n) +D((zn)n, (yn)n).

Moreover, this metric is compatible for the product topology. Indeed, let V be

a basic open set for (XN, τΠ), that is, V = V1 × V2 × · · · × VN × X × · · · , with

V1, V2, . . . , Vn are open sets in (X, d). Pick (xn)n ∈ V , so, xn ∈ Vn for 1 ≤ n ≤ N and

there is εn > 0 such that Bd(xn, εn) ⊂ Vn. Let ε := min
{

1
2n
· εn : 1 ≤ n ≤ N

}
. We

claim that BD((xn)n, ε) ⊂ V .

For this, let (yn)n ∈ XN such that D((xn)n, (yn)n) < ε. For any 1 ≤ n ≤ N ,

1

2n
· d(xn, yn) ≤ D((xn)n, (yn)n) < ε ≤ 1

2n
· εn,

thus, yn ∈ Bd(xn, εn) (1 ≤ n ≤ N) and (yn)n ∈ V .

Reciprocally, fix (xn)n ∈ XN and ε > 0. Take N ∈ N such that 1
2N

< ε
2
. Let

V = V1 × V2 × · · · × VN ×X × · · · , where Vn := Bd

(
xn,

ε
2N

)
(1 ≤ n ≤ N). We claim

that V ⊂ BD((xn)n, ε).

For (yn)n ∈ V , we have that d(xn, yn) < ε
2N

(1 ≤ n ≤ N), so

N∑
n=1

1

2n
· d(xn, yn)

1 + d(xn, yn)
≤

N∑
n=1

d(xn, yn) < N · ε

2N
=
ε

2
. (1.1)

On the other hand,

∞∑
n=N+1

1

2n
· d(xn, yn)

1 + d(xn, yn)
≤

∞∑
n=N+1

1

2n
=

1

2N
<
ε

2
. (1.2)

So, by (1.1) and (1.2) we have that D((xn)n, (yn)n) < ε and we are done.

Finally, D is complete (see [53, Theorem 24.11]). Indeed, let (xk)k ⊂ XN be a

Cauchy sequence, where xk = (xkn)n for every k ∈ N. Since d(xn, yn) ≤ D((xn)n, (yn)n)

for all n ∈ N, we have that for any fixed n ∈ N, (xkn)k is a Cauchy sequence in (X, d),

so, because (X, d) is complete, there is xn ∈ X with xkn → xn (k →∞).

11
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Let x = (xn)n ∈ XN and let us see that D(xk, x)→ 0 (k →∞). For this, fix ε > 0

and take N ∈ N such that
1

2N
<
ε

2
. (1.3)

since xkn → xn (k → ∞), for 1 ≤ n ≤ N there exists K ∈ N such that if k ≥ K we

have that

d(xkn, xn) <
ε2n

2N
(1 ≤ n ≤ N). (1.4)

Now, for k ≥ K,

D(xk, x) =
N∑
n=1

1

2n
· d(xkn, xn)

1 + d(xkn, xn)
+

∞∑
n=N+1

1

2n
· d(xkn, xn)

1 + d(xkn, xn)

≤
N∑
n=1

1

2n
· d(xkn, xn) +

∞∑
n=N+1

1

2n

<
N∑
n=1

1

2n
· ε2

n

2N
+

1

2N
<
ε

2
+
ε

2
= ε,

and we get that xk → x (k →∞).

Assume that (X, d) is a complete metric space. Following the cases of c0, c00 and

`∞, we denote by c0(X) the set of all sequences in XN convergent to zero, that is,

c0(X) :=
{

(xn)n ∈ XN : d(xn, 0)→ 0 (n→∞)
}
,

and by c00(X) the set of all sequences in XN eventually vanishing, that is,

c00(X) :=
{

(xn)n ∈ XN : there is N ∈ N such that xn = 0 for every n > N
}
.

We can see c0(X) as a subset of (XN, τΠ), but if we consider in c0(X) the metric:

d∞((xn)n, (yn)n) := sup
n∈N

d(xn, yn),

we have that (c0(X), d∞) is also a complete metric space.

In addition, the set c00(X) verifies the following assertions:

12
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(1) c00(X) is dense in (XN, τΠ). Indeed, for any element x = (xn)n ∈ XN, the sequence

ωk = (ωkn)n = (x1, x2, . . . , xk, 0, 0, . . .) (k ∈ N) does the job.

(2) c00(X) is dense in (c0(X), d∞), since for any (xn)n ∈ c0(X), choosing the sequence

ωk as before, we have that ωk ∈ c00(X) for every k ∈ N, and

d∞((ωkn)n, (xn)n) = sup
n∈N

d(ωkn, xn) = sup
n≥k+1

d(xn, 0).

But (xn)n ∈ c0(X), so, given ε > 0, there exists N ∈ N such that d(xn, 0) < ε for

every n ≥ N . Hence, d∞((ωkn)n, (xn)n) < ε for any k ≥ N , and we are done.
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Chapter 2

Lineability

2.1 Introduction

Many mathematicians over History have been attracted and fascinated over the

existence of different mathematical objects fulfilling properties that are, a priori, anti-

intuitive. This thought was plausible with the idea that was held until the end of

the 19th century, where the geometric behaviour of the graph of a given function

was thought to characterize the analytic behaviour of the same function. It was

then commonly believed that it was impossible to have a continuous function not

being differentiable at some set of points “big enough”. Nonetheless, this idea was

disproved by the German mathematician K. Weierstrass [52], providing the existence

of the so-called Weierstrass’ Monsters.

A new trend that has been growing attention of mathematicians all around the

globe for the past few decades focus on the study of large algebraic structures inside

a (commonly) non-linear setting, where those “pathological” objects usually lie. In

fact, in [30], Gurariy provided a first (and very famous) example of this new branch.
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Theorem 2.1. There exists an infinite dimensional linear space such that its non-null

elements are continuous nowhere differentiable functions on [0, 1].

Observe that the above theorem states that what was initially supposed to be an

isolated phenomenon, as Weierstrass pointed out with the existence of his Monsters,

has actually a big linear structure supporting it.

This new approach receives the name of Lineability, and the main terminology was

firstly introduced by Aron, Gurariy and Seoane-Sepúlveda in [7], [32], [51], although

the essence of them can be found in [30] and [31]. In this new terminology Gurariy

showed that the set of Monsters is lineable.

2.2 Main definitions

Vector spaces and linear algebras are an example of some mathematical structures

which are, at first, unexpected to appear in spaces with a strong non-linear setting,

that is, their existence within families with strange or pathological properties is rather

unlikely. As commented before, Gurariy was the first one who provided such an

example, with the existence of an infinite dimensional vector subspace in the family of

continuous nowhere differentiable functions on [0, 1]. In this Section, the basic concepts

and definitions about existence of such linear structures are presented. The concepts of

lineability and spaceability are due to Aron, Gurariy and Seoane-Sepúlveda, although

these notions were treated before, under another terminology (see [7], [32], [51]). The

notion of maximal lineability (see Definition 2.2) was introduced by Bernal in [15].

Later, Gurariy partnered with Aron et al. coined the concepts of algebrability (see

Definition 2.4), which has its roots in the papers [8], [9], [51]. Finally, this definitions

were completed with the notion of strong algebrability, introduced by Bartoszewicz

and Glab (see [10]).
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Definition 2.2. Let X be a vector space and let A ⊂ X be a subset. Let κ be a (finite

or infinite) cardinal number. We say that A is:

(1) κ-lineable if there is a vector space M such that M ⊂ A ∪ {0} and dim(M) = κ;

(2) maximal lineable if A is dim(X)-lineable.

Although we speak about lineability of some subset A ⊂ X, this set does not need

to have a linear structure itself. In fact, the neutral or 0 element of X, or even the

sum of any of these objects would not have the “strange” behaviour.

The definitions of lineability can be completed if a topological structure is taken

into account, as the next definition shows.

Definition 2.3. Let X be a topological vector space and let A ⊂ X be a subset. Let κ

be a cardinal number. We say that A is:

(1) spaceable if there is a closed infinite dimensional vector space M such that M ⊂
A ∪ {0};

(2) κ-dense-lineable if there is a dense vector space M in X with M ⊂ A ∪ {0}, and

dim(M) = κ;

(3) maximal dense-lineable if A is dim(X)-dense-lineable.

If we replace linear spaces by algebras we have the notion of algebrability.

Definition 2.4. Let X be a vector space contained in some (linear) algebra. Let κ be

a cardinal number. We say that A ⊂ X is:

(1) algebrable if there is an algebra B so that B ⊂ A∪{0} and B is infinitely generated,

that is, the cardinality of any system of generators of B is infinite;

(2) κ-algebrable if there is a κ-generated algebra B with B ⊂ A ∪ {0};
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(3) strongly κ-algebrable if, in addition, the algebra B can be taken free.

If the structure of the algebra is commutative, the notion of strong κ-algebrability

is equivalent to the existence of a generating system C of the subalgebra B ⊂ A∪ {0}
with card(C) = κ and such that for any positive integer N ∈ N, any non-constant

polynomial P in N variables, and any distinct f1, f2, . . . , fN ∈ C, we have

P (f1, f2, . . . , fN) ∈ B \ {0}.

2.3 On the relation between lineability, spaceability

and denseness

Given a subset A ⊂ X, whenever A is spaceable or algebrable, it is trivial that

A is also lineable. For the other definitions of lineability, in 2009 Aron et al. [6]

showed that there is actually no relation between the concepts of spaceability and

dense-lineability. We include the proof as appears in [5, Theorem 7.2.1].

Theorem 2.5.

(a) Let X be an infinite dimensional locally convex space. There exists a subset A ⊂ X

such that A is spaceable and dense in X, although it is not dense-lineable in X.

(b) Let X be an infinite dimensional F-space. There exists a subset A ⊂ X which is

lineable and dense in X, but which is not spaceable. If X is separable, then A can

also be chosen to be dense-lineable in X.

Proof. We will prove only the real case. For K = C, just change Q by Q + iQ in the

proofs.

(a) Take any vector u ∈ X \ {0} and let Z := span({u}) = {cu : c ∈ R}. Since

dim(Z) = 1 and X is infinite dimensional, there is an algebraic complement Y of Z
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(that is, a linear subspace Y of X such that Z ∩ Y = {0} and X = Z + Y ), satisfying

that Y is a closed subspace. Take

A := Y + {λu : λ ∈ Q}.

We will now show that A is our candidate of dense and spaceable but not dense-

lineable subset of X. Since Y ⊂ A and Y is a closed infinite dimensional subspace of

X (because X is infinite dimensional and dim(Z) = 1), the set A is spaceable. The

set A is also dense. Indeed, {λu : λ ∈ Q} is dense in Z, so A = Y + {λu : λ ∈ Q} is

dense in Y + Z = X.

Finally, let us prove that A is not dense-lineable. By way of contradiction, suppose

that M is a dense vector subspace of X contained in A ∪ {0} = A. Take w ∈ M and

write

w = y + qu

with y ∈ Y and q ∈ Q. Suppose that q 6= 0. Then
π

q
w ∈M ⊂ A; that is,

π

q
w = y′ + q′u

with y′ ∈ Y and q′ ∈ Q. Since X = Y + Z and Z is the algebraic complement of Y ,

we infer that

y′ =
π

q
y and q′u =

π

q
qu,

but this implies that π = q′ ∈ Q, which is clearly false. Thus, q = 0, and we get that

w = y+ qu = y ∈ Y , so, M ⊂ Y , which (again) is a contradiction because Y is closed

and proper, and M is dense.

(b) Let us consider a Hamel basis B for X. Because dim(X) = ∞, we always can

take a countably infinite subset {bn : n ∈ N} of B. Let Y = span{bn : n ∈ N} and

Z = span
(
B \ {bn : n ∈ N}

)
. It is clear that Z is the algebraic complement of Y and

that X = Y + Z. Let

A := Y + spanQ
(
B \ {bn : n ∈ N}

)
,
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where spanQ(C) denotes the set of all finite linear combinations of elements of C with

coefficients in Q. We claim that A satisfies the required properties.

First, A is lineable since Y ⊂ A. Note that spanQ
(
B \ {bn : n ∈ N}

)
is dense in

Z, so A = Y + spanQ
(
B \ {bn : n ∈ N}

)
is dense in Y + Z = X.

Finally, A is not spaceable. Indeed, suppose that M is an infinite dimensional

closed vector subspace of X contained in A ∪ {0} = A. Now, we proceed similarly as

we did in part (a). Take w ∈M and write:

w = y + q1b
′
1 + · · ·+ qrb

′
r

with y ∈ Y , q1, . . . , qr ∈ Q and b′1, · · · , b′r ∈ B \{bn : n ∈ N}. Our aim is to show that

qj = 0 for every j ∈ {1, 2, . . . , r}. Suppose not, and assume, without loss of generality,

that q1 6= 0. Then
π

q1

w ∈M ⊂ A, that is,

π

q1

w = y′ + q′1b
′
1 + · · ·+ q′sb

′
s,

with s ≥ r, y′ ∈ Y , q′1, . . . , q
′
s ∈ Q, and b′1, . . . , b

′
s ∈ B \ {bn : n ∈ N}. Therefore,

y′ =
π

q1

y,

and

πb′1 +
q2π

q1

b′2 + · · ·+ qrπ

q1

b′r = q′1b
′
1 + · · ·+ q′sb

′
s,

obtaining again the contradiction that π = q′1 ∈ Q. Thus, all qj’s are 0, and, conse-

quently, M ⊂ Y . But this is impossible because dim(Y ) = ℵ0 and the cardinality of

any Hamel basis of M is uncountable (any infinite dimensional closed subspace of a

complete metrizable space has the cardinality of continuum).

To finish the proof, notice that if X is separable, then we can choose Y to be dense

in X, and therefore A is dense-lineable.

Nonetheless, if we ask for some conditions, it is possible to find a positive relation

between lineability and dense-lineability. In order to do so, we introduce the following

definition (see [6]).
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Definition 2.6. Let X be a vector space and let A,B ⊂ X be two subsets. We say

that A is stronger than B if A+B ⊂ A.

Under this situation, if we have lineability of some subset A ⊂ X and dense-

lineability of a subset B ⊂ X, it is possible to transfer the density from B to A.

This result was proved by Bernal [15]. Previously, Aron et al. [6] gave a version for

separable Banach spaces and, in fact, is often presented in the current literature in

many and vary forms (see [5], [20]). The proof included is an adaptation of the proof

on [15].

Theorem 2.7. Let X be a metrizable separable topological vector space and κ be an

infinite cardinal. Let A,B ⊂ X be two subsets such that A is κ-lineable and B is dense-

lineable in X. If A is stronger than B and A ∩ B = ∅, then A is κ-dense-lineable in

X.

Proof. Since X is separable, there exists a sequence (xn)n ⊂ X such that the set

{xn : n ∈ N} is dense in X. Now, A is κ-lineable in X, so there exists a vector

subspace A1 of A ∪ {0} with dim(A1) = κ. Because dim(A1) = κ, there exists

{vi : i ∈ I} ⊂ A1 \ {0} linearly independent such that A1 = span{vi : i ∈ I} and

card(I) = κ. Moreover, κ is an infinite cardinal, which means that we can split I into

infinitely many pairwise disjoint non-empty sets Jn (n ∈ N), that is,

I =
∞⋃
n=1

Jn.

Fix n ∈ N and i ∈ Jn. Because multiplication by scalars is a continuous operation in

a topological vector space, there exists εi > 0 such that d(εivi, 0) < 1/n, where d is

the translation-invariant distance that generates the topology of X.

On the other hand, B is dense-lineable in X, so there exists a vector subspace B1

such that B1 ⊂ B ∪ {0} and B1 is dense in X. For every n ∈ N, the denseness of B1

guarantees the existence of yn ∈ B1 such that d(yn, xn) < 1/n.
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Now, we define the elements

xn,i := yn + εivi

for every n ∈ N and i ∈ Jn, and consider the vector space

M := span{xn,i : n ∈ N, i ∈ Jn}.

We are going to see that M is dense in X, M ⊂ A ∪ {0} and dim(M) = κ.

(1) Fix n ∈ N and take some in ∈ Jn. Let un := xn,in . We have that

d(un, xn) ≤ d(un, yn) + d(yn, xn) = d(yn + εinvin , yn) + d(yn, xn)

= d(εinvn, 0) + d(yn, xn) <
1

n
+

1

n
=

2

n
→ 0 (n→∞).

But (xn)n is dense in X, so (un)n is also dense, and the same is true for M .

(2) Fix x ∈ M \ {0}. There are scalars c1, c2, . . . , cs with cs 6= 0, and indices jr ∈ I
(r = 1, 2, . . . , s) such that

x = c1x1,j1 + c2x2,j2 + . . .+ csxs,js .

But by the definition of (xn,i)n,i we have that

x = c1y1 + c2y2 + . . .+ csys + c1εj1vj1 + c2εj2vj2 + . . .+ csεjsvjs =: y0 + z0,

where y0 = c1y1 + c2y2 + . . .+ csys and z0 = c1εj1vj1 + c2εj2vj2 + . . .+ csεjsvjs . Recall

that y1, y2, . . . , ys ∈ B1, which is a vector space, so y0 ∈ B1 ⊂ B ∪ {0}. Analogously,

vj1 , vj2 , . . . , vjs ∈ A1, they are linearly independent, and csεjs 6= 0, so z0 ∈ A1\{0} ⊂ A.

Finally, x = y0 + z0 ∈ (B ∪ {0}) +A ⊂ A because A is stronger than B, and we have

M ⊂ A.

(3) It only remains to prove that dim(M) = κ. For this, it is clear that

card
(
{(n, i) : n ∈ N, i ∈ Jn}

)
= card

(
∞⋃
n=1

Jn

)
= card(I) = κ.
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So, if we prove that the vectors of {xn,i : n ∈ N, i ∈ Jn} are linearly independent we

are done. Indeed, assume by way of contradiction that c1x1,j1 +c2x2,j2 +. . .+csxs,js = 0

with cs 6= 0. As done before (and following the same notation), we have that y0 +z0 =

0, where y0 ∈ B1 ∪ {0} and z0 ∈ A1 \ {0}. But then, y0 = −z0 ∈ A1 \ {0}, since A1 is

a vector space. Hence, we have that

y0 ∈
(
A1 \ {0}

)
∩
(
B1 ∪ {0}

)
⊂ A ∩B = ∅,

which is a contradiction.

Recall that, given two vector spaces X and Y with Y ⊂ X, the codimension of Y ,

denoted by codim(Y ), is defined as the dimension of the algebraic complement of Y in

X, that is, the dimension of the vector space Z such that Z+Y = X and Z∩Y = {0}.
Having this definition in mind, the next result by Bernal and Ordóñez-Cabrera (see

[19]) assures that, in the separable case, there is nothing to add in order to obtain

the dense-lineability from mere lineability. We include the proof as it appears in [5,

Theorem 7.3.3].

Theorem 2.8. Let X be a metrizable separable topological vector space and Y be a

vector subspace of X. If X \Y is lineable, then X \Y is dense-lineable. Consequently,

both properties of lineability and dense-lineability for X \ Y are equivalent provided

that X has infinite dimension.

Proof. It is evident that X \ Y is lineable if and only Y has infinite codimension.

Since X is metrizable and separable, it has a countable open basis {Gn : n ∈ N}.
Assume that X \ Y is lineable. In particular, Y is a proper vector space of X, so

int(Y ) = ∅. Hence X \Y is dense and there is x1 ∈ G1 \Y . Since codim(Y ) =∞, we

have span(Y ∪ {x1})  X. Then, int(span(Y ∪ {x1})) = ∅, and it follows that there

exists x2 ∈ G2 \ span(Y ∪ {x1}). With this procedure, we get recursively a sequence

of vectors (xn)n∈N satisfying

xn ∈ Gn \ span(Y \ {x1, . . . , xn−1}) (n ∈ N).
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In particular, the set {xn : n ∈ N} is dense. Now, if we define M := span{xn : n ∈
N}, then M is a dense vector space, and M ⊂ (X \ Y ) ∪ {0}.

However, even in the case of non-separability a similar result can be found in

[19] (see also [5, Theorem 7.3.4]), for which the Continuum Hypothesis needs to be

assumed.

Proposition 2.9. Let X be a non-separable F -space and Y be a closed separable

vector subspace of X. Then X \ Y is maximal lineable.

Proof. Indeed, let Z be a vector space that is an algebraic complement of Y , so that

Z ⊂ (X \ Y ) ∪ {0}. Note that, since Y is separable and X is not,

dim(Y ) ≤ c ≤ dim(X) = dim(Y ) + dim(Z).

