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Abstract In this paper the following facility location problem in a mixed planar-
network space is considered: We assume that traveling along a given network is faster
than traveling within the plane according to the Euclidean distance. A pair of points
(Ai,Aj ) is called covered if the time to access the network from Ai plus the time
for traveling along the network plus the time for reaching Aj is lower than, or equal
to, a given acceptance level related to the travel time without using the network. The
objective is to find facilities (i.e. entry and exit points) on the network that maximize
the number of covered pairs. We present a reformulation of the problem using con-
vex covering sets and use this formulation to derive a finite dominating set and an
algorithm for locating two facilities on a tree network. Moreover, we adapt a geomet-
ric branch and bound approach to the discrete nature of the problem and suggest a
procedure for locating more than two facilities on a single line, which is evaluated
numerically.
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1 Introduction

Covering problems constitute one of the main branches of Locational Analysis.
A maximal covering location problem consists of locating a fixed number of servers
or facilities so that the number of given (demand) points for which the facilities are
useful is maximized. In this case a point is said to be covered by the facility if the
point is located within a given threshold distance or time from the facility. Covering
location problems have been studied in continuous and discrete spaces (see Plastria
2002 and Koolen and Tamir 1990 for continuous and discrete settings, respectively).

We generalize covering location problems from two points of view: First, we deal
with a mixed planar-network space, and second we do not cover points, but origin-
destination pairs (O/D pairs) which are pairs of points.

Our first generalization takes into account that the underlying space of the problem
is often in practice not homogeneous in terms of spent time, meaning that there are
some structures where the speed is higher than in others (ADSL or high-speed rail-
ways are examples in the telecommunication and transportation fields, respectively).
Secondly, service is not completed only by reaching the facility but also by traveling
along the high-speed network and then acceding to another point. We hence assume
that the demand to be covered is given by a set of O/D pairs, that is, pairs of points
(Ai,Aj ) with some traffic tij between them.

In this paper the goal is to locate several facilities on a given high-speed net-
work that can be used as entry and/or exit points for traveling between the given O/D
pairs. We assume three possibilities for traveling: across the plane without using the
high-speed network, using the high-speed network only, or by a combination of both
transportation systems. Our aim is to maximize the performance of the high-speed
network. More precisely, we want to locate the entry and exit points so that it be-
comes attractive for as much traffic as possible to use the high-speed network instead
of the planar direct path.

As an example of this situation in a railway transportation setting, consider Fig. 1,
which is based on a real section of the Spanish high-speed network. There are two
main cities, Sevilla and Córdoba, linked by a high-speed line. In the geographical area
between both cities, there is a number of smaller cities that do not have easy access
to this high-speed train because currently there are no intermediate stops. They are
linked by a slower network which is dense enough to be roughly approximated by the
Euclidean distance. In order to attract more passengers the company operating this
high-speed system is thinking about locating two stations in between so that as many
potential passengers as possible will use the high-speed line. For instance, in order to
travel from Brenes to La Carlota, assuming the two new stations are located where
the big dots are, one could go from Brenes to the high-speed train station, take the
high-speed line from there to the next station, and finish the journey to La Carlota
from there by means of the slower network (as depicted in Fig. 1). We assume that
users will take this trip instead of directly going from one town to the other by the
slower network, if the time of this journey is lower than a given threshold (which
could be the time of the same journey by the slower network). The idea is therefore
to locate two stations so that as many potential passengers as possible will find that
traveling by the high-speed line is faster than traveling on the alternative network.
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Fig. 1 Illustration of the transportation application

There is some literature related to our two aspects of generalization: The maximal
trip covering problem was introduced in Laporte et al. (2005) regarding the location
of a rapid transit alignment and searching for a location which covers as many O/D
pairs as possible. In this paper it was noted that in real-world situations high-speed
lines compete with other modes of transportation and therefore the real coverage of
a high-speed network depends on the performance of its lines in comparison with
other modes. In Laporte et al. (2010, 2011), different models for the railway network
design problem in the presence of a competing mode are studied.

There are also some recent papers in which traveling distances are a combination
of planar and network distances (Carrizosa and Rodríguez-Chía 1997; Körner and
Schöbel 2010; Pfeiffer and Klamroth 2008). Their goal is to locate one or several
points so that the sum of all combined distances from the given points is minimized,
i.e. these studies deal with the well-known Weber problem under a new metric. In
contrast to these papers our goal is to cover O/D-pairs. Some efforts have recently
been made to determine the City Voronoi diagram for a set of points in the context
of combination of the planar distance l1 with the network distance (Abellanas et al.
2003; Bae et al. 2009; Görke et al. 2008). In these models travelers can enter the
network at any point. The same holds for the models considered in Cardinal et al.
(2008) for locating a high-speed transportation device and in Abellanas et al. (2008),
which deals with the Voronoi diagram for the heavy luggage metric.