If dim(Z) ≤ ℵ0, then Z, and so X = Y + Z, would be separable, which is a con-

tradiction. Hence (assuming the Continuum Hypothesis), dim(Z) ≥ c, which implies

dim(Z) = dim(X) (see, for instance [5, Corollary II.3]), and the proof is finished.

On the previous results, different relations between lineability concepts have been

studied. In order to get the lineability of a family with some “pathological” properties,

there is not a sufficient criterion which gives us the solution. Usually, it is necessary to

construct directly the basis of the vector space to preserve the pathological properties

under sums and products by scalars, although this property will not be consistent

under linear combinations. The case of spaceability is also studied in many cases by

a constructive method. However, there exist some results that provide the spacebility

directly. The main one was obtained by Kalton [37], and was later improved by Kitson

and Timoney [39]. The proofs of these results are large and very technical, and we

will not include them in this work. The interested reader can consult them in [5] and

[37].
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Theorem 2.10. Let X be a Fréchet space and Y ⊂ X be a closed linear space. Then,

the complement X \ Y is spaceable if and only if Y has infinite codimension.

Theorem 2.11. Let Zn with n ∈ N be a collection of Banach spaces and X be a

Fréchet space. Let Tn : Zn → X be linear continuous mappings and Y be the linear

subspace generated by
⋃
n∈N

Tn(Zn). If Y is not closed in X, then the complement X \Y

is spaceable.

25



Lineability Lin. Alg. Struc. Func. Seq. Spaces

26



Chapter 3

Modes of convergence

3.1 Definitions and relations between convergences

When we study sequences of scalars (xn)n ⊂ K, it is clear what does it mean for

the sequence to be convergent to some x ∈ K. Indeed, we just have that for every

ε > 0 we can always find some natural number N ∈ N such that for every n ≥ N the

elements xn of the sequence are “near” the limit point x, that is |xn−x| < ε. Even in

the case of topological spaces, this concept of convergence remains the same, just by

replacing |xn − x| < ε with the corresponding condition xn ∈ U , where U is any open

set of the topology such that x ∈ U .

However, if we consider sequences of functions fn : X → K (n ∈ N), for some

non-empty set X, the amount of ways to approach a certain limit function f : X → K

increases considerably. Every student of Mathematics has seen some time the concepts

of pointwise or uniform convergence, but these are not the only ones. We will recall the

different modes of convergence of sequences of functions that will be studied. Although

there is a wide plethora of ways of convergence for a sequence of functions, we mainly

focus our attention on the ones that are related to the topic of the following chapters,
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measure spaces. A natural question that arises is how can we study the different

relations among them.

The most common known definitions of convergence are the pointwise and uniform

convergence.

Definition 3.1. Let fn, f : X → K (n ∈ N) be functions defined on a non-empty set

X, and A ⊂ X. We say that:

(1) fn → f pointwise on A if for every x ∈ A we have that fn(x) → f(x) (n → ∞)

on A, that is, if for each x ∈ A, and for each ε > 0, there exists N = N(x, ε) ∈ N
such that

|fn(x)− f(x)| < ε, (n ≥ N).

(2) fn → f uniformly on A if for each ε > 0, there exists N = N(ε) ∈ N, such that

|fn(x)− f(x)| < ε (n ≥ N, x ∈ A).

Obviously, uniform convergence implies pointwise convergence, but the reciprocal

is false, as we will see in Section 3.2. From the definition of uniform convergence the

following equivalent characterization can be stated (see, for instance [3]).

Theorem 3.2 (Criterion of the Supremum). Let fn, f : X → K (n ∈ N) be

functions on X. Then, the sequence fn → f uniformly on A ⊂ X if and only if

sup
x∈A
|fn(x)− f(x)| → 0 (n→∞).

These two modes of convergence only rely on the good structure of K. But if we

also care about some structure on X (as for example, a measure one), we get more

modes of convergence, such as convergence in measure, almost uniform convergence,

etc.
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Definition 3.3. Let (X,M, µ) be a measure space. Let fn, f : X → K (n ∈ N) be

measurable functions and A ∈M. We say that:

(1) fn → f pointwise almost everywhere (a.e.) on A, if there exists a measurable

subset E ⊂ A with µ(E) = 0, such that fn → f pointwise on A \ E.

(2) fn → f uniformly almost everywhere (a.e.) on A, if there exists a measurable

subset E ⊂ A with µ(E) = 0, such that fn → f uniformly on A \ E.

(3) fn → f almost uniformly on A, if for every ε > 0, there exists a measurable set

E ⊂ A with µ(E) < ε such that fn → f uniformly on A \ E.

(4) fn → f in measure on A, if for every ε > 0, we have that

µ
(
{x ∈ A : |fn(x)− f(x)| ≥ ε}

)
→ 0 (n→∞).

In the same way that uniform convergence implies pointwise convergence, we have

the same relation with uniform a.e. convergence and pointwise a.e. convergence. Fur-

thermore, uniform convergence clearly implies uniform a.e. convergence, and pointwise

convergence implies the pointwise a.e. convergence, just by choosing E = ∅, that is,

we have the following (strict) implications:

Uniform

Uniform a.e. Pointwise

Pointwise a.e.

X
X

XX

Figure 3.1: Relations between pointwise and uniform convergences
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Yet, the reciprocal of this implications are not true (see Section 3.2 for counter-

examples). In fact, when we speak about convergence a.e. we only have uniqueness of

the limit if we understand it as for the exception of a measure zero subset.

Now, we would like to see if there is possible to find a relation among these new

modes of convergence, as we have done with the uniformly and pointwise convergence.

Recall that given a sequence (En)n ⊂ M, we define the limit superior and the limit

inferior, respectively, as

lim sup
n→∞

En :=
∞⋂
m=1

∞⋃
n=m

En, lim inf
n→∞

En :=
∞⋃
m=1

∞⋂
n=m

En,

which are both measurable sets.

Theorem 3.4. Let (X,M, µ) be a measure space. Let fn, f : X → K (n ∈ N) be

measurable functions and A ∈M. We have the following implications:

(1) If fn → f uniformly a.e. on A, then fn → f almost uniformly on A.

(2) If fn → f almost uniformly on A, then

(2.1) fn → f pointwise a.e. on A;

(2.2) fn → f in measure on A.

Proof.

(1) Since fn → f uniformly a.e. on A we have that there exists E ∈M with µ(E) = 0

such that fn → f uniformly on A \ E. So, for any ε > 0 we have that µ(E) = 0 < ε,

and fn → f uniformly on A \ E. Hence, fn → f almost uniformly on A.

(2.1) Now, let’s suppose that fn → f almost uniformly on A. Then, for every N ∈ N
there exists a measurable set EN ⊂ A with µ(EN) < 1

2N
such that fn → f uniformly

on A \ EN .
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Consider the set F = lim sup
N→∞

EN and denote by Fm :=
∞⋃

N=m

EN , so F =
∞⋂
m=1

Fm.

Thanks to the countable subadditivity of the measure µ we obtain that

µ(Fm) ≤
∞∑

N=m

µ(EN) <
∞∑

N=m

1

2N
=

1

2m−1
.

Hence, µ(F ) ≤ µ(Fm) <
1

2m−1
for every m ∈ N, which leads to µ(F ) = 0.

Furthermore, we also know that

A \ F = lim inf
N→∞

(A \ EN) .

Since fn → f uniformly on A\EN , and then, in particular, also converges pointwise

to f on each A \ EN , we conclude that fn → f pointwise on A \ F .

(2.2) Now let’s again assume that fn → f almost uniformly on A. For the convergence

in measure, given any ε > 0 we have to prove that

µ
(
{x ∈ A : |fn(x)− f(x)| ≥ ε}

)
→ 0 (n→∞).

For this, fix ε > 0 and take δ > 0. Since fn → f almost uniformly on A, there

exists some set E ∈M with µ(E) < δ such that fn → f uniformly on A \ E.

Thus, for the prefixed ε > 0, there exists N ∈ N such that |fn(x) − f(x)| < ε for

any n ≥ N and x ∈ A \ E. But this would imply, in particular, that:

{x ∈ A : |fn(x)− f(x)| ≥ ε} ⊂ E for every n ≥ N,

and hence

µ
(
{x ∈ A : |fn(x)− f(x)| ≥ ε}

)
≤ µ(E) < δ.

Thus, we have shown that given any δ > 0, there exists N ∈ N such that for every

n ≥ N we have that

µ
(
{x ∈ A : |fn(x)− f(x)| ≥ ε}

)
< δ,
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that is,

µ
(
{x ∈ A : |fn(x)− f(x)| ≥ ε}

)
→ 0 (n→∞),

and the convergence in measure is obtained.

3.2 Counterexamples on the reciprocals

The reciprocals of the different implications among the modes of convergence that

have been introduced are not true in general. This will be clarified during this Section

with appropiated counterexamples on the modes of convergence. We start with the

easiest one, namely that pointwise convergence does not imply uniform convergence.

Example 3.5 (Pointwise ; Uniform). Let fn : R → R (n ∈ N) be the sequence

of functions given by

fn(x) :=
x

n
, (x ∈ R, n ∈ N).

0 1

1

1
2

1
2

2 2

2

1

2 f1(x) = x

1

0 1

1

1
2

1
2

2 2

2

1

2 f2(x) =
x
2

1

Figure 3.2: First terms of the sequence fn(x) =
x

n
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Firstly, we have that fn(x)→ 0 =: f(x) (n→∞) pointwise on R. Yet, if we apply

Theorem 3.2, we obtain that

sup
x∈R
|fn(x)− f(x)| = sup

x∈R

|x|
n
≥ 1,

which means that we cannot have uniformly convergence to the null function on R.

Although this is of the most typical examples of a sequence of functions converging

pointwise (to zero) but not uniformly, we want to point out a different example, since it

will be the germ of the proofs of some results in Chapter 4. Recall that if (X,M, µ) is a

measure space and A ⊂ X, the characteristic function of A is the function χA : X → R

defined as:

χA(x) :=

 1 if x ∈ A,
0 if x 6= A.

Clearly, χA is a measurable function if and only if A ∈M.

Example 3.6 (Pointwise ; Uniform). For fixed n ∈ N, denote by En =
[

1
n+1

, 1
n

]
.

Let fn : [0, 1]→ R (n ∈ N) be the sequence of functions given by

fn(x) := χEn(x) (x ∈ [0, 1], n ∈ N).

0 11
3

1

1
2

f1(x) = χ[ 12 ,1]
(x)

0 11
3

1

1
2

f2(x) = χ[ 13 ,
1
2 ]
(x)

Figure 3.3: First terms of the sequence fn(x) = χ[ 1
n+1

, 1
n ](x)
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Clearly, we have that fn(x) → 0 =: f(x) (n → ∞) pointwise on [0, 1], because

fn(0) = 0 for all n ∈ N, and for x ∈ (0, 1] there is Nx ∈ N such that
1

Nx

< x, thus

fn(x) = 0 for all n ≥ Nx. However,

sup
x∈[0,1]

|fn(x)− f(x)| = sup
x∈[0,1]

|χEn(x)| = 1,

and an application of Theorem 3.2 gives us the non-uniform convergence to the null

function on [0, 1].

Now we will focus on the modes of convergence that arises from the framework of

measures spaces. In order to present the different examples we will consider the mea-

sure space given by (R,L,m), where L denotes the σ-algebra of Lebesgue measurable

sets and m the Lebesgue measure on R.

From Theorem 3.4 we obtained that almost uniform convergence is a mode of

convergence between pointwise a.e. and uniformly a.e. convergence, but the reciprocal

of none of these implications are true. This will be shown in the next two examples.

Example 3.7 (Pointwise a.e ; Almost uniform). Let fn : R → R (n ∈ N) be

the sequence of functions given by

fn(x) :=
x

n
χR\Q(x) + χQ(x), (x ∈ R, n ∈ N).

Clearly, we have that fn(x)→ 0 pointwise on R \Q, and since m(Q) = 0, we can

state the pointwise a.e. convergence of the sequence of functions (fn)n to 0 on R.

Now we will prove that the almost uniform convergence to the null function cannot

be achieved. For this, let E ∈ L be any measurable set with m(E) < +∞. Then, we

have thatm(R\(E∪Q)) = +∞. Hence, for any n ∈ N, m((R\(E∪Q∪[−n, n])) = +∞,

and in particular, there exists xn ∈ R \ (E ∪Q) with |xn| > n, so

sup
x∈R\E

|fn(x)| ≥ |fn(xn)| = |xn|
n

> 1.
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Thus, (fn)n cannot converge uniformly to 0 on R\E, which means that the almost

uniformly convergence of (fn)n to 0 on R cannot be obtained.

Example 3.8 (Almost uniformly ; Uniformly a.e). For fixed n ∈ N, denote by

En =
[
− 1
n
, 1
n

]
. Let fn : R→ R (n ∈ N) be the sequences of functions given by

fn(x) := χEn(x), (x ∈ R, n ∈ N).

0 1

1

1
2

1
21

f1(x) = χ[−1,1](x)

0 1

1

1
2

1
21

f2(x) = χ[−1
2 ,

1
2]
(x)

Figure 3.4: First terms of the sequence fn(x) = χ[− 1
n
, 1
n ](x)

Trivially fn → χ{0} pointwise on R. Let’s see that fn → χ{0} almost uniformly

but not uniformly a.e. on R. Fix ε > 0 and take N ∈ N such that
2

N
≤ ε, so that

m(EN) = m
([
− 1
N
, 1
N

])
= 2

N
< ε.

Furthermore, for every n ≥ N it holds that En ⊂ EN , and then fn(x) = 0 for all

x ∈ R \ EN . Thus, fn → 0 uniformly on R \ EN , and fn converges almost uniformly

to χ{0} on R (observe that χ{0} = 0 on R \ EN).

On the other hand, if fn → χ{0} uniformly a.e. on R, there is E ∈ L with m(E) = 0

such that fn → 0 uniformly on R \E. In this case, for ε ∈ (0, 1), there is N ∈ N such

that for any n ≥ N , |fn(x)| < ε < 1 if x ∈ R \E. But fn(x) = χEn(x), so this implies

that |fn(x)| = 0, and, hence, x ∈ R \ En. Thus

R \ E ⊂
⋂
n≥N

(R \ En) = R \ EN ,
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and EN ⊂ E, which is a contradiction with m(E) = 0.

F. Riesz showed in 1909, and at the same time he introduced the convergence

in measure, the existence of a relation between the convergence in measure and the

pointwise a.e. convergence, as next the result states (see [48], [33] or [45, Theorem

21.9]).

Theorem 3.9. Let (X,M, µ) be a measure space. Let fn, f : X → K (n ∈ N) be

measurable functions. If fn → f (n→∞) in measure, then there exists a subsequence

(fnk)k ⊂ (fn)n such that fnk → f (k →∞) pointwise a.e. on X.

Since we can already obtain from the convergence in measure of a sequence (fn)n to

f the existence of some subsequence (fnk)k such that it converges pointwise a.e. to the

function f , our first logical question would be if this convergence could be extended

to the whole sequence instead of just only for some subsequence. But the so-called

“Typewriter sequence” already states that this cannot be done, that is, in general, the

whole sequence (Tn)n ⊂ L0([0, 1]) cannot inherit the pointwise a.e. convergence to 0

of some subsequence (Tnk)k.

Example 3.10 (Measure ; Pointwise a.e. (Typewriter sequence)). Let divide

the unit interval [0, 1] into infinitely many subintervals In of the form

In :=

[
jn
2kn

,
jn + 1

2kn

]
,

where for each n ∈ N, the non-negative integers jn and kn are uniquely determined by

n = 2kn + jn and 0 ≤ jn < 2kn . We define the “Typewriter sequence” Tn : [0, 1]→ R

(n ∈ N) by

Tn(x) := χIn(x) = χ[ jn
2kn

, jn+1

2kn
](x), (x ∈ [0, 1], n ∈ N). (3.1)
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0 1

1

1
2

T1(x) = χ[0,1](x)

3
4

1
4

0 1

1

1
2

T2(x) = χ[0,12]
(x)

3
4

1
4

0 1

1

1
2

T3(x) = χ[12 ,1]
(x)

3
4

1
4

0 1

1

1
2

T4(x) = χ[0,14]
(x)

3
4

1
4

0 1

1

1
2

T5(x) = χ[14 ,
1
2]
(x)

3
4

1
4

0 1

1

1
2

T6(x) = χ[12 ,
3
4]
(x)

3
4

1
4

0 1

1

1
2

T7(x) = χ[34 ,1]
(x)

3
4

1
4

Figure 3.5: Firsts iterations of the “Typewriter sequence”
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Consider ([0, 1],L,m). It is clear that each Tn is a measurable function for each

n ∈ N. Observe that

m
(
{x ∈ [0, 1] : Tn(x) 6= 0}

)
= m(In)→ 0 (n→∞).

In particular, we obtain the convergence in measure of the “Typewriter sequence” to

the null function.

Yet, for any fixed x ∈ [0, 1], the sequence (Tn(x))n takes infinitely many times

the value 0 and infinitely many times the value 1. Hence, the sequence (Tn(x))n

can not be convergent to zero, and thus, the “Typewriter sequence” cannot converge

pointwise a.e. on [0, 1] to the null function. In fact, the sequence (Tn)n does not

converge pointwise at any point on [0, 1].

Observe that as Riesz’s Theorem assures, there is a subsequence of (Tn)n convergent

pointwise a.e. to zero, just taking (Tnk)k for nk = 2k (k ∈ N). Indeed, Tnk(x) → 0

(k →∞) for all x ∈ (0, 1] and Tnk(0) = 1 for every k ∈ N.

Example 3.11 (Pointwise a.e. ; Measure). Let fn : R → R (n ∈ N) be the

sequence of functions given by

fn(x) := χ[n,n+1](x) (x ∈ R, n ∈ N).

0 4

1

2

f1(x) = χ[1,2](x)

31 5 0 4

1

2

f2(x) = χ[2,3](x)

31 5 0 4

1

2

f3(x) = χ[3,4](x)

31 5

Figure 3.6: First terms of the sequence fn(x) = χ[n,n+1](x)

We clearly have that fn(x) → 0 (n → ∞) pointwise on R, and hence pointwise

a.e. on R. On the other hand, for any ε ∈ (0, 1) and for any n ∈ N,

m
(
{x ∈ R : |fn(x)| ≥ ε}

)
= m

(
[n, n+ 1]

)
= 1,
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and m
(
{x ∈ R : |fn(x)| ≥ ε}

)
6→ 0 (n→∞). Thus, (fn)n does not converge to zero

in measure.

In order to finish this Chapter, we will provide an useful diagram where all the

different relations and implications among the studied concepts of convergence are

established.

Measure

Pointwise a.e.

Almost uniformUniform a.e.

Pointwise

Uniform

XX

X

X

X

X X

X

X

Figure 3.7: Relation among modes of convergences
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40



Chapter 4

Lineability and modes of

convergence

In this Chapter we continue with the study of the relations between the modes of

convergence. Specifically, we focus our attention on the size of the sets of “counter-

examples” of some of these relations. We divide the Chapter in two sections. The

first one is devoted to continue the study of the family of sequence of functions that

are convergent in measure to zero but not pointwise a.e. on [0, 1], which was already

carried out by Araújo et al. in [4]. They showed the existence of a dense vector space

of dimension c, and we improve it to the existence of a closed infinite dimensional

vector space and a c-dimensional free algebra. In the second Section, we will study

precisely the family of sequences of continuous functions on the unit interval that are

pointwise convergent to zero but not uniformly.

41



Modes of convergence Lin. Alg. Struc. Func. Seq. Spaces

4.1 Measure vs. Pointwise a.e. Convergence

As we have seen in Chapter 3 (see Examples 3.10 and 3.11), there is no relation

between convergence in measure and pointwise a.e. convergence. Nonetheless, we have

already seen, thanks to Riesz’s Theorem (see Theorem 3.9), that the gap between these

modes of convergence is not as big as it appears to be.

In the case of a finite dimensional space X, this relation can be improved, as we

can see from the next result (see [46, Theorem 8.3]) due to Egorov.

Theorem 4.1. Let (X,M, µ) be a measure space with µ(X) <∞. Let fn, f : X → K

(n ∈ N) be measurable functions. Then fn → f (n → ∞) pointwise a.e. on X if and

only if fn → f (n→∞) almost uniformly on X.

From Theorem 3.4 we have that almost uniform convergence implies both pointwise

a.e. convergence and convergence in measure, where the reciprocal are not true in

general (see Example 3.7). However, in the finite dimensional case, Egorov’s Theorem

states one of the above reciprocal, namely that pointwise a.e. convergence implies

almost uniform convergence. In that case, from the relations among these modes

of convergence, we also infer that pointwise a.e. convergence implies convergence in

measure.

In this Section we focus our attention on the unit interval, M = L and µ = m,

that is, X = [0, 1] will be a space of finite measure, and, thanks to Egorov’s Theorem,

pointwise a.e. convergence is stronger than convergence in measure. Moreover, in

the setting of the space L0([0, 1]) of all (classes of) functions f : [0, 1] → K that are

Lebesgue measurable, the Typewritter sequence (Tn)n ⊂ L0([0, 1]) (see Example 3.10),

gives us an example of a sequence of functions converging in measure to 0 but not

pointwise a.e. on [0, 1], so it is natural to ask if this is just an isolated phenomenon,

or if it is possible to construct an algebraic structure for these sequences of functions.
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Measure

Pointwise a.e.

Almost uniformUniform a.e.

Pointwise

Uniform

X
X

X

X

X

X X

X

X

(a) µ(X) =∞

Measure

Pointwise a.e.

Almost uniformUniform a.e.

Pointwise

Uniform

X

X

X

X

X

X

X

(b) µ(X) <∞

Figure 4.1: Relations among convergences in finite and infinite dimensional spaces

We will start by defining a proper metric in L0([0, 1]) that will be useful later (see

[4], [45]). Consider the application ρ : L0([0, 1])× L0([0, 1])→ [0,+∞) given by

ρ(f, g) =

∫ 1

0

|f(x)− g(x)|
1 + |f(x)− g(x)|

dx.

We have that ρ(f, g) ≥ 0 for every f, g ∈ L0([0, 1]), and the equality holds if and

only if

|f(x)− g(x)|
1 + |f(x)− g(x)|

= 0 a.e. on [0, 1],

or, equivalently, f = g a.e. on [0, 1], and in the setting of classes of functions, f = g.

It is evident that ρ(f, g) = ρ(g, f) for every f, g ∈ L0([0, 1]), so it only remains to

prove the triangle inequality. For this, observe that as done in Section 1.3, the function

p(x) =
x

1 + x
is strictly increasing on [0,+∞). So, since |f(x)−g(x)| ≤ |f(x)−h(x)|+

|h(x)−g(x)|, we obtain that p
(
|f(x)−g(x)|

)
≤ p
(
|f(x)−h(x)|+ |h(x)−g(x)|

)
, which
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leads to

ρ(f, g) =

∫ 1

0

|f(x)− g(x)|
1 + |f(x)− g(x)|

dx ≤
∫ 1

0

|f(x)− h(x)|+ |h(x)− g(x)|
1 + |f(x)− h(x)|+ |h(x)− g(x)|

dx

≤
∫ 1

0

|f(x)− h(x)|
1 + |f(x)− h(x)|

dx+

∫ 1

0

|h(x)− g(x)|
1 + |h(x)− g(x)|

dx

= ρ(f, h) + ρ(h, g).

Thus, ρ is a metric over L0([0, 1]). Furthermore, the convergence in this metric ρ is

precisely the natural convergence for the measurable functions, that is, the convergence

in measure.

Lemma 4.2. Let ρ : L0([0, 1])× L0([0, 1])→ [0,+∞) be the metric defined as

ρ(f, g) =

∫ 1

0

|f(x)− g(x)|
1 + |f(x)− g(x)|

dx.

Then, ρ(fn, f)→ 0 (n→∞) if and only if fn → f (n→∞) in measure.

Proof. For every n ∈ N define the integral In by

In :=

∫ 1

0

|fn(x)|
1 + |fn(x)|

dx.

Without loss of generality, we can assume that f = 0. Hence, it suffices to prove

that In → 0 (n→∞) if and only if, for every ε > 0,

m
(
{x ∈ [0, 1] : |fn(x)| ≥ ε}

)
→ 0 (n→∞).

Firstly, if fn → 0 (n→∞) in measure, by definition we have that, for fixed ε > 0,

m
(
{x ∈ [0, 1] : |fn(x)| ≥ ε}

)
→ 0 (n→∞).
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Hence,

0 ≤ In =

∫
[0,1]

|fn(x)|
1 + |fn(x)|

dx =

∫
|fn|≥ε

|fn(x)|
1 + |fn(x)|

dx+

∫
|fn|<ε

|fn(x)|
1 + |fn(x)|

dx

≤
∫
|fn|≥ε

1 dx+

∫
|fn|<ε

|fn(x)|
1 + |fn(x)|

dx

= m
(
{x ∈ [0, 1] : |fn(x)| ≥ ε}

)
+

∫
|fn|<ε

|fn(x)|
1 + |fn(x)|

dx

But the function p(x) =
x

1 + x
is increasing on [0,+∞), so

p(|fn(x)|) =
|fn(x)|

1 + |fn(x)|
<

ε

1 + ε
= p(ε)

for every x ∈ [0, 1] such that |fn(x)| < ε, and we have

0 ≤ In ≤ m
(
{x ∈ [0, 1] : |fn(x)| ≥ ε}

)
+

ε

1 + ε
·m
(
{x ∈ [0, 1] : |fn(x)| < ε}

)
≤ m

(
{x ∈ [0, 1] : |fn(x)| ≥ ε}

)
+

ε

1 + ε
.

Now, by taking limit as n→∞, we obtain

0 ≤ lim inf
n→∞

In ≤ lim sup
n→∞

In ≤
ε

1 + ε

for each ε > 0, thus In → 0 (n→∞).

Reciprocally, if In → 0 (n → ∞), and again by the increasing condition of the

function p(x), for each ε > 0, we have

In =

∫
[0,1]

|fn(x)|
1 + |fn(x)|

dx ≥
∫
|fn|≥ε

|fn(x)|
1 + |fn(x)|

dx ≥
∫
|fn|≥ε

ε

1 + ε
dx

=
ε

1 + ε
·m
(
{x ∈ [0, 1] : |fn(x)| ≥ ε}

)
.

So, by taking limit when n→∞, we have that

m
(
{x ∈ [0, 1] : |fn(x)| ≥ ε}

)
→ 0 (n→∞),

and we obtained the convergence in measure as desired.
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From now on, in this Section we will work with sequences of (classes of) functions

on the unit interval, that is, our framework will be the space L0([0, 1])N. Recall from

Section 1.3 that the metric D defined on L0([0, 1])N by

D((fn)n, (gn)n) =
∞∑
n=1

1

2n
· ρ(fn, gn)

1 + ρ(fn, gn)

is compatible with the product topology in L0([0, 1])N. Recall that

c0(L0([0, 1])) = {(fn)n ∈ L0([0, 1])N : ρ(fn, 0)→ 0 (n→∞)}

= {(fn)n ∈ L0([0, 1])N : fn → 0 in measure}

Define the family nPaeM([0, 1]) of all sequences of functions in L0([0, 1])N conver-

ging to zero in measure but not pointwise a.e. on [0, 1], that is,

nPaeM([0, 1]) :=
{

(fn)n ∈ c0(L0([0, 1])) : fn 6→ 0 pointwise a.e. on [0, 1]
}
.

In 2017, Araújo et al. [4] provided a first result about the topological and linear

size of nPaeM([0, 1]). We include here the original proof for the sake of completeness.

Theorem 4.3. The family nPaeM([0, 1]) is maximal dense-lineable in L0([0, 1])N with

the product topology.

Proof. Let (Tn)n ∈ L0([0, 1])N be the “Typewriter sequence” defined in Example 3.10.

Recall that we already know that (Tn)n ∈ nPaeM([0, 1]). In order to find our desired

vector space we will start by extending each Tn from the unit interval [0, 1] into the

real line R, just by defining Tn(x) = 0 for every x /∈ [0, 1]. Now, for every n ∈ N,

consider the translated-dilated sequence (Tn,t)n given by

Tn,t(x) := Tn(2(x− t)),
(
0, 1

2

)
, x ∈ R).

It is clear that (Tn,t)n ∈ L0([0, 1])N, and that also converges to zero in measure for

every t ∈ (0, 1/2). Let us consider the vector space M given by

M := span
{

(Tn,t)n : t ∈
(
0, 1

2

)}
.
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In a first step we are going to show that M ⊂ nPaeM([0, 1])∪{0}, and dim(M) =

dim(L0([0, 1])N) = c (and the last equality holds because L0([0, 1])N is a complete

metrizable topological vector space, hence a Baire space). In order to see that the

elements of M are linearly independent, assume that there exist 0 < t1 < t2 <

· · · < ts <
1
2

and real numbers c1, c2, . . . , cs not simultaneously zero (take cs 6= 0 for

example), such that

c1Tn,t1 + c2Tn,t2 + · · ·+ csTn,ts = 0, (n ∈ N).

In particular, by choosing n = 1 we have that

c1T1,t1(x) + c2T1,t2(x) + · · ·+ csT1,ts(x) = 0,

for almost every x ∈ [0, 1]. Since

T1,t(x) = T1(2(x− t)) = χ[0,1](2(x− t)) = χ[t,t+1/2](x),

we have that the last equation can be written as

c1χ[t1,t1+ 1
2 ] + c2χ[t2,t2+ 1

2 ] + · · ·+ csχ[ts,ts+ 1
2 ] = 0, for almost every x ∈ [0, 1].

But, for (almost) every x ∈
(
ts−1 + 1

2
, ts + 1

2

]
, we would obtain that

c1 · 0 + c2 · 0 + · · ·+ cs−1 · 0 + cs · 1 = cs = 0,

which would be a contradiction with cs 6= 0. This shows the required linear indepen-

dence. As dim
(
0, 1

2

)
= c, we obtain that dim(M) = c. Moreover, since L0([0, 1])N is

a topological vector space endowed with the topology of convergence in measure, and

(Tn,t)n converges to zero in measure for each t ∈
(
0, 1

2

)
, we get that every element

(Fn)n := (c1Tn,t1 + c2Tn,t2 + · · ·+ csTn,ts)n ∈M,

is a sequence converging to zero in measure. Next, fix any sequence (Fn)n ∈ M as

above, with 0 < t1 < t2 < · · · < ts <
1
2

and cs 6= 0. For all x ∈
(
ts−1 + 1

2
, ts + 1

2

]
, we

have that

Fn(x) =
s∑
j=1

cjTn,tj(x) =
s∑
j=1

cjTn(2(x− tj)) = csTn(2(x− ts)).
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For each x ∈ (ts−1 +1/2, ts+1/2], we have w := 2(x− ts) ∈ (2(ts−1− ts)+1, 1] ⊂ [0, 1].

Hence, since cs 6= 0 and the sequence (Tn(w))n does not converge (as a sequence of

scalars) for any w ∈ [0, 1], we derive that, for each x ∈
(
ts−1 + 1

2
, ts + 1

2

]
, the sequence

(Fn)n does not converge pointwise a.e. to zero. This shows that M ⊂ nPaeM([0, 1])∪
{0}. Thus nPaeM([0, 1]) is maximal lineable.

Moreover, since the set c00(L0([0, 1])) is dense in (L0([0, 1])N, D) (see Section 1.3),

nPaeM([0, 1]) ∩ c00(L0([0, 1])) = ∅ (because the elements of c00(L0([0, 1])) are point-

wise convergent to 0 on [0, 1]), and nPaeM([0, 1]) is stronger than c00(L0([0, 1])), an

application of Theorem 2.7 with A = nPaeM([0, 1]), B = c00(L0([0, 1])) and κ = c

puts an end on the proof.

Recall that c00(L0([0, 1]) is also dense in c0(L0([0, 1]) when endowed with the supre-

mum metric d∞. In particular, analogously we can state:

Theorem 4.4. The family nPaeM([0, 1]) is maximal dense-lineable in (c0(L0([0, 1])), d∞).

4.1.1 Algebrability and spaceability

With the maximal dense-lineability of this family we already have that these se-

quences of functions maintain a good structure under linear combinations. In the next

result we find that it also has a nice algebraic structure. But firstly, we will introduce

some useful notation and two technical lemmas.

Let us represent each N -tuple (r1, r2, · · · , rN) ∈ RN by r, and set |r| := r1 + r2 +

· · ·+ rN and r · s := r1s1 + r2s2 + · · ·+ rNsN .

Lemma 4.5. Let I ⊂ R be an interval, and let k1, k2, . . . , kN be mutually different

real numbers (N ∈ N). Then, the set of exponential functions

{ek1x, ek2x, . . . , ekNx} (x ∈ I)

is a linearly independent set of functions.
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Proof. Observe that we can assume without loss of generality that 0 ∈ I (if not, just

use a translation). Assume that a linear combination of these functions is zero, that

is, there exist λ1, λ2, . . . , λN ∈ R such that

λ1e
k1x + λ2e

k2x + · · ·+ λNe
kNx = 0.

If we derive this equation N − 1 times, we get

λ1k
p
1e
k1x + λ2k

p
2e
k2x + · · ·+ λNk

p
Ne

kNx = 0, (0 ≤ p ≤ N − 1).

Now, by taking x = 0, we get the following Vandermonde system
λ1 + λ2 + · · ·+ λN = 0

λ1k1 + λ2k2 + · · ·+ λNkN = 0
...

...

λ1k
N−1
1 + λ2k

N−1
2 + · · ·+ λNk

N−1
N = 0

Thus, since {k1, k2, . . . , kN} are mutually distinct, the only solution of the above sys-

tem is the trivial one and we are done.

Lemma 4.6. Let I ⊂ R be an interval. Let H ⊂ (0,+∞) be a Q-linearly independent

set. Then, the algebra A generated by the set of exponential functions

{e−cx : c ∈ H} (x ∈ I)

is free.

Proof. Let F be an element of A \ {0}. Then, there exists a non-zero polynomial P

in N variables without constant term and mutually different c1, c2, . . . , cN ∈ H such

that

F (x) = P (e−c1x, e−c2x, . . . , e−cNx).

Specifically, there exist a natural number N ∈ N, a non-empty finite set J ⊂ NN0 \
{(0, (N). . ., 0)}, scalars αj ∈ R\{0}, for j = (j1, j2, . . . , jN) ∈ J , and c = (c1, c2, . . . , cN) ∈
HN such that

F (x) =
∑
j∈J

αj(e
−c1x)j1 · (e−c2x)j2 · · · (e−cNx)jN =

∑
j∈J

αje
−(c·j)x
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Since H is Q-linearly independent and J ⊂ NN0 \ {(0, (N). . ., 0)}, the numbers {c · j :

j ∈ J, c ∈ HN} are non-null and mutually different. But Lemma 4.5 assures that the

family {e−(c·j)x : j ∈ J, c ∈ HN} is linearly independent, so F 6≡ 0 (because αj 6= 0

for all j ∈ J).

It is well-known that the field R, as seen as a vector space over Q, has dimension c.

Hence, we always can find a Q-linearly independent set in R (or even inside (0,+∞))

with cardinal c.

Theorem 4.7. The family nPaeM([0, 1]) is strongly c-algebrable.

Proof. Let H ⊂ (0,+∞) be a linearly Q-independent set with card(H) = c. For each

c ∈ H, we define the sequence fc = (fc,n)n as

fc,n(x) := e−cx · Tn(x), (x ∈ [0, 1], n ∈ N),

where (Tn)n ∈ L0([0, 1])N is the “Typewriter sequence” defined in Example 3.10. Re-

call that

m
(
{x ∈ [0, 1] : Tn(x) 6= 0}

)
→ 0 (n→∞), (4.1)

and that (Tn)n does not converge to 0 pointwise a.e. on [0, 1].

Let B be the algebra generated by the family of sequences {fc : c ∈ H}, that is,

B is the family of all sequences (Fn)n for which there exists N ∈ N, mutually different

c1, c2, . . . , cN ∈ H and a non-zero polynomial P in N real variables without constant

term such that

Fn = P (fc1,n, fc2,n, . . . , fcN ,n), (n ∈ N).

Specifically, there exist a natural number N ∈ N, a non-empty finite set J ⊂ NN0 \
{(0, (N). . ., 0)}, scalars αj ∈ R\{0}, for j = (j1, j2, . . . , jN) ∈ J , and c = (c1, c2, . . . , cN) ∈ HN
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such that

Fn(x) =
∑
j∈J

αjfc1,n(x)j1 · · · fcN ,n(x)jN

=
∑
j∈J

αje
−(c·j)xTn(x)|j| =

(∑
j∈J

αje
−(c·j)x

)
Tn(x), (4.2)

where in the last equality is crucial the fact that Tn(x) is a characteristic function, so

Tn(x)β = Tn(x) for any β > 0.

For each subset J ⊂ NN0 \ {(0, (N). . ., 0)} and each c ∈ HN , consider the function

ϕc,J : [0, 1]→ R given by

ϕc,J(x) :=
∑
j∈J

αje
−(c·j)x.

Since H is a Q-linearly independent set and αj 6= 0 (j ∈ J), by Lemma 4.6, ϕc,J(x)

is a non-null function. So, by (4.2), Fn is non-null for each n ∈ N, and the algebra B
is free.

It only rests to prove that every non-zero element of our algebra B converges in

measure to zero but not pointwise a.e. on [0, 1]. Observe that the sequence (Fn(x))n =

(ϕc,J(x)Tn(x))n converges to zero in measure because, for any ε > 0, we have the

following inclusion

{x ∈ [0, 1] : |ϕc,J(x)Tn(x)| > ε} ⊂ {x ∈ [0, 1] : Tn(x) 6= 0}.

By (4.1), the measures of the above sets go to zero when n → ∞, and then Fn → 0

in measure. Finally, as ϕc,J(x) is a finite linear combination of exponentials, we have

that ϕc,J(x) = 0 for finitely many points (specifically, at most card(J)− 1 points, see

for instance, [47, p. 46]). Hence, (4.2) and the non-pointwise a.e. convergence of (Tn)n

to zero give us that (Fn)n does not converge to zero pointwise a.e. on [0, 1].

Observe that while searching for a free algebra inside our family of sequences

of functions, we did not need to pay much attention to the topological structure of
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L0([0, 1])N. This is not the case anymore if we speak about dense-lineability, as Araújo

et al. did previously in [4]. Now, by taking into account the topological structure of

L0([0, 1])N, we are able to get spaceability of our family of sequences of functions.

Theorem 4.8. The family nPaeM([0, 1]) is spaceable in (c0(L0([0, 1])), d∞).

Proof. The proof presented here is a constructive proof, which also heavily relies on

the “Typewriter sequence” defined previously on Example 3.10.

First, we start by dividing the set N into infinitely many strictly increasing and

disjoints subsequences (i(k, n))n∈N (k ∈ N) such that

N =
⋃
k,n∈N

{i(k, n)}.

We can take for instance the subsequences (i(k, n))n given by

i(k, n) :=
k(k + 1)

2
+ (n− 1)k, (k, n ∈ N).

For each k ∈ N, define the sequence T (k) = (T (k, n))n as follows

T (k, n)(x) :=

 χ[
j

2i(k,m)
, j+1

2i(k,m)

](x) if n = j + 2i(k,m), 0 ≤ j < 2i(k,m),

0 elsewhere.

Roughly speaking, for fixed k ∈ N, we preserve every term of the “Typewriter

sequence” where the support has length 1
2i(k,m) for m ∈ N, and change the rest to be

0. Similarly as the “Typewriter sequence”, it is straightforward that every sequence

T (k) is convergent to zero in measure, since for every ε > 0 it holds

{x ∈ [0, 1] : |T (k, n)(x)| > ε} ⊂ {x ∈ [0, 1] : T (k, n)(x) 6= 0},

and the measure of the lasts sets goes to zero when n→∞. Moreover, by construction

of the sequences T (k), given any x ∈ [0, 1], there are infinitely many terms of T (k)(x)

where the sequence takes the value 0, and infinitely many terms where it takes the
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value 1, thus making it impossible for the sequence (T (k, n)(x))n to be convergent to

zero.

By construction, if k 6= k′, then the sequences T (k) and T (k′) cannot be both

simultaneously non-zero. This implies that, if we choose scalars λ1, λ2, . . . , λN ∈ R,

and consider the linear combination

λ1T (k1) + λ2T (k2) + · · ·+ λNT (kN) = 0,

then for any 1 ≤ j0 ≤ N and x ∈ [0, 1] we can always find some nj0 ∈ N such

that T (kj0 , nj0)(x) is non-zero but T (kj, nj0) = 0 for j 6= j0. So, writing the linear

combination at the nj0-coordinate, we get that λj0T (kj0 , nj0)(x) = 0, whence λj0 = 0,

and we get that the set {T (k) : k ∈ N} is linearly independent.

Now, in order to prove the spaceability of our family of sequences of functions we

need to find some closed infinite dimensional vector space inside our family. For this,

let us define

M := span{T (k) : k ∈ N}.

It is clear that M is a closed infinite dimensional subspace of (c0(L0([0, 1])), d∞).