The remainder of this paper is structured as follows. We first present a formal
description of our model and introduce the notation needed. In Sect. 3 we develop a
solution approach for the case of two facilities both in segments and tree networks.
In the case of locating more than two facilities on a single straight line we suggest a
geometric branch and bound approach in Sect. 4. Although this is a methodological
paper rather than a computational one, Sect. 5 is devoted to showing some numerical
results. The paper finishes with some conclusions and hints for further research.
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2 Problem formulation and notation

Our problem makes use of the following input data and notation:

– Let A = {Ai = (ai, bi) ∈ R
2 : i = 1, . . . , n} be a set of n points on the plane. In

practical applications A might be a set of users, towns, cities, or centroid points of
transportation zones in an urban area.

– We assume that the time for traveling between two points in the plane can be
estimated by a metric. In this paper we use the Euclidean metric.

– Let T = (tij ) ∈ R
n×n be a matrix in which trip patterns are codified, i.e.

tij is the weight of the ordered pair (Ai,Aj ). Note that tij is a parame-
ter known a priori. In the transportation case, tij can be seen as the num-
ber of trips from an origin i to a destination j . In the telecommunication
setting, tij could represent the amount of data transferred from server i to
server j .

– Let N (V ,E) be the network representing the high-speed system. Each vertex
v ∈ V represents a junction or a node, and each edge e ∈ E has a length le and is
assumed to be rectifiable. We suppose that N (V ,E) is embedded in the Euclidean
plane. Let N be the continuum set of points on the edges. The edge lengths induce
a distance function d on N . For any two points x, y ∈ N , d(x, y) is the length of
any shortest path connecting x and y.

– For any two points x, y ∈ N let us define the high-speed distance dN (x, y) =
αd(x, y),α ∈ (0,1). It is straightforward that N is a metric space with this dis-
tance. Parameter α is a speed factor: the lower α, the faster is traveling on N with
respect to traveling on the plane.

– Let D = (dij ) ∈ R
n×n be a (symmetric) matrix with 0 ≤ dij < ‖Ai − Aj‖2. These

values represent acceptance levels for using the network, meaning that the O/D
pair (i, j) would choose the high-speed network if and only if the traveling time
by using it is less than or equal to dij .

We aim to locate m facilities X = {X1, . . . ,Xm} ⊂ N ⊂ R
2 so that the use of the

high-speed network is maximized.
Consider an O/D pair (i, j). If the set of facilities X = {X1, . . . ,Xm} is given,

a user of the high-speed network N has to choose an entry point Xk ∈ X and an exit
point Xl ∈ X . For methodological purposes, from now on we will consider X as an
ordered set, therefore denoted by X = (X1, . . . ,Xm) (for convenience also referred
to as m-facility point). The length of the path (Ai,Xk,Xl,Aj ) is denoted by hkl

ij (X )

and equal to

hkl
ij := hkl

ij (X ) := ‖Ai − Xk‖2 + dN (Xk,Xl) + ‖Xl − Aj‖2.

We will propose two ways to calculate the traveling time through the network, be-
cause a user may prefer to access and exit the high-speed line either via the nearest
facilities or via those that minimize the overall distance. Whether a user will utilize
the network N or not may depend on this choice.
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– Minimal distance to the facilities.
First, we assume that users enter the high-speed network at the closest facility

to their origin and exit at the closest facility to their destination. Let

PX (Ai) :=
{
X ∈ X : X = arg min

X∈X

{‖Ai − X‖2
}}

be the set of the closest facilities to the point Ai . (Note that usually PX (Ai) con-
tains only one facility.) The distance from Ai to Aj is then defined as

f 1
ij (X ) := min

Xk∈PX (Ai )

Xl∈PX (Aj )

{‖Ai − Xk‖2 + dN (Xk,Xl) + ‖Xl − Aj‖2
} = min

Xk∈PX (Ai )

Xl∈PX (Aj )

hkl
ij .

(1)

Remark 1 In the definition of PX (Ai) we only take into account the facility or fa-
cilities that exactly yield the minimum distance to Ai . Therefore, we do not consider
facilities that are further from Ai than the minimum by an ε factor. In a passenger
transportation framework this is not realistic, as passengers sometimes use another
more distant station if reaching the said takes only, say, 15 seconds more than the
closest one. This could be solved by alternatively defining

PX (Ai) :=
{
X ∈ X : ‖Ai − X‖2 ≤ (1 + ε)

∥∥Ai − X∗∥∥
2, ε > 0,

X∗ = arg min
X∈X

{‖Ai − X‖2
}}

.