It only rests to prove the non-pointwise a.e. convergence to zero of the members of

M . For that purpose, observe that every non-zero member of M is a finite or infinite

linear combination of sequences T (k). More precisely, if F ∈ M \ {0}, there exists a

subset J ⊂ N and scalars λj ∈ R \ {0} for every j ∈ J , such that we can write

F =
∑
j∈J

λjT (kj).

Fix j0 ∈ J and let

J0 :=
{

2i(kj0 ,m) + j : m ∈ N, 0 ≤ j < 2i(kj0 ,m)
}
.

By construction, Fn = λj0T (kj0 , n) for every n ∈ J0, and so, for fixed x ∈ [0, 1],

there are infinitely many natural numbers (at least every number in J0) such that

53



Modes of convergence Lin. Alg. Struc. Func. Seq. Spaces

Fn(x) = λj0 6= 0, and infinitely many natural numbers such that Fn(x) = 0. Hence

(Fn)n is not pointwise a.e. convergent to zero.

4.2 Pointwise vs. Uniform Convergence

4.2.1 Definitions and first examples

In this Section we focus on two well-known different types of convergence, the

pointwise and the uniform convergence on [0, 1].

The fact that these two types of convergence are the most commonly studied when

working with sequences of functions allows us to provide easily many examples of

sequences of functions converging pointwise but not uniformly on [0, 1]. For instance,

we can just recall the sequence (fn)n ⊂ L0([0, 1]) defined on Example 3.6 given by

fn(x) = χEn(x), for every n ∈ N,

where En =
[

1
n+1

, 1
n

]
. Observe that, in particular, lim sup

n→∞
En = ∅.

This is not only a coincidence for the sequence of functions (fn)n, but rather a

shared property of many sequences of scalar multiples of characteristics functions that

are pointwise convergent to zero but not uniformly convergent on [0, 1].

Proposition 4.9. Let (X,M, µ) be a measure space, and (αn)n be a sequence of non-

zero real numbers such that either (αn)n ∈ c0 or there exists M > 0 such that |αn| > M

for n large enough. Let En ∈M \ {∅} and fn = αnχEn (n ∈ N). Then:

(1) fn → 0 pointwise on X if and only if (αn)n ∈ c0 or lim sup
n→∞

En = ∅.

(2) fn → 0 pointwise a.e. on X if and only if (αn)n ∈ c0 or µ

(
lim sup
n→∞

En

)
= 0.

(3) fn → 0 uniformly on X if and only if (αn)n ∈ c0.
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Proof.

(1) Suppose that fn → 0 pointwise on X and lim sup
n→∞

En 6= ∅. Let x0 ∈ lim sup
n→∞

En.

Then, for every n ∈ N there exists mn ∈ N with mn ≥ n and x0 ∈ Emn . So,

|αmn| = |fmn(x0)| → 0 (n→∞). (4.3)

Hence (αn)n cannot be far from zero, and by hypothesis, must converge to 0.

Conversely, for any x ∈ X, |fn(x)| = |αn|χEn(x) ≤ |αn|. So, if (αn)n ∈ c0, then

fn(x) → 0. On the other hand, if lim sup
n→∞

En = ∅, then there is n0 ∈ N such that

x /∈ En for all n ≥ n0; hence, fn(x) = 0 for all n ≥ n0 and we are done.

(2) Assume that fn → 0 pointwise a.e. on X and µ

(
lim sup
n→∞

En

)
> 0. Then, we

always can find x0 ∈ lim sup
n→∞

En and fn(x0) converges to zero and we can finish as in

(1).

In fact, in (1) we have shown that if x /∈ lim sup
n→∞

En, then fn(x) → 0 (n → ∞),

and if x ∈ lim sup
n→∞

En, then fn(x) → 0 (n → ∞) if and only if (αn)n ∈ c0. So, it is

clear that if (αn)n ∈ c0 or µ

(
lim sup
n→∞

En

)
= 0, then fn → 0 pointwise a.e. on X.

(3) Suppose that fn → 0 uniformly on X. Assume, by way of contradiction, that

αn /∈ c0. Then, by hypothesis, there exist M > 0 and n0 ∈ N such that |αn| > M > 0

for all n ≥ n0. But the uniform convergence of fn allows us to get m ≥ n0 such that

|fn(x)| < M
2

for all x ∈ X and n ≥ m. Therefore, fn = 0, and so En = ∅ for all

n ≥ m, which is impossible by hypothesis.

The reciprocal is immediate because of the fact that |fn(x)| ≤ |αn| for all n ∈ N
and every x ∈ X.

Remark 4.10. Observe that, similarly as in part (1) of the above Proposition, if we

have any sequence (ϕn)n of measurable functions, it can be proved that (ϕn · χEn)n

converges pointwise to zero on X if lim sup
n→∞

En = ∅. Indeed, it would exists n0 ∈ N
such that x /∈ En for every n ≥ n0. Hence, ϕn(x) · χEn(x) = 0 for all n ≥ n0.
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Thanks to Proposition 4.9 we can construct a huge number of sequences of mea-

surable functions being pointwise convergent but not uniformly convergent on X. In

particular, we will focus our attention again on the space L0([0, 1])N. Furthermore, not

only are we interested in the existence of such sequences of functions, but we also want

to precise the amount of these sequences of functions in L0([0, 1])N, in both a linear

and algebraic sense. In fact, although in Proposition 4.9 we were initially interested

in the uniform convergence versus the pointwise convergence, we will ask for stronger

modes of convergence than this last one.

Recall (see Definition 3.3) that given (fn)n ∈ L0([0, 1])N and f ∈ L0([0, 1]), we say

that fn → f almost uniformly on [0, 1] if for every ε > 0 there exists a set E ∈ [0, 1]

with m(E) < ε such that fn → f uniformly on [0, 1] \ E; and fn → f uniformly a.e.

on [0, 1] if there is E ⊂ [0, 1] with m(E) = 0 such that fn → f uniformly on [0, 1] \E.

Uniform a.e. convergence can be trivially adapted to L0([0, 1])N, but almost uniform

convergence should be slightly adapted to classes of functions.

Since the sets of null measure are not important for the classes of functions, and the

concept of essential supremum (see Subsection 1.2.5) gives us the supremum except

for sets of null measure, in L0([0, 1]) we can rewrite the almost uniform convergence

in terms of the essential supremum (see condition (b) in the next definition).

We define the family of sequences of functions which we are interested in.

Definition 4.11. A sequence of measurable functions fn : [0, 1]→ R (n ∈ N) is said

to belong to the family nUPae([0, 1]), whenever it enjoys the next properties:

(a) fn → 0 pointwise a.e. on [0, 1],

(b) for any ε > 0 there is a measurable set E ⊂ [0, 1] such that m(E) < ε and

ess sup
[0,1]\E

|fn| → 0 (n→∞),

(c) (fn)n does not converge (to zero) uniformly a.e. on [0, 1].
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Observe that the sequence defined in Example 3.6, that is,

fn(x) = χ[ 1
n+1

, 1
n ](x), (x ∈ [0, 1], n ∈ N),

is an example of a sequence of functions in nUPae([0, 1]). We know that it is pointwise

but not uniformly convergent to zero on [0, 1], but it also satisfies condition (b) in

Definition 4.11, because for any ε > 0, there exists n0 ∈ N such that 1
n0
< ε

2
. So, for

any n ≥ n0 and x > 1
n
, fn(x) = 0, and ess sup

x∈( ε2 ,1]
fn(x) = 0 (and m

([
0, ε

2

])
= ε

2
< ε).

4.2.2 Lineability results

We already know that nUPae([0, 1]) 6= ∅, so it is natural to ask for its size in terms

of Lineability. For this, the next result states that not only are there many elements

in the family nUPae([0, 1]), but they also behave nicely under algebraic combinations.

Theorem 4.12. The family nUPae([0, 1]) is strongly c-algebrable.

Proof. As in the proof of Theorem 4.7, let H ⊂ (0,+∞) a Q-linearly independent set

with card(H) = c. For each c ∈ H we define the sequence F (c) = (F (c, n))n by

F (c, n)(x) := e−cn[(n+1)x−1] · χEn(x),

where En =
[

1
n+1

, 1
n

]
as in Example 3.6.

Let B be the algebra generated by the family of sequences {F (c) : c ∈ H}. Now,

because each χEn is a characteristic function, any non-zero member (Fn)n of B is of

the form

Fn(x) =

(∑
j∈J

αje
−(c·j)n[(n+1)x−1]

)
χEn(x), (4.4)

where, for some N ∈ N, J ⊂ NN0 \ {(0, (N). . ., 0)} is a non-empty finite set, αj ∈ R \ {0}
for j ∈ J and c ∈ HN .
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It is trivial that finite linear combinations of exponentials are measurable, so from

(4.4) and Remark 4.10, it follows that Fn(x) is pointwise convergent to zero. Moreover,

condition (b) of Definition 4.11 also holds. For every ε > 0, there exists n0 ∈ N such

that 1
n
< ε

2
for any n ≥ n0. Hence, for any x ∈

(
ε
2
, 1
)
, Fn(x) = 0. So, ess sup

( ε2 ,1]
|fn| = 0

for any n ≥ n0 and we get (b).

Finally, observe that for fixed n ∈ N, we have that x ∈
[

1
n+1

, 1
n

]
if and only if

w := n
(
(n + 1)x − 1

)
∈ [0, 1]. Recall that the essential supremum of a continuous

functions, except finitely many points, coincides with its supremum (see Corollary

1.4). Then:

ess sup
0≤x≤1

|Fn(x)| = sup
0≤x≤1

∣∣∣∣∣
(∑

j∈J

αje
−(c·j)n[(n+1)x−1]

)
χEn(x)

∣∣∣∣∣
= sup

1
n+1
≤x≤ 1

n

∣∣∣∣∣∑
j∈J

αje
−(c·j)n[(n+1)x−1]

∣∣∣∣∣ = sup
0≤w≤1

∣∣∣∣∣∑
j∈J

αje
−(c·j)w

∣∣∣∣∣ .
But this last amount does not depend on n and, in addition, it is positive, because

αj 6= 0 (j ∈ J) and, by Lemma 4.6, the Q-linearly independence of H implies the linear

independence of the set {e−(c·j)x : c ∈ H, j ∈ J}. Thus, (Fn)n does not converge (to

zero) uniformly a.e. on [0, 1] and the proof is finished.

Theorem 4.13. The family nUPae([0, 1]) is spaceable in L0([0, 1])N.

Proof. Consider the sets En :=
[

1
n+1

, 1
n

]
. Let us divide N into infinitely many pairwise

disjoint subsequences {(i(k, n))n : k ∈ N}, such that i(k, n) < i(k′, n) for k < k′

(again, as in the proof of Theorem 4.8, i(k, n) := k(k+1)
2

+ (n− 1)k does the job). For

each k ∈ N, define the sequence S(k) = (S(k, n))n :=
(
χEi(k,n)

)
n
.

First of all, we are going to prove that {S(k) : k ∈ N} is a linearly independent

set. Indeed, let λ1, . . . , λN ∈ R and pairwise different k1, k2, . . . , kN ∈ N such that
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N∑
j=1

λjS(kj) is the null sequence. Then, for every n ∈ N and every x ∈ [0, 1], we have

λ1χEi(k1,n)(x) + · · ·+ λNχEi(kN ,n)
(x) = 0. (4.5)

But, by construction, if (k, n) 6= (k′, n′) then i(k, n) 6= i(k′, n′), so Ei(k,n) ∩ Ei(k′,n′) is

either empty or a singleton. Then, for 1 ≤ j ≤ N we always can find

xj ∈ Ei(kj ,n) \
⋂

1≤ν≤N
ν 6=j

Ei(kν ,n)

and applying (4.5) at x = xj, we get that λj = 0 for 1 ≤ j ≤ N .

Let M := span{S(k) : k ∈ N}. It is clear that M is an infinite dimensional closed

subspace of L0([0, 1])N. We claim that every non-zero member of M enjoys properties

(a), (b) and (c) of Definition 4.11.

Given F = (Fn)n ∈ M \ {0}, there exist a strictly increasing sequence (kj)j ⊂ N

and a sequence (αj)j ⊂ R (not identically zero), such that F =
∞∑
j=1

αjS(kj) (because

F is not really a series, since all S(kj) have pairwise disjoint support) and, without

loss of generality, we may assume that α1 6= 0.

For every j, n ∈ N, it is clear that

0 <
1

i(kj, n)
<

1

i(k1, n)
→ 0 (n→∞). (4.6)

So, for any x ∈ [0, 1], there is a number n0 ∈ N such that Fn(x) = 0 for all n ≥ n0.

Hence, Fn is convergent to 0 in [0, 1] and we have (a). Moreover, given ε > 0 there is

n1 ∈ N such that Ei(k1,n1) ⊂ [0, ε/2]. Since i(k1, n) < i(kj, n) for every k1 < kj and

n ∈ N, and from (4.6), we obtain that Ei(kj ,n) ⊂ [0, ε/2] for every n ≥ n1 and every

j ∈ N. Hence, Fn(x) = 0 for every n ≥ n1 and every x ∈ (ε/2, 1], and we get (b).

Finally, (c) holds because, for every n ∈ N, we have that

ess sup
0≤x≤1

|Fn(x)| ≥ ess sup
x∈Ei(k1,n)

|Fn(x)| = ess sup
x∈Ei(k1,n)

|α1S(k1, n)| = |α1| 6= 0
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It is a direct consequence of both Theorems 4.12 and 4.13 that the family nUPae([0, 1])

is c-lineable. But again bringing up the topological structure of L0([0, 1])N, and taking

into account that any complete separable metric topological vector space has dimen-

sion at most c, with an application of Theorem 2.7 we can prove also the maximal

dense-lineability of this family.

Theorem 4.14. The family nUPae([0, 1]) is maximal dense-lineable in L0([0, 1])N.

Proof. Following the notation of Theorem 2.7, letA = nUPae([0, 1]), B = c00(L0([0, 1])),

and κ = c. We already have that A is maximal lineable, and B is dense-lineable in

L0([0, 1])N (see Section 1.3). Moreover, A ∩ B = ∅, because the elements of B are

uniformly convergent to zero on [0, 1], and A is stronger than B, because adding ele-

ments of B does not altere the sequence for n large enough. Now, an application of

Theorem 2.7 finishes the proof.
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Chapter 5

The space L1([0,+∞))

In this Chapter we will focus our attention on the space L1([0,+∞)) of all (classes

of) Lebesgue measurable functions that are integrable over [0,+∞). Recall that it

becomes a Banach space with the L1-norm (see Subsection 1.2.3). In Section 5.1

we are interested in the behaviour of the L1-norm of a sequence of functions “in

contrast” to other modes of convergence defined in the last chapters. In Section

5.2 we provide linear structures of integrable functions which are continuous but not

bounded. In Section 5.3 we translate the study of lineability to sequences of the

previous functions with an adequate and natural convergence. The last Section focus

on some final remarks about the best possible convergence of the sequences, its growth

and smoothness.
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5.1 Convergence in L1(X,µ)

If we consider a general measure space, we define the L1-convergence as follows.

Definition 5.1. Let (X,M, µ) be a measure space. Let fn, f : X → K (n ∈ N) be

measurable functions. We say that fn → f (n→∞) in L1-norm on X, if

‖fn − f‖1 =

∫
X

|fn − f | dµ→ 0 (n→∞).

In this section we will study the relationship among the convergence in L1-norm

and other modes of convergence.

5.1.1 Measure vs. L1 convergence

As next result shows, the convergence in L1-norm is stronger than the convergence in

measure.

Theorem 5.2. Let (X,M, µ) be a measure space. Let fn, f : X → K (n ∈ N) be

measurable functions. If fn → f (n → ∞) in L1-norm, then fn → f (n → ∞) in

measure on X.

Proof. Fix ε > 0 and n ∈ N. Then

0 ≤ µ
(
{x ∈ X : |fn(x)− f(x)| ≥ ε}

)
=

∫
{|fn−f |≥ε}

1 dµ

≤
∫
{|fn−f |≥ε}

1

ε
· |fn − f | dµ ≤

1

ε

∫
X

|fn − f | dµ

=
1

ε
‖fn − f‖L1 .

Thus, if fn → f (n→∞) in L1-norm we have that

µ
(
{x ∈ X : |fn(x)− f(x)| ≥ ε}

)
→ 0 (n→∞),

that is, fn → f (n→∞) in measure on X.
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The reciprocal is not true, as the next example shows.

Example 5.3 (Measure ; L1-norm). Let fn : [0,+∞) → R (n ∈ N) be the

sequence of functions given by

fn(x) := nχ[ 1
n
, 2
n ](x), (x ∈ [0,+∞), n ∈ N).

0 1

1

2

2

1
2

f1(x) = χ[1,2](x)

0 1

1

2

2

1
2

f2(x) = 2χ[12 ,1]
(x)

Figure 5.1: First terms of the sequence fn(x) = nχ[ 1
n
, 2
n ](x)

Clearly, fn → 0 =: f pointwise on [0,+∞). Now, given any ε ∈ (0, 1), we have

that

m
(
{x ∈ [0,+∞) : |fn(x)− f(x)| ≥ ε}

)
≤ m

([
1
n
, 2
n

])
=

1

n
.

So, we also have that fn → 0 in measure. Nonetheless, let us compute its L1-norm:

‖fn − f‖1 =

∫ +∞

0

|fn(x)| dx =

∫ 2
n

1
n

n dx = n · 1

n
= 1.

Thus, we do not have convergence of the sequence (fn)n to 0 in the L1-norm.

5.1.2 Uniform vs L1 convergence

Observe that there is no relation between uniform convergence and convergence in

L1-norm, as the next two examples show.
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Example 5.4 (L1-norm ; Uniform). Let fn : [0, 1]→ R (n ∈ N) be the sequence

of functions of Example 3.6 given by

fn(x) := χEn(x) (n ∈ N, x ∈ [0, 1]),

where En =
[

1
n+1

, 1
n

]
for all n ∈ N. We already know that this sequence converges

pointwise but not uniformly to f := 0 on [0, 1]. But,

‖fn − f‖1 =

∫ 1
n

1
n+1

1 dx = m
([

1
n+1

, 1
n

])
=

1

n(n+ 1)
→ 0, (n→∞).

So, we obtain that fn → 0 in L1-norm.

For the other relation, observe that this cannot happen in a finite measure setting.

Indeed, if we have that fn → f uniformly on X with µ(X) < +∞, then we also have

the convergence of the integrals, hence the L1-norm convergence. So, we will work

with measurable functions defined on [0,+∞).

Example 5.5 (Uniform ; L1-norm on infinite measure spaces). Consider the

sequence of functions fn : [0,+∞)→ R (n ∈ N) given by

fn(x) :=
1

n
χ[0,n](x), (x ≥ 0, n ∈ N).

0 1

1
2

2

1
f1(x) = χ[0,1](x)

0 1

1
2

2

1
f2(x) =

1
2χ[0,2](x)

Figure 5.2: First terms of the sequence fn(x) = 1
nχ[0,n](x)
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Each fn is a measurable function, and fn → 0 uniformly on [0,+∞) (just take into

account that |fn(x)| ≤ 1/n for all x ≥ 0). Furthermore, if we compute the L1-norm

of each fn, we obtain,

‖fn‖L1 =

∫ +∞

0

|fn(x)| dx =

∫ n

0

1

n
dx = 1,

and fn cannot converge to zero in L1-norm.

The last sequence is a classical example of a sequence of functions in L0([0,+∞))N

converging uniformly to zero but not in L1-norm, and it will be the germ of the proofs

of all results in this Subsection.

But before, let us collect all the relations between the different convergences.

MeasurePointwise a.e.

L1-norm

Almost uniformUniform a.e.

Pointwise

Uniform
X

X

X

X

X

X

X

X

X

X

XX

(a) µ(X) =∞

MeasurePointwise a.e.

L1-norm

Almost uniformUniform a.e.

Pointwise

Uniform
X

X

X

X

X

X

X

X

X

(b) µ(X) <∞

Define the family nL1U([0,+∞)) of all sequences of (classes of) Lebesgue measur-

able functions that are uniformly convergent to zero on [0,+∞) but not in L1-norm,

that is,

nL1U([0,+∞)) :=
{

(fn)n ∈ L0([0,+∞))N : fn → 0 uniformly on [0,+∞)

and ‖fn‖1 6→ 0 (n→∞)
}
.
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From the previous Example 5.5, we already have that this family is non-empty. In

the next results we will state which is its algebraic size in terms of Lineability. But

before we need an auxiliary result.

Lemma 5.6. For any non-void set H ⊂ (0,+∞) the family of sequences{(
1

nc

)
n

: c ∈ H
}

is linearly independent.

Proof. Take a finite linear combination of elements of the family, that is, fix N ∈ N,

c1, c2, . . . , cN ∈ H (c1 < c2 < · · · < cN) and λ1, λ2, . . . , λN ∈ R, and assume that, for

all n ∈ N,

λ1
1

nc1
+ λ2

1

nc2
+ · · ·+ λN

1

ncN
= 0. (5.1)

But it is a well-known result of Pólya (see for instance [34, Corollary 3.2] or [47,

pp. 46–47]) that the “generalized polynomial”

p(x) := λ1x
c1 + λ2x

c2 + · · ·+ λNx
cN

has a finite number of zeros (at most N − 1). So, the only possibility for (5.1) to be

true for all n ∈ N is that λ1 = λ2 = · · · = λN = 0.

Theorem 5.7. The family nL1U([0,+∞)) is strongly c-algebrable.

Proof. Let H ⊂ (0,+∞) be a Q-linearly independent set with card(H) = c. For every

c ∈ H, consider the sequence of functions fc := (fc,n)n ∈ L0([0,+∞))N given by

fc,n(x) :=
1

nc
χ[0,en](x) (x ≥ 0, n ∈ N). (5.2)

For any c ∈ H,

sup
x∈[0,+∞)

|fc,n(x)| = sup
x∈[0,+∞)

∣∣∣∣ 1

nc
χ[0,en](x)

∣∣∣∣ =
1

nc
→ 0 (n→∞),
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and applying Theorem 3.2, the sequence fc is uniformly convergent to zero. Further-

more, it does not converge to zero in L1-norm, since for every c ∈ H, we have

‖fc,n‖L1 =

∫ +∞

0

∣∣∣∣ 1

nc
χ[0,en](x)

∣∣∣∣ dx =
en

nc
→ +∞ (n→∞).

Let B be the algebra generated by the family {fc : c ∈ H}, which is a linearly

independent family by Lemma 5.6. We claim that B is a free algebra such that any

non-zero member is a sequence uniformly convergent to zero in [0,+∞) but not in

L1-norm.

Let F = (Fn)n ∈ B\{0}. Similarly to Theorems 4.7 and 4.12, there exist a natural

number N ∈ N, a non-empty finite set J ⊂ NN0 \ {(0, (N). . ., 0)} and scalars αj ∈ R \ {0},
for j = (j1, j2, . . . , jN) ∈ J such that, for every n ∈ N and x ≥ 0,

Fn(x) =
∑
j∈J

αjfc1,n(x)j1 · · · fcN ,n(x)jN =

(∑
j∈J

αj
1

nc·j

)
χ[0,en](x), (5.3)

where the fact of χ[0,en] being a characteristic function is crucial again in the last

equality.

By the Q-linearly independence of H, the numbers c · j are mutually distinct and

non-null. Moreover, αj 6= 0 (j ∈ J), hence by Lemma 5.6 the numbers∑
j∈J

αj
1

nc·j

can be zero at most for a finite number of n. In particular, (Fn)n is a non-null sequence

and the algebra is free. Furthermore,

sup
x≥0
|Fn(x)| ≤

∑
j∈J

|αj|
1

nc·j → 0 (n→∞).

So, F = (Fn)n is uniformly convergent to zero on [0,+∞). Finally,

‖Fn‖1 =

∫ +∞

0

∣∣∣∣∣
(∑

j∈J

αj
1

nc·j

)
χ[0,en](x)

∣∣∣∣∣ dx =

∣∣∣∣∣∑
j∈J

αj
1

nc·j

∣∣∣∣∣ en → +∞ (n→∞),

which concludes the proof.
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Since L0([0,+∞))N with the product topology is also a complete metrizable (hence

Baire) space and the family nL1U([0,+∞)) is c-algebrable, we obtain the next corol-

lary about its linear size.

Corollary 5.8. The family nL1U([0,+∞)) is maximal lineable.

Observe that, although every non-zero sequence of the algebra B constructed in the

proof of the previous theorem does not converge to zero in L1-norm, all the functions

are, in fact, integrable on [0,+∞). Hence, B \ {0} ⊂ L1([0,+∞))N. Observe also that

for any (Fn)n ∈ B \ {0} we have sup
n∈N
‖Fn‖1 = +∞.

In 2014, Bernal and Ordóñez [19] considered the space CBLs of all sequences

of continuous, bounded and integrable functions fn : R → R (n ∈ N) such that

‖fn‖∞ → 0 (n → ∞) and sup
n∈N
‖fn‖1 < +∞, that is, their supremum norm converges

to zero and the sequence of L1-norms is uniformly bounded. Moreover, they proved

that

‖(fn)n‖ := sup
n∈N
‖fn‖∞ + sup

n∈N
‖fn‖1

defines a norm on CBLs, under which it becomes a Banach space. Now, consider the

family F of all sequences of functions (fn)n of CBLs such that ‖fn‖1 6→ 0 (n→∞).

In [19, Theorem 4.16 ] Bernal and Ordóñez establish the spaceability of the family F
in CBLs

As a consequence, this family is also maximal lineable. However, the point with the

family F that Bernal and Ordóñez considered is that this family turns out to be smaller

than the family nL1U([0,+∞)), that is, F ⊂ nL1U([0,+∞)), while the topology of

CBLs is finer than the product topology of L1([0,+∞))N. As a consequence, the

spaceability of the family nL1U([0,+∞)) cannot be directly derived from [19, Theorem

4.16], because not every open set in L1([0,+∞))N turns out to be also open in CBLs.
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Again in [19], Bernal and Ordóñez, just by considering the map T : `∞ → CBLs

given by

T (an) =


2an
n

(x− k + 1) if k − 1 ≤ x < k + 1
2

(1 ≤ k ≤ n),

2an
n

(x− k) if k + 1
2
≤ xk (1 ≤ k ≤ n),

0 otherwise,

for any sequence (an)n ∈ `∞, constructed an isomorphism T between the non-separable

space `∞ and its image. Thus, T (`∞), and so CBLs, are not separable, which means

that the maximal dense-lineability of the family F cannot be obtained as an appli-

cation of Theorem 2.7. But, in this setting, taking into account that the product

topology of L1([0,+∞))N actually makes L1([0,+∞))N separable, the next result can

be proven.

Theorem 5.9. The family nL1U([0,+∞)) is maximal dense-lineable in L1([0,+∞))N

with the product topology.

Proof. Both from Bernal and Ordóñez result or directly from Theorem 5.7 (at this

moment we do not care about the topology), we know that the family nL1U([0,+∞))

of the hypothesis is c-lineable. The space L1([0,+∞))N, endowed with the product

topology, is a separable complete metrizable topological vector space, so its dimension

is c.

Moreover, as seen in Section 1.3, the vector space c00(L1([0,+∞))) of vanishing

sequences of functions of L1([0,+∞)) is dense in L1([0,+∞))N with the product topo-

logy. In addition, nL1U([0,+∞)) ∩ c00(L1([0,+∞))) = ∅ because every sequence in

c00(L1([0,+∞))) converges to zero in L1-norm, and nL1U([0,+∞))+c00(L1([0,+∞))) ⊂
nL1U([0,+∞)).

Now, applying Theorem 2.7 with A = nL1U([0,+∞)), B = c00(L1([0,+∞))), and

κ = c, we get the maximal dense-lineability.
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In order to state the spaceability, it turns out that we must take into account not

only the product topology but also the property of the sequences of being uniformly

convergent to zero on [0,+∞). For this purpose, let

Z1 :=
{

(fn)n ∈ L1([0,+∞))N : fn → 0 uniformly on [0,+∞)
}

endowed with the next F -norm

‖(fn)n‖Z1 := sup
n∈N
‖fn‖∞ +

∞∑
n=1

1

2n
· ‖fn‖1

1 + ‖fn‖1

.

It is straightforward that (Z1, ‖ · ‖Z1) becomes a complete separable metrizable locally

convex topological vector space, hence a Fréchet space, whose topology recover both

the product topology inherited by ‖ · ‖1 and the uniform convergence to zero. This is

the right framework to state the spaceability.

Theorem 5.10. The family nL1U([0,+∞)) is spaceable in (Z1, ‖ · ‖Z1).

Proof. Let us divide the interval [0,+∞) into infinitely many sequences of pairwise

disjoint intervals (except, possibly, for the extremes). For every N ∈ N and every

M = 1, . . . , N , let

IN,M :=

[
N−1∑
j=1

j(N − j) +
M(M − 1)

2
,
N−1∑
j=1

j(N − j) +
M(M + 1)

2

]
.

Observe that for each M ∈ N, the interval IN,M has always length M .

For every k ∈ N, define the sequence G(k) = (G(k, n))n :=
(

1
n
χIk+n−1,n

)
n
. It is

straightforward that every sequence G(k) converges to zero uniformly in [0,+∞) but

not in L1-norm (observe that ‖G(k, n)‖1 = 1 for all n ∈ N). Moreover, the family

{G(k) : k ∈ N} is linearly independent because of the disjointness of the (interiors of

the) supports of all functions included in it.

Now, an application of Kalton criterion of spacebility (see Theorem 2.10) with

X = Z1 and Y = {(fn)n ∈ X : ‖fn‖1 → 0 (n → ∞)} (which is closed in X by a

standard topological argument) finishes the proof.
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Remark 5.11. Sequences of nL1U([0,+∞)) are, by definition, not convergent to

zero in L1-norm. But, in fact, by the construction of the algebra B of the proof of

Theorem 5.7, the sequences of L1-norms of every non-zero member of B diverges to

infinity. However, every sequence of the closed vector space given by the spaceability of

CBLs is uniformly bounded in L1-norm. Thus, it is natural to ask about the algebraic

genericity of the family of sequences (fn)n ∈ L1([0,+∞))N such that sup
n∈N
‖fn‖1 < +∞,

fn → 0 uniformly on [0,+∞) and ‖fn‖1 6→ 0 (n→∞).

5.2 Unbounded functions in CL1([0,+∞))

In this Section we will focus our attention on the space CL1([0,+∞)) of all con-

tinuous and integrable (classes of) functions on [0,+∞), that is,

CL1([0,+∞)) = L1([0,+∞)) ∩ C([0,+∞)).

This space becomes a topological metrizable vector space when endowed with the

natural translation-invariant metric given by

dCL1(f, g) := ‖f − g‖1 +
∞∑
n=1

1

2n
‖f − g‖∞,n

1 + ‖f − g‖∞,n
, (5.4)

Note that dCL1-convergence means L1-convergence plus uniform convergence on com-

pacta.

The necessary condition of convergence of series of scalars states that if a series

is convergent, then its general term must tend to zero. Now, turning into the setting

of integrable (and even continuous) functions, one may think that something similar

should happen, namely, that if f is integrable on an unbounded interval (say [0,+∞)),

then it must tend to zero somehow. However, this is far from being true. Our in-

tuition would be actually correct if the function f also verifies that the limit of f(x)

(x→ +∞) exists, or even if the function is decreasing over the interval. Nonetheless,

this affirmation is false in general.
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In the next example we show a classical undergraduate construction of an un-

bounded, continuous and integrable function on [0,+∞) that will play a fundamental

role during this section.

Example 5.12 (Triangular Function). For each n ∈ N, consider the triangular

functions Tn : [0,+∞)→ R given by

Tn(x) :=



n(2n+1x+ (1− n2n+1)) if x ∈
[
n− 1

2n+1
, n

)
,

n(−2n+1x+ (1 + n2n+1)) if x ∈
[
n, n+

1

2n+1

]
,

0 otherwise,

(5.5)

Observe that, for each n ∈ N, the function Tn(x) “draws” the isoceles triangle of

height n and basis 1
2n

centred at the point x = n.

0

1

21

2

3
4

5
4

T1(x)

0

1

21

2
T2(x)

15
8

17
8

Figure 5.4: First terms of the “triangles“ Tn(x)

Now, we will define the function f : [0,+∞) → R by joining all the previous

“triangles” of the functions Tn, that is,

f(x) :=
∞∑
n=1

Tn(x). (5.6)

This is a formal infinite series, but due to the disjointness of the supports of the

triangular functions for fixed x ≥ 0, there is at most one non-zero summand. Observe

that now, the functions f(x) “draws” all the triangles given by the functions Tn, for

n ∈ N, together.
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0

1

21

2
f(x) =

∞∑
n=1

Tn(x)

15
8

17
8

3
4

5
4

Figure 5.5: Triangular function f(x)

Clearly, the continuity of each Tn (n ∈ N) and the construction of f allows us to

state the continuity of the function f . Furthermore, f is integrable on [0,+∞), since

its L1-norm can be computed as follows:

‖f‖L1 =

∫ +∞

0

∣∣∣∣∣
∞∑
n=1

Tn(x)

∣∣∣∣∣ dx =
∞∑
n=1

∫ +∞

0

Tn(x) dx =
∞∑
n=1

n

2n+1
= 1 < +∞.

Hence, we have that f ∈ CL1([0,+∞)). Finally, if we consider the sequence (xn :=

n)n ⊂ R of all positive integers, we have that

f(xn) = f(n) = n→ +∞ (n→∞),

so,

lim sup
x→+∞

|f(x)| = +∞.

Thus, f(x) is an example of a continuous, unbounded and integrable function on

[0,+∞).

Remark 5.13. Observe that, with a similar construction of the triangles in (5.5)

we could prefix the value of ‖f‖1 in (0,+∞), just adjusting the size of the triangles.

Indeed, given α > 0, we can consider the functions Tn,α(x) := α ·Tn(x) for every x ≥ 0

and n ∈ N.

Since ‖Tn,α‖1 = α · ‖Tn‖1, if we define the function Fα as in (5.6), we obtain that

‖Fα‖1 = α.
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In view of Example 5.12, we introduce the family nBCL1([0,+∞)) of all continuous,

unbounded and integrable functions on [0,+∞), that is,

nBCL1([0,+∞)) :=

{
f ∈ CL1([0,+∞)) : lim sup

x→+∞
|f(x)| = +∞

}
.

Observe that from Example 5.12 we already have that nBCL1([0,+∞)) 6= ∅.

Furthermore, given any α > 0, Remark 5.13 assures the existence of a function Fα ∈
nBCL1([0,+∞)), which provides us with card(nBCL1([0,+∞))) = c (observe that,

if α 6= β, then Fα 6= Fβ). So, in terms of cardinality we know that there are many

functions in the family nBCL1([0,+∞)) but, although nBCL1([0,+∞)) has as many

elements as CL1([0,∞)), it is not a vector space itself. For this, let us just take f(x)

and e−x − f(x), where f ∈ nBCL1([0,+∞)). This linear combination would result in

f(x) + (e−x − f(x)) = e−x /∈ nBCL1([0,+∞)).

Thus, the natural question that now arises is what the meaning of “big” would be

when looking for lineability within nBCL1([0,+∞)).

The following result gives us a positive answer. Remember that, given a vector

subspace M ⊂ nBCL1([0,+∞)) ∪ {0}, its maximal dimension is c.

Theorem 5.14. The family nBCL1([0,+∞)) is maximal lineable.

Proof. We are looking for a vector subspace M of dimension c such that M ⊂
nBCL1([0,+∞)) ∪ {0}.

Consider the “triangles” (Tn)n given in Example 5.12. Observe that the mini-

mum distance between (the supports of) any two triangles Tn and Tn+1 is 5
8
, and the

maximum length for the support of Tn is 1
2
.

So, for any s, t ∈
[
0, 1

8

)
, we have that the supports of the corresponding triangles

Tn(x− t) and Tm(x− s) are disjoint for any pair n,m ∈ N, n 6= m.
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On the other hand, for any s, t ∈
[
0, 1

8

)
with s < t, there exists N ∈ N such that

1
2n
< t− s for any n ≥ N . In particular,

n+
1

2n+1
+ s < n− 1

2n+1
+ t

and the supports of the triangles Tn(x− t) and Tn(x− s) are disjoint for any n ≥ N .

For each t ∈
[
0, 1

8

)
we define the function ft : [0,+∞)→ R by

ft(x) :=
∞∑
n=1

Tn(x− t),

where we understand Tn(x− t) = 0 for x− t < 0.

As in Example 5.12, we have that ft ∈ nBCL1([0,+∞)) for any t ∈
[
0, 1

8

)
and, so,

M := span
{
ft : t ∈

[
0, 1

8

)}
is a vector subspace in CL1([0,+∞)). It only remains to prove that dim(M) = c and

the unboundedness of each F ∈M \ {0}. Let F ∈M , that is,

F (x) = c1ft1(x) + c2ft2(x) + · · ·+ csfts(x), (x ≥ 0),

where 0 ≤ t1 < t2 < · · · < ts < 1/8 and c1, c2, . . . , cs ∈ R. Assume that some cj is

non-null (without loss of generality we can assume cs 6= 0).

Let N ∈ N be large enough to get the disjointness of Tn(x − ts) with any other

Tn(x− ti), i = 1, 2, . . . , s− 1, n ≥ N . Then, for any xn := n+ ts (n ≥ N),

F (xn) = c1ft1(xn) + c2ft2(xn) + · · ·+ csfts(xn) = cs · n.

Hence, F 6≡ 0, the set
{
ft : t ∈

[
0, 1

8

)}
is linearly independent, and dim(M) = c.

But also,

|Fn(xn)| = |cs|n→ +∞ (n→∞).

Thus, F is unbounded and the proof is finished.
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In order to determine the dense-lineability of the family nBCL1([0,+∞)), the

topological structure of CL1([0,+∞)) needs to be taken into account. Recall that a

polygonal in [0,+∞) is a continuous function consisting of finitely many affine linear

mappings on compact subintervals of [0,+∞). We state the next auxiliary lemma.

Lemma 5.15. The family B of all functions of the form

bp,n,γ(x) =


p(x) if 0 ≤ x ≤ n,

p(n)
γ

(n+ γ − x) if n < x ≤ n+ γ,

0 if x > n+ γ,

where p(x) is a polygonal in [0,+∞), n ∈ N and γ > 0, is dense in (CL1([0,+∞)), dCL1).

Proof. It is obvious that B ⊂ CL1([0,∞)). We are going to see that B is dense in

CL1([0,+∞)). Let f ∈ CL1([0,+∞)) and ε > 0. Since f is integrable, there is N ∈ N
such that ∞∑

k=N+1

1

2k
<
ε

6
and

∫ ∞
N

|f(x)| dx < ε

6
. (5.7)

By using uniform continuity, it is easy to see that the set of all polygonals is dense in

(C([0, N ]), ‖ · ‖∞), even with the property that the approximating polygonal matches

with the approximation function at the extremes of the interval. Consequently, we

can take a polygonal p(x) in [0, N ] such that

p(N) = f(N) and ‖f − p‖∞,N <
ε

6N
. (5.8)

Now define γ :=
ε

6(1 + |f(N)|)
. Then,

dCL1(f, bp,N,γ) =
∞∑
n=1

1

2n
· ‖f − bp,N,γ‖∞,n

1 + ‖f − bp,N,γ‖∞,n
+ ‖f − bp,N,γ‖1

≤ ‖f − p‖∞,N
N∑
k=1

1

2k
+

∞∑
k=N+1

1

2k
+

∫ N

0

|f(x)− p(x)| dx

+

∫ N+γ

N

∣∣∣f(x)− f(N)
γ

(N − x+ γ)
∣∣∣ dx+

∫ ∞
N+γ

|f(x)| dx (5.9)
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But, by (5.8),∫ N+γ

N

∣∣∣∣f(x)− p(N)

γ
(N − x+ γ)

∣∣∣∣ dx =

∫ N+γ

N

∣∣∣∣f(x)− f(N)

γ
(N − x+ γ)

∣∣∣∣ dx
≤
∫ N+γ

N

|f(x)| dx+

∫ N+γ

N

|f(N)|
γ
|N − x+ γ| dx

≤
∫ +∞

N

|f(x)| dx+
|f(N)|
γ

· γ · γ (5.10)

Now, by (5.7), (5.8), (5.9) and (5.10),

dCL1(f, bp,N,γ) ≤
ε

6N
·
N∑
k=1

1

2k
+
ε

6
+

ε

6N
·N +

ε

6
+ |f(N)| · γ +

ε

6
< 6 · ε

6
= ε,

because
N∑
k=1

1

2k
≤ N , and by the definition of γ, we have |f(N)| · γ ≤ ε

6
. Hence, the

set B is dense in CL1([0,+∞)).

Now, with the application again of Theorem 2.7, we can obtain the maximal dense-

lineability of our family nBCL1([0,+∞)).

Theorem 5.16. The family nBCL1([0,+∞)) is maximal dense-lineable in CL1([0,+∞)).

Proof. The family B defined in Lemma 5.15 is a vector space (indeed, any linear combi-

nation of polygonals is again a polygonal, even if the vertex do not match) and is dense

in CL1([0,+∞)), so, in particular, B is dense-lineable in CL1([0,+∞)). By Theorem

5.14 we already have that the family nBCL1([0,+∞)) is maximal lineable. By the con-

struction of the family B, any function of B is bounded, so nBCL1([0,+∞))∩B = ∅.

Moreover, nBCL1([0,+∞)) + B ⊂ nBCL1([0,+∞)), because any function in B has

compact support. Finally, an application of Theorem 2.7 with A = nBCL1([0,+∞)),

B and κ = c gives us the maximal dense-lineability of nBCL1([0,+∞)).

We have already seen that there exists a dense c-dimensional vector space M ⊂
nBCL1([0,+∞))∪{0}, which means, that our family nBCL1([0,+∞)) behaves “well”
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under linear combinations. Let us see that this can also be extended to algebraic

combinations, which would lead into the algebrability of the family nBCL1([0,+∞)).

But, before we start with this, we need some notation, since the argumentation here

differs a little bit from the one carried out in the proofs of Theorems 4.7 and 4.12.

Definition 5.17. Let N ∈ N. Given a (monic) monomial in N variables

m(x1, x2, . . . , xN) =
N∏
i=1

xαii ,

where αi ∈ N∪{0} for all i = 1, 2, . . . , N , and an increasing sequence of prime numbers

P = (pi)i, we define the P-index of m by

indP(m) := m(p1, p2, . . . , pN) =
N∏
i=1

pαii .

Remark 5.18. Observe that we can always state a bijection between any increasing

sequence of prime numbers and the whole sequence of primes, so, by the uniqueness

of the factorization theorem, given a natural number n ∈ N, there is only one way

of expressing it as product of powers of prime numbers, that is, there is an unique

factorization

n =
N∏
i=1

pαii ,

and this number is the P-index of the monomial m(x1, x2, . . . , xN) =
N∏
i=1

xαii . This fact

allows us to state a bijection between N and the set of all monic monomials. So, given

a monomial m, it is uniquely described by any of its P-index.

Thanks to this, we will be able to find an algebra of dimension ℵ0 inside the family

nBCL1([0,+∞)).
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Theorem 5.19. The family nBCL1([0,+∞)) is strongly ℵ0-algebrable.

Proof. For any n ∈ N and p ≥ 1, we consider the “triangles” on [0,+∞) given by

Tn,p(x) =


np(2n+1x+ (1− n2n+1))p if x ∈

[
n− 1

2n+1 , n
)
,

np(−2n+1x+ (1 + n2n+1))p if x ∈
[
n, n+ 1

2n+1

]
,

0 otherwise,

and we define the functions gp : [0,+∞)→ R as:

gp(x) =
∞∑
n=1

Tn,p(x).

In fact, each Tn,p draws a “curved triangle” whose basis lies in the x-axis, has height

np, and the other sides are convex (p ≥ 1) functions.

Because of the disjointness of the supports of the triangles Tn,p(x) (n ∈ N), the

functions gp are well defined and continuous on [0,+∞). Furthermore, we can easily

bound their L1-norm. Observe that, for each p ≥ 1 and n ∈ N, the “triangle” Tn,p is

continuous on
[
n− 1

2n+1 , n+ 1
2n+1

]
and infinite differentiable on

(
n− 1

2n+1 , n+ 1
2n+1

)
\

{n}. In fact, if x ∈
(
n− 1

2n+1 , n
)
,

T ′n,p(x) = pnp2n+1(2n+1x+ (1− n2n+1))p−1 > 0,

T ′′n,p(x) = p(p− 1)np22n+2(2n+1x+ (1− n2n+1))p−2 > 0,

and if x ∈
(
n, n+ 1

2n+1

)
,

T ′n,p(x) = −pnp2n+1(−2n+1x+ (1 + n2n+1))p−1 < 0,

T ′′n,p(x) = p(p− 1)np22n+2(−2n+1x+ (1 + n2n+1))p−2 > 0,

so the triangles Tn,p(x) are always “inside” the real triangles of basis
[
n− 1

2n+1 , n+ 1
2n+1

]
and height Tn,p(n) = np. Hence

‖gp‖L1 =
∞∑
n=1

∫ ∞
0

Tn,p(x)dx ≤
∞∑
n=1

np

2n+1
< +∞.
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So, gp ∈ CL1([0,∞)). Now, by evaluating gp on the sequence of positive integers

xn = n for every n ∈ N, we get that

gp(xn) = gp(n) = np → +∞ (n→∞)

which yields gp ∈ nBCL1([0,+∞)) for all p ≥ 1.

Let P = (pj)j be the increasing sequence of all prime numbers which are greater

than 3, and let us define for each j ∈ N the function Fj as

Fj(x) :=
∞∑
n=1

Tn,log pj(x) = glog pj(x).

Note that (Fj)j ⊂ nBCL1([0,+∞)). Let B be the algebra generated by (Fj)j, that is,

B =
{
P (F1, . . . , FN) : P is a polynomial in N variables without

constant term, N ∈ N
}
.

We are going to prove that B is the desired infinitely generated algebra. Letm(x1, . . . , xN) =
N∏
i=1

xαii (αi ∈ N ∪ {0}) be a non-constant monomial. Hence

m(F1, . . . , FN)(x) =
N∏
i=1

Fi(x)αi =
N∏
i=1

(
∞∑
n=1

Tn,log(pi)(x)

)αi

.

For each n ∈ N and each x ∈
[
n− 1

2n+1 , n
)

we have

m(F1, . . . , FN)(x) =
N∏
i=1

Tn,log(pi)(x)αi

=
N∏
i=1

([
n
(
2n+1x+ (1− n2n+1)

)]log(pi)
)αi

=
[
n
(
2n+1x+ (1− n2n+1)

)]∑N
i=1 log(p

αi
i )

=
[
n
(
2n+1x+ (1− n2n+1)

)]log(indP(m))
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Analogously, for each x ∈
[
n, n+ 1

2n+1

]
, we get

m(F1, . . . , FN)(x) =
[
n
(
−2n+1x+ (1 + n2n+1)

)]log(indP(m))
.

So

m(F1, . . . , FN) = glog(indP(m)). (5.11)

In particular, m(F1, . . . , FN) ∈ nBCL1([0,+∞)), and trivially B ⊂ CL1([0,+∞))

(because continuity and integrability are stable under finite linear combinations). It

only remains to prove that (Fj)j forms an algebraic independent set and that any

element of B is not bounded. In order to prove these properties, let us take a non-

trivial algebraic combination

F (x) := P (F1, . . . , FN)(x) =
l∑

i=1

λimi(F1, . . . , FN)(x).

For each n ∈ N, we have by (5.11) that

F (n) = P (F1, . . . , FN)(n) =
l∑

i=1

λin
log(indp(mi)). (5.12)

By Remark 5.18, all exponents of the right hand part of (5.12) are positive and

pairwise different, so |F (n)| → +∞ (n → ∞). In particular, F ≡ 0 if and only if

λi = 0 for every i = 1, . . . , l, and the algebra B is free. Hence, F ∈ nBCL1([0,+∞)),

and B ⊂ nBCL1([0,+∞))∪{0}. Thus, nBCL1([0,+∞)) is strongly ℵ0-algebrable.

We finish this section stating that the family nBCL1([0,+∞)) is not only alge-

braically large, but also large in a pure topological sense.

Theorem 5.20. The family nBCL1([0,+∞)) is residual in CL1([0,+∞)).

Proof. Note that CL1([0,∞)) is Baire because, as it is easy to see, the distance dCL1

given in (5.4) is complete. Indeed,

CL1([0,∞)) \ nBCL1([0,+∞)) =
∞⋃
n=1

An,
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where for each n ∈ N,

An :=
{
f ∈ CL1([0,∞)) : |f(x)| ≤ n for all x ≥ 0

}
.

Since uniform convergence on compacta implies pointwise convergence, it is clear that

each An is closed in CL1([0,∞)). Moreover, given f ∈ An and ε > 0, it is also easy

but cumbersome to construct a function g ∈ CL1([0,+∞)) such that dCL1(f, g) < ε

but |g(x0)| > n for some x0 > 0 (just “cut” a small enough part of g around x0 and

substitute it by a linear affine function joining continuously g to the point (x0, n+1)).

This implies that every An has empty interior, so that CL1([0,+∞))\nBCL1([0,+∞))

is of first category, which proves that nBCL1([0,+∞)) is residual.

5.3 Sequences of continuous, unbounded and inte-

grable functions

Until this point we have focused our attention on the algebraic structure of the fam-

ily nBCL1([0,+∞)) of continuous, unbounded, and integrable functions. In this Sec-

tion we will step up and consider sequences of functions of the family nBCL1([0,+∞))

with additional properties on its convergence. For this, let us introduce some useful

notation. The family nBCL1
0([0,+∞)) will denote all the sequences of continuous,

unbounded and integrable functions on [0,+∞) converging to zero in the metric dCL1 ,

that is:

nBCL1
0([0,+∞)) :=

{
(fn)n ∈ CL1([0,+∞))N : fn ∈ nBCL1([0,+∞)) for every n ∈ N

and dCL1(fn, 0)→ 0 (n→∞)
}

=
{

(fn)n ∈ c0(CL1([0,+∞))) : lim
x→+∞

|fn(x)| = +∞ for all n ∈ N
}
.

Recall that convergence to zero in the metric dCL1 means that

‖fn‖1 +
+∞∑
k=1

1

2k
· ‖fn‖∞,k

1 + ‖fn‖∞,k
→ 0 (n→∞)
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that is, we have convergence to zero in the L1-norm and uniformly convergence on

compacta.

The next example shows that the family nBCL1
0([0,+∞)) is not empty.

Example 5.21. Let Tn (n ∈ N) be the triangular function already defined in Example

5.12. In order to construct our sequence of functions (fn)n ∈ nBCL1
0([0,+∞)) we will

truncate the series given by the triangles, that is, for every n ∈ N let fn : [0,+∞)→ R

be defined as:

fn(x) :=
∞∑
k=n

Tk(x) (x ≥ 0).

Clearly, (fn)n ⊂ nBCL1([0,+∞)). On the other hand, since each fn(x) is the tail of a

convergent series in CL1([0,+∞)) (see Example 5.12), we have that (fn)n converges

to zero in the metric dCL1 as n→∞. Thus, (fn)n ∈ nBCL1
0([0,+∞)).

As in the case of single functions, we can prove the existence of a free-generated

infinite dimensional algebra inside our family nBCL1
0([0,+∞)).

Theorem 5.22. The family of sequences nBCL1
0([0,+∞)) is strongly ℵ0-algebrable.

Proof. Using the notation of the proof of Theorem 5.19, for each j, n ∈ N, let

Fj,n(x) :=
∞∑
k=n

Tk,log(pj)(x).

Let B0 be the algebra generated by the sequences {(Fj,n)n : j ∈ N}. Following the

same argument as in Theorem 5.19 and taking the monomial

m(x1, . . . , xN) =
N∏
i=1

xαii ,

we have for each n ∈ N and x ≥ 0, that

m(F1,n, . . . , FN,n)(x) =
∞∑
k=n

Tk,log(indP(m))(x). (5.13)
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Therefore, the sequence m((F1,n)n, . . . , (FN,n)n) is the sequence of tails of a convergent

series (in the topology generated by dCL1) and we have that

dCL1(m(F1,n, . . . , FN,n), 0)→ 0 (n→∞).

In particular, m((F1,n)n, . . . , (FN,n)n) ∈ nBCL1
0([0,+∞)).

Finally, let (Fn)n be a non-trivial algebraic combination of the sequences (Fj,n)n

(j ∈ N), that is, for each non-zero polynomial P in N variables without constant term

and each n ∈ N, we consider

Fn(x) := P (F1,n, . . . , FN,n)(x) =
l∑

i=1

λimi(F1,n, . . . , FN,n)(x),

where the λi’s are not simultaneously zero.

For each n ∈ N and each k ≥ n, by taking (5.13) into account, we obtain

Fn(k) = P (F1,n, . . . , FN,n)(k) =
l∑

i=1

λik
log(indP(mi)).

Now, continuing in the same way as on the proof of Theorem 5.19, we get that

|Fn(k)| → +∞ (k → ∞), hence B0 ⊂ nBCL1
0([0,+∞)) ∪ {0} and B0 is a free al-

gebra. Thus nBCL1
0([0,+∞)) is strongly ℵ0-algebrable.

An immediate consequence from the algebrability of nBCL1
0([0,+∞)) is that mere

lineability can be easily obtained.

Corollary 5.23. The family of sequences nBCL1
0([0,+∞)) is ℵ0-lineable.

In this case we could only infer the ℵ0-lineability, since we obtained ℵ0-algebrability.

Nonetheless, by a direct approach, it is easy to attain the maximal dimension of the

space CL1([0,+∞))N.
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Theorem 5.24. The family of sequences nBCL1
0([0,+∞)) is maximal lineable.

Proof. As in the proof of Theorem 5.19, for each t ∈
[
0, 1

8

)
and each n ∈ N we define

the functions

fn,t(x) :=
∞∑
k=n

Tk(x− t) (x ≥ 0),

and consider the set M0 given by

M0 := span
{

(fn,t)n : t ∈
[
0, 1

8

)}
.

Following the same argument as in Theorem 5.14, we have that each fn,t is a con-

tinuous, unbounded and integrable function on [0,+∞), that is, fn,t ∈ nBCL1([0,+∞))

for all t ∈
[
0, 1

8

)
and n ∈ N, and that the sequences

{
(fn,t)n : t ∈

[
0, 1

8

)}
are linearly

independent.

In addition, it is clear that the whole series ft(x) :=
∞∑
k=1

Tk(x − t) is conver-

gent, both in L1-norm and uniformly on compact sets of [0,+∞), so in dCL1 . Hence

dCL1(fn,t, 0) → 0 (n → ∞) for all t ∈
[
0, 1

8

)
, M0 ⊂ nBCL1

0([0,+∞)) ∪ {0} and

nBCL1
0([0,+∞)) is maximal lineable.

Yet, in order to obtain the maximal dense-lineability, we need to establish a proper

framework and the topology to be considered there. We consider the sequence space

c0(CL1([0,+∞))) := {(fn)n ⊂ CL1([0,+∞)) : dCL1(fn, 0)→ 0 (n→∞)},

endowed with the distance d∞ given by

d∞((fn)n, (gn)n) := sup
n∈N

dCL1(fn, gn), (5.14)

for all (fn)n, (gn)n ∈ c0(CL1([0,+∞))). We know that (c0(CL1([0,+∞))), d∞) is a

complete metric topological vector space, and thus, using again Baire’s Theorem, we

have that its dimension is c.
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We define the set B00 as

B00 :=
{

(bn)n : exists n0 ∈ N such that bn ∈ B for all n ≤ n0 and

bn = 0 for all n > n0

}
,

where B is the dense subset of CL1([0,+∞)) defined in Lemma 5.15.

Lemma 5.25. The space B00 is dense in (c0(CL1([0,+∞))), d∞).

Proof. First, it is clear that B00 ⊂ c0(CL1([0,+∞))), since B ⊂ CL1([0,+∞)). Now,

let (fn)n ∈ c0(CL1([0,+∞))). Given ε > 0, there is n0 ∈ N with dCL1(fn, 0) < ε for all

n ≥ n0. Furthermore, the denseness of B in CL1([0,+∞)) guarantees the existence of

b1, . . . , bn0−1 ∈ B such that dCL1(fn, bn) < ε (1 ≤ n ≤ n0 − 1). Finally, define bn := 0

for n ≥ n0. It is clear that (bn)n ∈ B00 and, by construction

d∞((fn)n, (bn)n) = sup
n∈N

dCL1(fn, bn) = max

{
max

1≤n≤n0−1
dCL1(fn, bn), sup

n≥n0

dCL1(fn, 0)

}
< ε,

and we are done.

Theorem 5.26. The family of sequences nBCL1
0([0,+∞)) is maximal dense-lineable

in c0(CL1([0,+∞))).

Proof. We already have the maximal lineability of the family nBCL1
0([0,+∞)) from

Theorem 5.24 and, by Lemma 5.25, B00 is a dense vector subspace of c0(CL1([0,+∞)))

(hence, dense-lineable). Moreover, each function bn of a sequence (bn)n ∈ B00 is

bounded and bn = 0 for n big enough, so B00 + nBCL1
0([0,+∞)) ⊂ nBCL1

0([0,+∞)),

and B00 ∩ nBCL1
0([0,+∞)) = ∅. Finally, Theorem 2.7 tells us that nBCL1

0([0,+∞))

is maximal dense-lineable in c0(CL1([0,+∞))).
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5.4 Final remarks

5.4.1 Maximal possible convergence

Observe that, in the above proofs, when we deal with the family nBCL1
0([0,+∞)),

and we consider the sequences (fn,t)n given by

fn,t(x) = fn(x− t) =
∞∑
m=n

Tm(x− t),

for t ∈
[
0, 1

8

)
, x ∈ [0,+∞) and n ∈ N, we only checked them to be in our space of

functions c0(CL1
0([0,+∞))), that is, they had to converge to zero in L1-norm plus

uniformly on compact sets of [0,+∞). We want to comment that the convergence to

zero can be strengthen.

Let ([0,+∞),L,m) be the Lebesgue measure space. Recall (see Definition 3.3) that

a sequence of functions (fn)n converges almost uniformly (on [0,+∞)) to a function

f if, for every ε > 0, there exists a set E ⊂ [0,+∞) with m(E) < ε such that fn → f

uniformly on [0,+∞) \ E.

In this line, all the sequences (fn,t)n constructed in the proof of Theorem 5.19 and

Theorem 5.22 not only converge to zero uniformly on compacta on [0,+∞), but also

converge almost uniformly to zero on [0,+∞). Indeed, following the notation used in

this proof, and denoting by En the support of each function fn,t, we obtain, because

of the pairwise disjointness of the supports of the Tk’s, that,

En := supp(fn,t) = supp

(
∞∑
k=n

Tk(x− t)

)
=
∞⋃
k=n

supp(Tk(x− t))

=
∞⋃
k=n

(
k + t− 1

2k+1
, k + t+

1

2k+1

)
Clearly, for each natural number n ∈ N we have that En+1 ⊂ En. Furthermore,

0 ≤ m(En) ≤
∞∑
k=n

1

2k
→ 0 (n→∞).
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So, given any ε > 0, there is N ∈ N such that m(EN) < ε and fn,t(x) = 0 for all n ≥ N

and all x ∈ [0,+∞) \ EN , that is, the sequence (fn,t)n converges almost uniformly to

zero on [0,+∞).

On the other hand, it is clear that we cannot ask for the uniform convergence to

zero, because each (fn,t)n is unbounded. The next proposition will tell us that almost

uniform convergence is the “highest” level of convergence we can get. Remember that,

in order to have the uniform a.e. convergence of (fn)n, we need to find a measurable

set E ⊂ [0,+∞) with m(E) = 0 such that (fn)n converges uniformly on [0,+∞) \E.

Proposition 5.27. Let (fn)n ⊂ C([0,+∞)) such that fn → 0 (n→∞) pointwise on

[0,+∞) and each fn is unbounded. Then fn 6→ 0 (n→∞) uniformly a.e. on [0,+∞).

Proof. By way of contradiction, assume that there exists a set E ⊂ [0,+∞) with

m(E) = 0 such that fn → 0 (n → ∞) uniformly in [0,+∞) \ E. Then, for ε = 1,

there exists n0 ∈ N such that for all n ≥ n0 and all x ∈ [0,+∞) \ E it holds that

|fn(x)| ≤ 1.

Since fn is unbounded for each n ∈ N, there exists xn ∈ [0,+∞) such that

|fn(xn)| > 2, so xn ∈ E, for n ≥ n0. Now, the continuity of each fn and the fact

that m(E) = 0 guarantee the existence of points wn /∈ E but near enough to xn (note

that m(E) = 0 implies the denseness of [0,+∞) \E) such that |fn(wn)− fn(xn)| < 1
2
.

But then, for n ≥ n0 we get

1 ≥ |fn(wn)| ≥ |fn(xn)| − |fn(xn)− fn(wn)| > 2− 1

2
=

3

2
,

which is a contradiction.

As a consequence, we cannot obtain uniform a.e. convergence to zero of any se-

quence of nBCL1
0([0,+∞)). Observe that Theorems 5.22 and 5.16 could be rewritten

as follows.
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Theorem 5.28. The family of sequences (fn)n ⊂ CL1([0,+∞)) such that

(a) fn is unbounded on [0,+∞) for every n ∈ N, that is,

lim sup
x→∞

|fn(x)| = +∞, (n ∈ N),

(b) fn → 0 (n→∞) almost uniformly on [0,+∞),

(c) fn 6→ 0 (n→∞) in L1-norm [0,+∞),

is strongly ℵ0-algebrable and maximal dense-lineable in c0(CL1([0,+∞))).

We have that condition (a) implies in particular that the sequence (fn)n does not

converge uniformly to zero on [0,+∞), and by Proposition 5.27 the uniformly a.e.

convergence is also not possible, that is, if we have convergence in dCL1 to zero of

a sequence of unbounded functions (fn)n ⊂ CL1([0,+∞)), the maximum degree of

convergence can be the almost uniform convergence to zero on [0,+∞). So, in this

sense, this result is sharp.

5.4.2 On the growth

When we deal with the families nBCL1([0,+∞)) and nBCL1
0([0,+∞)) of functions

and sequences of functions, respectively, in the proofs of the results we look for suitable

triangles: for their height and for their basis. Roughly speaking, the height let us

control the unbounded behaviour, and the basis maintain the integrability. Now,

the question is if we could ask for a stronger unboundedness. Recall that, given

a continuous and non-decreasing function α : [0,+∞) → [1,+∞), we say that a

function f ∈ C([0,+∞)) has growth α if

lim sup
x→+∞

|f(x)|
α(x)

= +∞.
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We define the family nBCL1,α([0,+∞)) as the collection of all unbounded functions

f ∈ CL1([0,∞)) that have growth α, that is,

nBCL1,α([0,+∞)) := {f ∈ nBCL1([0,+∞)) : f has growth α}.

We can easily construct an example of this family, just by modifiying the triangular

function of Example 5.12.

Example 5.29. Let α : [0,+∞) → [1,+∞) be a continuous and non-decreasing

function. For each n ∈ N, we consider the triangular functions Tn,α : [0,+∞) → R

given by

Tn,α(x) :=



nα(n)(2n+1α(n)x+ (1− nα(n)2n+1)) if x ∈
[
n− 1

α(n)2n+1
, n

)
,

nα(n)(−2n+1α(n)x+ (1 + nα(n)2n+1)) if x ∈
[
n, n+

1

α(n)2n+1

]
,

0 otherwise,

Define the function fα : [0,+∞)→ R by joining all the previous “triangles” of the

functions Tn,α, that is

fα(x) :=
∞∑
n=1

Tn,α(x).

Similarly to Example 5.12, fα is continuous and integrable. In fact,

‖fα‖L1 :=
∞∑
n=1

∫ +∞

0

Tn,α(x) dx =
∞∑
n=1

nα(n)

α(n)2n+1
=
∞∑
n=1

n

2n+1
< +∞.

Moreover, if we consider the sequence (xn)n ⊂ R given by xn = n for every n ∈ N,

we have that
fα(xn)

α(xn)
=
nα(n)

α(n)
= n→ +∞ (n→∞),

which means that

lim sup
x→+∞

|fα(x)|
α(x)

= +∞.

Thus, the above constructed function fα is an example of a continuous, unbounded

and integrable function on [0,+∞) with growth α.
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Adapting the proofs of Theorems 5.14 and 5.16 with the function fα of the above

example, we get the next result about the linear structure of nBCL1,α([0,+∞)).

Theorem 5.30. Let α : [0,+∞) → [1,+∞) be a continuous and non-decreasing

function. The family nBCL1,α([0,+∞)) of continuous and integrable functions on

[0,+∞) with growth α is maximal dense-lineable in CL1([0,+∞)).

Proof. Let α : [0,+∞) → [1,+∞) be a continuous and non-decreasing function. We

look for a vector subspace M of dimension c such that M ⊂ nBCL1,α([0,+∞))∪ {0}.
Following the steps of the proof in Theorem 5.16, consider the triangular function fα

given in the Example 5.29 and the vector subspace

M := span
{
fα,t : t ∈

[
0, 1

8

)}
,

where fα,t are the modified functions. The linearly independence and the integrability

of each member ofM follows the same argument as the previous proofs. It only remains

to show that every finite linear combination has still growth α, and the unboundedness

of each mentioned linear combination c1fα,t1 + · · ·+ csfα,ts . Note that we can assume

cs 6= 0. Since ts > ti for all i = 1, 2, · · · , s − 1 and α(n) ≥ 1, there is N ∈ N such

that the support of the triangles Tn,α(x − ts) is disjoint with the support of the rest

of triangles Tn,α(x− ti) for any n ≥ N , i = 1, . . . , s− 1.

Thus, by taking for any n > N the point xn := n+ ts, we have

|c1fα,t1(xn) + c2fα,t2(xn) + · · ·+ csfα,ts(xn)| = |cs|nα(n)→ +∞ (n→∞).

Thus, we obtain that

|c1fα,t1(xn) + c2fα,t2(xn) + · · ·+ csfα,ts(xn)|
α(xn)

=
|cs|nα(n)

α(n)
= |cs|n→ +∞ (n→∞).

Hence, the family nBCL1,α([0,+∞)) is maximal-lineable.

In order to obtain the maximal dense-lineability we just have to consider A =

nBCL1,α([0,+∞)), B as the dense subset given in the proof of Theorem 5.16 and

κ = c, and apply Theorem 2.7.
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Theorem 5.31. Let α : [0,+∞) → [1,+∞) be a continuous and non-decreasing

function. The family nBCL1,α([0,+∞)) is strongly ℵ0-algebrable.

Proof. Let α : [0,+∞) → [1,+∞) be a continuous and non-decreasing function. For

any n ∈ N, p ≥ 1, we consider the “triangles” on [0,+∞) given by

Tα,n,p(x) =


(nα(n))p(α(n)2n+1x+ (1− nα(n)2n+1))p if x ∈

[
n− 1

α(n)2n+1 , n
)
,

(nα(n))p(−α(n)2n+1x+ (1 + nα(n)2n+1))p if x ∈
[
n, n+ 1

α(n)2n+1

]
,

0 otherwise,

and we define the functions gα,p : [0,+∞)→ R as:

gα,p(x) =
∞∑
n=1

Tα,n,p(x).

Let P = (pj)j be the increasing sequence of prime numbers greater than 3, and let us

define for each j ∈ N the function Fα,j by

Fα,j(x) :=
∞∑
n=1

Tα,n,log pj(x) = gα,log pj(x).

Note that (Fα,j)j ⊂ nBCL1,α([0,+∞)). Let Bα be the algebra generated by (Fα,j)j,

that is,

Bα =
{
P (Fα,1, . . . , Fα,N) : P is a polynomial in N variables without

constant term, N ∈ N
}
.

Following the same steps as in Theorem 5.19 we obtain that Bα is the desired

infinitely generated algebra in nBCL1,α([0,+∞)).

Observe that these two last theorems are both a generalization of Theorem 5.16

and Theorem 5.19, just by taking the growth function as α(x) ≡ 1. Furthermore, we

can now select a wide plethora of families of continuous and integrable functions with

a nice algebraic structure that grow exponentially or even faster, for which we just

have to choose α(x) = ex or α(x) = ee
x

or even “bigger”.
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This generalization is not only focused on the family nBCL1([0,+∞)) of func-

tions of Section 5.2, but also for the family of sequences of functions nBCL1
0([0,+∞))

converging to zero that have growth α.

Furthermore, from Proposition 5.27, we know that the optimal mode of conver-

gence that we can achieve for these sequences is the almost uniform convergence (to

zero) on [0,+∞), and we can state the next result.

Theorem 5.32. Let α : [0,+∞) → [1,+∞) be a continuous and non-decreasing

function. The family of sequences (fn)n of continuous and integrable functions on

[0,+∞) with growth α such that fn → 0 (n → ∞) in L1-norm and almost uniformly

on [0,+∞) is maximal dense-lineable in c0(CL1([0,+∞))) and strongly ℵ0-algebrable.

5.4.3 Smoothness

In the previous sections of this Chapter we have been choosing triangles at some

specific points, and defining them as zero elsewhere in order to obtain continuity of our

functions and sequences of functions. For this purpose we can use instead of triangular

functions the next ones:

Φn(x) :=

n · e
1− 1

1−(2n+1(x−n))2 if x ∈
(
n− 1

2n+1 , n+ 1
2n+1

)
0 otherwise,

For every n ∈ N, each Φn is integrable, |Φn(x)| ≤ n in
(
n− 1

2n+1 , n+ 1
2n+1

)
, Φn(n) = n,

and of class C∞ on [0,+∞). So, we can then define the family

nBC∞L1([0,+∞)) := nBCL1([0,+∞)) ∩ C∞([0,+∞)).

Again, slightly modifications on the triangular functions allow us to get “smooth”

functions and not only continuous (observe that every function in Section 5.2 is not

differentiable, for example, at any vertex of the triangles).
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Theorem 5.33. The family nBC∞L1([0,+∞)) of unbounded and integrable functions

on [0,+∞) of class C∞ is maximal lineable.

Proof. Following the steps of the proof of Theorem 5.14, consider the vector space M

given by

M := span
{
ft : t ∈

[
0, 1

8

)}
,

where ft is the infinite sum of the Φn’s traslated to the right by the factor t ∈
[
01

8

)
.

It is obvious that every finite linear combination of elements of M is of class C∞ and

integrable, hence it only remains to prove the unboundedness of each member of M .

Let us assume that there are 0 ≤ t1 < t2 < · · · < ts <
1
8

and scalars c1, c2, . . . , cs ∈ R
such that cs 6= 0, and there exists N ∈ N with min{ts − ti : i = 1, 2, . . . , s− 1} > 1

2N
.

Hence, by taking for any n > N the point xn = n+ ts, we have

|c1ft1(xn) + c2ft2(xn) + · · ·+ csfts(xn)| = |cs|ne
1− 1

1−(2n+1ts)
2 → +∞ (n→∞).

Thus, the family nBC∞L1([0,+∞)) is maximal lineable.

This result can be also extended to sequences of functions, using a similar con-

struction as in the one provided in Theorem 5.24.

Theorem 5.34. The family nBC∞L1
0([0,+∞)) of sequences (fn)n of unbounded and

integrable functions on [0,+∞) of class C∞ such that fn → 0 (n → ∞) in L1-norm

and almost uniformly on [0,+∞) is maximal lineable.

Proof. Following the same steps as in Theorem 5.24, and using the exponential-like

functions defined at the beginning, we define the sequence fn,t for every n ∈ N and

t ∈
[
0, 1

8

)
as

fn,t(x) =
∞∑
k=n

Φk(x− t).

So, if we consider the vector subspace

M0 := span
{

(fn,t)n : t ∈
[
0, 1

8

)}
,
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we have that each fn,t is of class C∞, unbounded and integrable on [0,+∞). In

addition, it is clear that the whole series
∞∑
k=1

Φk(x) converges to zero both in L1-norm

and almost uniformly on [0,+∞). Thus, nBC∞L1
0([0,+∞)) is maximal lineable.
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Chapter 6

Anti M-Weierstrass sequences of

functions

6.1 Concepts and examples

In the previous chapters we have considered sequences of functions with different

properties, and we studied the linear and algebraic size of these families. Now, we will

turn our attention into series of functions.

Let X 6= ∅ be a non-empty set, and fn : X → K (n ∈ N) be a sequence of

functions. Usually, when the uniform convergence of the series of functions
∞∑
n=1

fn(x)

has to be studied, the first tool one thinks about is the well-known Weierstrass M-test

(see for instance [3, §9.6]).

Theorem 6.1 (Weierstrass M-test). In the above conditions, if there exists a se-

quence (Mn)n ⊂ (0,+∞) such that
∞∑
n=1

Mn < +∞ and |fn(x)| ≤ Mn for every x ∈ X

and every n ∈ N, the series
∞∑
n=1

fn(x) is absolutely and uniformly convergent on X.
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However, the reciprocal is false in general, that is, it is possible to find series of

functions that are uniformly convergent but do not satisfy all the hypothesis of the

Weierstrass M-test. More precisely, the condition about the majorant sequence can

be dropped without losing the uniform convergence of the series of functions. The

upcoming example (see [23, Chapter 1, Example 10]) will show this situation.

Example 6.2. Let fn : [0, 1]→ R (n ∈ N) be the sequence of (continuous) functions

given by

fn(x) :=


1

n
sin2(2n+1πx) if x ∈

(
1

2n+1
,

1

2n

)
,

0 if x ∈
[
0,

1

2n+1

]
∪
[

1

2n
, 1

]
.

Since fn(x) ≥ 0 for all x ∈ [0, 1], the normal convergence of the series and the

absolute convergence are equal for this series.

If x ∈
(
0, 1

2

)
\ {2−n : n ∈ N}, there is a unique n0 ∈ N such that x ∈

(
1

2n0+1 ,
1

2n0

)
.

So,
∞∑
n=1

fn(x) = fn0(x) =
1

n0

sin2(2n0+1πx).

As fn(x) = 0 elsewhere, we get the absolute convergence of our series for any x ∈ [0, 1].

In order to obtain the uniform convergence we will apply the Cauchy’s Criterion

for series (see for instance [3, §8.8]). Fix n, p ∈ N and x ∈ [0, 1]. As for the whole

series, there is at most one nx ∈ N with n + 1 ≤ nx ≤ n + p such that fnx(x) 6= 0,

and, in this case, ∣∣∣∣∣
n+p∑

k=n+1

fk(x)

∣∣∣∣∣ < |fnx(x)| ≤ 1

nx
≤ 1

n+ 1
<

1

n
.

for every n, p ∈ N and every x ∈ [0, 1].

Now, given any ε > 0, there is N ∈ N such that
1

n
< ε for every n ≥ N . So, for
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every n, p ∈ N with n ≥ N , ∣∣∣∣∣
n+p∑

k=n+1

fk(x)

∣∣∣∣∣ =
1

n
< ε,

and we have the uniform convergence of the series on [0, 1].

Finally, for any n ∈ N,

fn

(
3

2n+2

)
=

1

n
sin2

(
3

2
π

)
=

1

n
,

so ‖fn‖∞ =
1

n
, and

∞∑
n=1

‖fn‖∞ = +∞.

A sequence of functions as given in Example 6.2 will be called an Anti M-Weierstrass

sequence. Concretely:

Definition 6.3. Let fn : [a, b] → R (n ∈ N) be a sequence of continuous functions

on [a, b]. We will denote by AMW([a, b]) (or just AMW, if there is no possibility

of confusion on the interval) the family of Anti M-Weierstrass sequences on [a, b],

that is, the family of sequences (fn)n such that
∞∑
n=1

fn(x) is absolutely and uniformly

convergent on [a, b], but
∞∑
n=1

‖fn‖∞ diverges.

Thanks to Example 6.2 we already know that AMW([0, 1]) 6= ∅. In order to look

for more general examples we introduce the following helpful family.

Definition 6.4. Let F be the family of all sequences of continuous functions un : [a, b]→ R

such that:

(a) The supports are pairwise disjoint, that is,

supp(un) ∩ supp(um) = ∅, n 6= m,
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(b) The sequence (||un||∞)n is bounded and far from zero, that is,

0 < inf
n∈N
||un||∞ ≤ sup

n∈N
||un||∞ < +∞.

Observe that any element of this family F allows us construct a series of functions

with a very concrete convergence.

Lemma 6.5. Let (un)n ∈ F and (an)n ⊂ R. Then:

(a) The series
∞∑
n=1

anun(x) converges absolutely on [a, b].

(b) The series
∞∑
n=1

anun(x) converges uniformly on [a, b] if and only if (an)n ∈ c0.

(c) The series
∞∑
n=1

‖anun‖∞ < +∞ if and only if (an)n ∈ `1.

Proof.

(a) The absolute convergence of the series is immediate, since the disjointness of the

supports of the un’s implies that, for a fixed x0 ∈ [a, b], either un(x0) = 0 for all n ∈ N,

or there exists only one n0 ∈ N such that x0 ∈ supp(un0), and

∞∑
n=1

|anun(x0)| = |an0un0(x0)| (< +∞).

(b) Firstly, consider the case when (an)n ∈ c0. Because (un)n ∈ F , then M :=

sup
n∈N
||un||∞ ∈ (0,+∞). Given any ε > 0, there exists N ∈ N such that |an| < ε

M
for

any n ≥ N .

Thus, as for each x ∈ [a, b] there is at most one n0 ≥ N such that x ∈ supp(un0),∣∣∣∣∣
∞∑
n=N

anun(x)

∣∣∣∣∣ = |an0un0(x)| ≤ ε

M
·M = ε.

Hence, the uniform convergence of the series on [a, b] is obtained.
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Reciprocally, as the series is uniformly convergent, we have anun(x)→ 0 (n→∞)

uniformly on [a, b]. Because (un)n ∈ F , then L := inf
n∈N
||un||∞ > 0. Given any ε > 0,

there is n0 ∈ N such that |anun(x)| < ε · L for every x ∈ [a, b] and every n ≥ n0. But

for any n ≥ n0, there exists xn ∈ [a, b] such that un(xn) ≥ L, hence

|an| =
|anun(xn)|
|un(xn)|

≤ ε · L
L

= ε,

and an → 0 (n→∞).

(c) As (un)n ∈ F , we have

0 < L := inf
n∈N
||un||∞ ≤ sup

n∈N
||un||∞ =: M < +∞,

and then,

0 ≤ L · |an| ≤ ‖anun‖∞ ≤M · |an| < +∞, (n ∈ N).

Thus, by comparison test, (an)n ∈ `1 if and only if (||anun||∞)n ∈ `1.

As a consequence of this lemma, whenever we have a sequence of functions (un)n ∈
F and a sequence of coefficients (an)n ∈ c0 \ `1, the sequence of functions (anun)n

belongs to the family AMW([a, b]). In particular, it allows us to provide a wide

plethora of sequences of functions with this behaviour.

Examples 6.6.

1. The first example of an Anti M-Weierstrass sequence given in Example 6.2 can be

rewritten in terms of Lemma 6.5. For this, for every n ∈ N and x ∈ [0, 1] we just

have to consider

an =
1

n
and un(x) = sin2(2n+1πx)χ( 1

2n+1 ,
1
2n )(x).

2. For any interval [a, b] we can also adapt this example. For this, consider the se-

quence un : [a, b]→ R (n ∈ N) of continuous functions given by

un(x) =


sin

(
2nπ

(
x− a
b− a

)
− π

)
ifx ∈ In,

0 elsewhere,
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where In =
(

(2n−1)a+b
2n

, (2n−1−1)a+b
2n−1

)
for every n ∈ N.

The In’s are pairwise disjoint, and so the un’s have disjoint support. Furthermore,

since ‖un‖∞ = 1 for all n ∈ N, we immediately obtain that (un)n ∈ F .

Finally, thanks to Lemma 6.5, whenever we choose a sequence a = (an)n ∈ c0 \ `1

we will have absolute and uniform convergence on [a, b] of the series
∞∑
n=1

anun(x),

and there will not be a mayorant sequence, since for

xn =
(2n−2 − 1)a+ b

2n−1
∈ In,

we have that

anun(xn) = an sin
(π

2

)
= an,

and the series
∞∑
n=1

an diverges. Thus, the sequence (anun)n ∈ AMW([a, b]).

In the above examples, the element of F comes from the sinus function, but it is

possible to consider any other continuous functions.

Example 6.7. Let f ∈ C([a, b])\{0}. Let Λ := (αn)n be any sequence of scalars such

that

a = α1 < α2 < · · · < αn−1 < αn < · · · → b (n→∞).

For each n ∈ N we define the function uΛ,f
n : [a, b]→ R by

uΛ,f
n (x) :=



f(a) · x− α3n−2

α3n−1 − α3n−2

if x ∈ [α3n−2, α3n−1]

f

(
a+ (b− a) · x− α3n−1

α3n − α3n−1

)
if x ∈ [α3n−1, α3n]

f(b) · α3n+1 − x
α3n+1 − α3n

if x ∈ [α3n, α3n+1]

0 otherwise.
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Observe that with this construction we are adjusting the graph of f into the inter-

val [α3n−1, α3n], and extending it continuously and affine-linearly to zero in the left

and right intervals. It is clear that uΛ,f
n ∈ C([a, b]); supp(uΛ,f

n ) ⊂ (α3n−2, α3n+1)

for each n ∈ N, so the supports of the uΛ,f
n ’s are pairwise disjoint; and ||uΛ,f

n ||∞ =

||f ||∞ ∈ (0,+∞) for any n ∈ N. So, trivially, (uΛ,f
n )n ∈ F . Thus, whenever we

choose a sequence of coefficients (an)n ∈ c0 \ `1, the sequence of functions (anu
Λ,f
n )n ∈

AMW([a, b]) for every continuous function f . In particular, card(AMW([a, b])) = c.

Observe that if f ≡ 0, with the same definition, uΛ,f
n ≡ 0 for any n ∈ N. But in

this case, (uΛ,f
n )n 6∈ F . The above example let us define the following application.

Proposition 6.8. Let Λ := (αn)n be any sequence of scalars such that

a = α1 < α2 < · · · < αn−1 < αn < · · · → b (n→∞).

Then, the application

JΛ : C([a, b]) → F ∪ {0}
f 7→ JΛ(f) := (uΛ,f

n )n,

is well-defined, linear, injective, and satisfies the following properties:

(1) uΛ,f
n (α3n−1) = f(a) for any n ∈ N and any f ∈ C([a, b]);

(2) supp(uΛ,f
n ) ⊂ (α3n−2, α3n+1) for any f ∈ C([a, b]) and any n ∈ N.

(3) For any n ∈ N there exists a linear affine transformation τn such that τn([α3n−1, α3n]) =

[a, b] and uΛ,f
n = f ◦ τn for each x ∈ [α3n−1, α3n] and each f ∈ C([a, b]).

(4) ||uΛ,f
n ||∞ = ||f ||∞ for any n ∈ N and any f ∈ C([a, b]).

Proof. By Example 6.7 we have that JΛ is well-defined (even for f ≡ 0), and we

have the properties (1) to (4). The injectivity follows from the definition of uΛ,f
n in

[α3n−1, α3n]. Finally, the linearity is clear, because of the linearity of the piecewise
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linear affine transformation, concretely, for any f, g ∈ C([a, b]), λ, µ ∈ R, c ∈ [a, b] and

τ(x) = sx+ t, we have

(λf + µg)(c) · (sx+ t) = λ(f(c)) · (sx+ t)) + µ(g(c)) · (sx+ t).

From Proposition 6.8, if C is a linear vector subspace in C([a, b]) with dimension

κ, then JΛ(C) is a linear vector subspace in F ∪ {0} with dimension κ.

6.2 Lineability within AMW

Observe that in Example 6.6, we were able to find many Anti M-Weiertrass se-

quences just by changing the sequence of coefficients (an)n ∈ c0 \ `1 or the sequence of

functions (un)n ∈ F . In particular, the possibility to focus on either the coefficients

or the functions will allows us to find concrete linear structures in both cases.

Theorem 6.9. Let M be a linear vector subspace such that M ⊂ (c0 \ `1) ∪ {0} and

dim(M) = κ. Let {(ain)n}i∈I be a generator system of M with card(I) = κ. Then for

any prefixed sequence of functions (un)n ∈ F , the subspace

M :=
{

(anun)n : (an)n ∈M
}

is a linear vector subspace of dimension κ, generated by {(ainun)n}i∈I , such that M⊂
AMW ∪ {0}.

Proof. Observe that for any sequence (anun)n ∈ M, there exists {λi}i∈I ⊂ R such

that, for any n ∈ N,

an =
∑
i∈I

λia
i
n.

So,

anun(x) =

(∑
i∈I

λia
i
n

)
un(x) =

∑
i∈I

λia
i
nun(x) (x ∈ [a, b]). (6.1)
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But (un)n ∈ F , so ||un||∞ > 0 for all n ∈ N. In particular, (anun)n ≡ 0 if and only if

λi = 0 for any i ∈ I. Hence (6.1) and Lemma 6.5 give us trivially the statement.

Theorem 6.10. Let (an)n ∈ c0 \ `1 be a prefixed sequence of scalars. Let U be a linear

vector subspace of dimension κ, generated by {(uin)n}i∈I with card(I) = κ, such that

U ⊂ F ∪ {0}. Then

U := {(anun)n : (un)n ∈ U}

is a linear vector subspace of dimension κ, generated by {(anuin)n}i∈I , such that U ⊂
AMW ∪ {0}.

Proof. We have that any sequence (anun)n ∈ U can be written as

anun(x) = an ·
∑
i∈I

λiu
i
n(x) =

∑
i∈I

λianu
i
n(x) (x ∈ [a, b], n ∈ N),

where {λi}i∈I ⊂ R. Observe that because (an)n 6∈ `1 there are infinitely many n such

that an 6= 0, so (anun)n ≡ 0 if and only if λi = 0 for any i ∈ I. As in the above proof,

because of U ⊂ F ∪ {0} and by Lemma 6.5, we are done.

In particular, if in Theorem 6.9 we fix a sequence of functions (un)n ∈ F , and given

a vector space of dimension κ in (c0 \ `1)∪{0} we are able to construct a vector space

of the same dimension in the family AMW∪{0}. In the same way, if in Theorem 6.10

we fix a sequence of coefficients (an)n ∈ c0 \ `1, and given a vector space of dimension

κ in F ∪ {0} we explicitely obtain (again) a vector space of the same dimension in

AMW∪{0}. As a consequence of both theorems we obtain the following result about

the linear size of the family of Anti M-Weierstrass sequences.

Corollary 6.11. The family AMW is maximal lineable.

Proof. Using Theorems 6.9 and 6.10 we can give two different proofs of the maximal

lineability of the family AMW .
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(1) Let

M := span
{(

1
nc

)
n

: c ∈ (0, 1)
}
.

It is clear that M ⊂ c0 \ `1. By Lemma 5.6, it turns out that dim(M) = c. Now,

taking a sequence of functions (un)n ∈ F (for instance, some of the ones previously

defined in Examples 6.2 or 6.6), an application of Theorem 6.9 gives us the maximal

lineability of the family AMW .

(2) Let Λ := (αn)n be any sequence of scalars such that

a = α1 < α2 < · · · < αn−1 < αn < · · · → b (n→∞).

Consider the vector space U ⊂ F ∪ {0}

U := span {JΛ(xc) : c ∈ (0,+∞)} .

By Proposition 6.8, JΛ is linear and injective, so dim(U) = c.

Now, taking a sequence of coefficients (an)n ∈ c0 \ `1 (for instance, an = 1
n

does

the job), an application of Theorem 6.10 gives us the maximal lineability of the family

AMW .

With this last result, we conclude that the family AMW attains its maximum

dimension in terms of Lineability. However, in order to find a dense vector space we

need to take a suitable topology to work with. For this, recall that c0(C([a, b])) denotes

the family of all sequences of continuous functions on [a, b] converging to zero in the

supremum norm, which becomes a separable Banach space when endowed with the

natural norm ‖(fn)n‖ := sup
n∈N
‖fn‖∞. Clearly, AMW ⊂ c0(C([a, b])), so we can focus

our attention on density properties of the family of Anti M-Weierstrass sequences of

functions.

Theorem 6.12. The family AMW of Anti-M Weierstrass sequences is maximal

dense-lineable in c0(C([a, b])).
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Proof. From Corollary 6.11, the family AMW is maximal lineable. Now, the space

c00(C([a, b])) of all sequences of continuous functions on [a, b] that are eventually van-

ishing, that is,

c00(C[a, b]) =
{

(fn)n ⊂ C([a, b]) : there exists N ∈ N such that fn = 0 for all n ≥ N
}

is a dense-lineable subset of c0(C([a, b])). For a fixed (fn)n ∈ AMW , each sequence

(gn)n ⊂ c00(C([a, b])) only modifies a finite number of components of (fn)n. So (fn +

gn)n ∈ AMW , and AMW + c00(C([a, b])) ⊂ AMW . Moreover, it is clear that

c00(C([a, b])) ∩ AMW = ∅, because every sequence in c00(C([a, b])) has trivially a

convergent series of supremum norms.

Now, an application of Theorem 2.7, with A := AMW , B := c00(C([a, b])) and

κ = c, gives us the maximal dense-lineability of AMW in c0(C([a, b])).

6.3 Algebrability within AMW

In the previous Section we have seen the existence of many linear structures inside

the family AMW . Moreover, this could be done focusing our attention in the linear

structures of the families of sequences of coefficients in c0 \ `1 and of the sequences

of functions in F separately. Now, our interest is to see if this can be translated

into algebraic combinations, that is, we look for the existence of (free) algebras in the

family AMW . Before we start looking for the existence of such structures, we need

to state two technical lemmas that will help us in this search.

Lemma 6.13. Let U be a free algebra in C([a, b]), generated by U := {ui}i∈I . Then,

for any family P = {pi}i∈I of polynomials of degree exactly 1, the set UP := {pi◦ui}i∈I
is a generator system of a free algebra in C([a, b]).

Proof. Let UP be the algebra generated by UP . Let us see that UP is free. By

hypothesis, pi(x) = αix + βi with αi, βi ∈ R, αi 6= 0, for each i ∈ I. For any F ∈ UP ,
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we have

F (x) =
∑
j∈J

λj(p1(u1(x)))j1 · · · (pN(uN(x)))jN , (x ∈ [a, b])

where J ⊂ NN0 \ {(0, (N). . ., 0)} is finite, λj ∈ R \ {0}, j = (j1, . . . , jN) ∈ J . So,

F (x) =
∑
j∈J

λj(α1u1(x) + β1)j1 · · · (αNuN(x) + βN)jN

=
∑
j∈J

λj

j1∑
l1=0

(
j1

l1

)
βl11 · (α1u1(x))j1−l1 · · ·

jN∑
lN=0

(
jN
lN

)
βlNN · (αNuN(x))jN−lN

=
∑
j∈J

j1∑
l1=0

· · ·
jN∑
lN=0

λj

((
j1

l1

)
(βl11 · (α1u1(x))j1−l1) · · ·

(
jN
lN

)
(βlNN · (αNuN(x))jN−lN )

)

=
∑
j∈J

j1∑
l1=0

· · ·
jN∑
lN=0

(
λj

N∏
ν=1

(
jν
lν

)
βlνν · αjν−lνν uν(x)jν−lν

)
.

But U is free, so if F ≡ 0 then, λj

N∏
ν=1

(
jν
lν

)
βlνν · αjν−lνν = 0 for any j = (j1, . . . , jN) ∈ J

and lk = 0, . . . , jk, k = 1, . . . , N . In particular, by taking lk = 0 for any k = 1, . . . , N

we obtain λj ·

(
N∏
ν=1

αjνν

)
= 0 for any j ∈ J , and we are done because αi 6= 0 for all

i ∈ I.

Lemma 6.14. Let (an)n ∈ c0 \
⋃
p≥1

`p. Let P be a polynomial with real coefficients and

without constant term. Then

(P (an))n ∈ c0 \ `1.

Proof. Let P (x) =
m∑
j=0

pjx
t+j, where t ∈ N, pj ∈ R (0 ≤ j ≤ m), p0 6= 0. Then,

because (an)n ∈ c0 we have (P (an))n ∈ c0. Moreover, (atn)n 6∈ `1, so there are infinitely

many n such that atn 6= 0 (without loss of generality we may assume an 6= 0 for all

n ∈ N), and

lim
n→∞

|P (an)|
|atn|

= lim
n→∞

∣∣∣∣∣
m∑
j=0

pja
j
n

∣∣∣∣∣ = |p0| > 0.
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Thus, the result follows from the comparison test.

Observe that in Lemma 6.13, if we start from a free algebra in C([a, b]), then every

affine combinations of its elements generates again a free algebra in C([a, b]). On the

other hand, in Lemma 6.14, if we start from a sequence of coefficients (an)n ∈ c0\
⋃
p≥1

`p

(so, in particular, (an)n ∈ c0 \ `1), any algebraic combination is an element of c0 \ `1.

This results allow us to find algebras in AMW .

Theorem 6.15. Let (an)n ∈ c0 \
⋃
p≥1

`p be a prefixed sequence of scalars. Let G :=

{gi}i∈I be a (minimal) generator system of a free algebra in C([a, b]). Let Λ = (αn)n ⊂
[a, b] such that a = α1 < α2 < · · · < αn < αn+1 < · · · → b (n → ∞). Consider the

family

U := {(anuin)n : (uin)n = JΛ(γigi + 1)},

where γi := 1
gi(a)

if gi(a) 6= 0 or γi := 1 if gi(a) = 0. Then U is the (minimal) generator

system of a free algebra in AMW ∪ {0}.

Proof. Let A be the algebra generated by U , that is, (Fn)n ∈ A if there exist N ∈ N,

mutually different (uin)n = JΛ(γigi + 1), i = 1, . . . , N , and a non-zero polynomial P

in N real variables without constant term such that

Fn = P (anu
1
n, anu

2
n, . . . , anu

N
n ) (n ∈ N).

Therefore, there exist a non-empty finite set J ⊂ NN0 \ {(0, (N). . ., 0)} and scalars λj ∈
R \ {0} for j = (j1, . . . , jN) ∈ J such that for each n ∈ N and each x ∈ [a, b],

Fn(x) =
∑
j∈J

λj(anu
1
n)(x)j1 · · · (anuNn )(x)jN

=
∑
j∈J

λja
|j|
n (JΛ(α1p1 + 1)(x))j1 · · · (JΛ(αNpN + 1)(x))jN . (6.2)
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But, by the definition of JΛ (see Proposition 6.8(3)), for each n ∈ N there is a

linear affine transformation τn such that τn[α3n−1, α3n] = [a, b] and JΛ(γigi + 1)(x) =

(γigi + 1)(τn(x)) for any x ∈ [α3n−1, α3n] and any i = 1, . . . , N . So, for any n ∈ N,

Fn(x) =
∑
j∈J

λja
|j|
n ((γ1g1 + 1)(τn(x)))j1 · · · (γNgN + 1)(τn(x)))jN x ∈ [α3n−1, α3n].

Therefore, if Fn = 0 in [a, b], and in particular Fn = 0 in [α3n−1, α3n],

∑
j∈J

λja
|j|
n ((γ1g1 + 1)(w))j1 · · · ((γNgN + 1)(w))jN = 0 w ∈ [a, b]. (6.3)

Now, as {gi}i∈I generates a free algebra in C([a, b]), by Lemma 6.13, {γigi+1 : i ∈ I}
is also a generator system of a free algebra, so from (6.3) and the fact that there are

infinitely many an 6= 0 (this is true because an 6∈ `1 for example), we get λj = 0

for j ∈ J and the algebra A is free. Observe that trivially we also obtain that the

dimension of A is the dimension of the algebra generated by {gi}i∈I in C([a, b]).

It only rest to show that A ⊂ AMW ∪ {0}, that is, that any non-null sequence

(Fn)n as above is Anti M-Weierstrass. Observe that, again by the definition of the

application JΛ (see Proposition 6.8(2) and (4)), we have:

supp(uin) ⊂ [α3n−2, α3n+1], (1 ≤ i ≤ N, n ∈ N), (6.4)

and,

||uin||∞ = ||γigi + 1||∞ ∈ (0,+∞) for each i = 1, . . . , N and n ∈ N. (6.5)

Therefore, by (6.4),

supp(u1
n · · ·uNn ) ∩ supp(u1

m · · ·uNm) = ∅ for n 6= m, (6.6)

and, by (6.2), we have the absolute convergence of
∞∑
n=1

Fn. Now, by (6.5),

sup
n∈N
||u1

n · · ·uNn ||∞ = ||γ1g1 + 1||∞ · · · ||γNgN + 1||∞ =: C ∈ (0,∞), (6.7)
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and, since (an)n ∈ c0, and similarly to Lemma 6.5(b), by (6.2), (6.6), and (6.7), the

series
∞∑
n=1

Fn(x) converges uniformly on [a, b]. Finally, again by the definition of JΛ

(see Proposition 6.8(1)),

uin(α3n−1) = γigi(a) + 1 =: δ = 1 or 2 for any i = 1, . . . , N and any n ∈ N. (6.8)

Now, by (6.2) and (6.8), for each n ∈ N,

|Fn(α3n−1)| =

∣∣∣∣∣∑
j∈J

λj(anu
1
n)j1(α3n−1) · · · (anuNn )jN (α3n−1)

∣∣∣∣∣ =

∣∣∣∣∣∑
j∈J

λjδ
|j|a|j|n

∣∣∣∣∣ .
But (an)n ∈ c0\

⋃
p≥1

`p, so by applying Lemma 6.14 to the polynomial p(x) =
∑
j∈J

λjδ
|j|x|j|,

we have
∞∑
n=1

||Fn||∞ ≥
∞∑
n=1

|Fn(α3n−1)| =
∞∑
n=1

|p(an)| = +∞.

Thus (Fn)n ∈ AMW , and we are done.

Theorem 6.16. Let L be a free algebra in c0 \ `1 generated by {(ain)n}i∈I . Let (un)n ∈
F . Then the algebra A generated by {(ainun)n}i∈I is a free algebra in AMW ∪ {0}
with the same dimension than L.

Proof. Let (Fn)n ∈ A. Then, for any x ∈ [a, b] we have,

Fn(x) :=
∑
j∈J

λj(a
1
nun(x))j1 · · · (aNn un(x))jN

=
∑
j∈J

λj(a
1
n)j1 · · · (aNn )jN · (un(x))|j|,

where N ∈ N, J ⊂ NN0 \ {(0, (N). . ., 0)} non-empty and finite and λj ∈ R \ {0} for any

j = (j1, . . . , jN) ∈ J .

As (un)n ∈ F , L := inf
n∈N
||un||∞ > 0 ; moreover, any un (n ∈ N) takes the value 0 in

[a, b]. Then, by continuity of un’s and the intermediate value property, for any n ∈ N
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there is xn ∈ supp(un) such that un(xn) = L. Hence

|Fn(xn)| =

∣∣∣∣∣∑
j∈J

λj(a
1
n)j1 · · · (aNn )jN · L|j|

∣∣∣∣∣ (n ∈ N) (6.9)

If (Fn)n ≡ 0, by (6.9), for each n ∈ N∣∣∣∣∣∑
j∈J

λjL
|j| · (a1

n)j1 · · · (aNn )jN

∣∣∣∣∣ = 0.

But L is free, so λjL
|j| = 0 for every j ∈ J , and because L > 0, we get that λj = 0

for all j ∈ J , and A is also free. As L ⊂ c0, then ((a1
n)j1 · · · (aNn )jN )n ∈ c0 for any

j = (j1, . . . , jN) ∈ J . Trivially, (upn)n ∈ F for any p ∈ N. Hence, (Fn)n is a finite linear

combination of products of sequences in c0 \ `1 and sequences
(
u
|j|
n

)
n
∈ F . Now, by

Lemma 6.5, we have the absolute and uniform convergence of the series
∞∑
n=1

Fn(x). It

is only rest to show that (||Fn||∞)n 6∈ `1 to obtain (Fn) ∈ AMW and finish the proof.

By (6.9),

∞∑
n=1

||Fn||∞ ≥
∞∑
n=1

|Fn(xn)| =
∞∑
n=1

∣∣∣∣∣∑
j∈J

λjL
|j| · (a1

n)j1 · · · (aNn )jN

∣∣∣∣∣ = +∞,

because L is a free algebra in c0 \ `1, and so

(∑
j∈J

λjL
|j| · (a1

n)j1 · · · (aNn )jN

)
n

6∈ `1.

Finally, observe that (an)n ∈ `p if and only if (apn)n ∈ `1. In particular, L is an

algebra in c0 \ `1 if and only if L is an algebra in c0 \
⋃
p≥1

`p. In [10], Bartoszewicz and

Glab showed the existence of a free algebra L in c0 \
⋃
p≥1

`p such that the cardinality of

any system of generators is the continuum. In fact they consider the algebra generated

by

{(
1

logc n

)
n≥2

: c ∈ H
}

, where H ⊂ (0,+∞) is a Q-linearly independent set, and

card(H) = c. So, we can obtain the next result about the algebrability of the family

AMW .
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Corollary 6.17. The family AMW is strongly c-algebrable.

Proof. As in Corollary 6.11, we will give two different approaches.

(1) By Bartoszewicz and Glab result [10, Theorem 2], take the algebra L generated

by the family

{(
1

logc n

)
n≥2

: c ∈ H
}

, where H ⊂ (0,+∞) is a Q-linearly independent

set, and card(H) = c, and one of the sequences of functions (un)n ∈ F (for instance

any sequence of Example 6.2 or Example 6.6), an application of Theorem 6.16 gives

us the strong c-algebrability of the family AMW .

(2) Consider now the free algebras generated by {xc : c ∈ H} or {ecx : c ∈ H} in

C([a, b]) (where H ⊂ (0,+∞) is a Q-linearly independent set and dim(H) = c), and

the sequence of coefficients (an)n ∈ c0 \
⋃
p≥1

`p given by an = 1
log(n)

for n ≥ 2. Then, an

application of Theorem 6.15 gives us (again) the strong c-algebrability of AMW .
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“Lineability: The search for linearity in mathematics”, Monographs and Research

Notes in Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2015.
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