In this case the assertion that usually PX (Ai) contains only one facility is not neces-
sarily true.

– Minimal overall distance.
In this case users choose their entry and exit points in such a way that the overall

distance of their trip is minimized. Therefore, the distance from Ai to Aj using the
network is

f 2
ij (X ) := min

Xk,Xl∈X

{‖Ai −Xk‖2 +dN (Xk,Xl)+‖Xl −Aj‖2
} = min

Xk,Xl∈X
hkl

ij . (2)

Note that f 2
ij (X ) ≤ f 1

ij (X ) for any X . The acceptance levels dij lead to the following
definition.

Definition 1 Given dij with 0 ≤ dij < ‖Ai − Aj‖2, the O/D pair (i, j) is covered by
the facilities X with respect to function f r

ij , r = 1,2, if

f r
ij (X ) ≤ dij .

Note that this definition leads to different conditions for the two cases r = 1 and
r = 2, because we can only be ensured that f 2

ij (X ) ≤ f 1
ij (X ). We want to maximize
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the number of covered pairs given as

F r(X ) =
∑

(i,j):f r
ij ≤dij

tij , r ∈ {1,2}.

Summarizing, the problem considered in this paper can now be stated:

OD-pair location problem Given a high-speed network N , demand points A, func-
tion f r with r ∈ {1,2}, trip patterns T and acceptance levels D, find an m-facility
point X = (X1, . . . ,Xm) ∈ N m such that the number F r(X ) of covered trips is max-
imized. In short,

max
X ∈N m

F r(X ). (3)

This problem always has an optimal solution, since the feasible region is non-
empty and the objective function can only take a finite number of finite values.

Remark 2 If dij = dji we can assume tij = 0 for i ≥ j since both the Euclidean and
the network distances are metrics. The reason is that an O/D pair (i, j) is covered
by X if and only if (j, i) is covered by X . We then use the matrix T ′ = (t ′ij ) with
t ′ij = tij + tj i for i < j and t ′ij = 0 for i ≥ j , instead of T .

We conclude this section by providing some special properties for the case where
the network N is a straight line segment. Note that in this case we can assume that
dN (Xk,Xl) = α · ‖Xk − Xl‖2 for every pair of facilities Xk,Xl ∈ L. For this case,
given an O/D pair (i, j) and two facilities Xk and Xl we will show that it is possible
to predict whether hkl

ij or hlk
ij applies (see Theorem 1), that is, which will be the entry

facility and which will be the exit facility.
In order to build easy-to-read proofs, we assume without loss of generality the

line segment L = [0,L] × {0} (otherwise rotate, translate, and scale the coordinate
system). Only for simplicity we sometimes write L = [0,L] although L ⊂ R

2.
For each point Ai = (ai, bi) ∈ A we assume that 0 ≤ ai ≤ L and we define its

projection on the line segment L as

P L(Ai) = arg min
X∈L

‖Ai − X‖2 ∈ L.

Note that P L(Ai) is a single point since the Euclidean norm is strictly convex and L
is a segment.

In the next theorem we prove that if Ai is left of Aj and the O/D pair (i, j) is
covered by X = (Xk,Xl), then the entry facility Xk must be left of the exit facility Xl .

Theorem 1 Let L be a line segment, X = (X1, . . . ,Xm) an m-facility point located
on L = [0,L], and A = {Ai = (ai, bi) : i = 1, . . . , n} a set of points such that ai ≤ aj

for all i ≤ j .
Then, for any O/D pair (i, j) with i < j and any pair of facilities Xk =

(xk,0),Xl = (xl,0) ∈ X satisfying hkl
ij ≤ dij we have P L(Ai) 	= P L(Aj ). Besides,

we have xk < xl .
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Proof First, assume that P L(Ai) = P L(Aj ) = S ∈ L. Then we obtain

hkl
ij = ‖Ai − Xk‖2 + α‖Xk − Xl‖2 + ‖Xl − Aj‖2

≥ ‖Ai − S‖2 + ‖S − Aj‖2 ≥ ‖Ai − Aj‖2 > dij .

Hence, hkl
ij ≤ dij implies P L(Ai) 	= P L(Aj ).

By contradiction, assume that xl ≤ xk . Since P L(Ai) 	= P L(Aj ) there exists X =
(x,0) ∈ L such that PL(Ai) lies on the left of X and P L(Aj ) lies on the right of X.
The four possible cases can be distinguished: xl ≤ xk < x, x < xl ≤ xk , xl < x < xk ,
and xl = xk . In the first case ‖Xl − Aj‖2 ≥ ‖Xk − Aj‖2. Hence

hkl
ij = ‖Ai − Xk‖2 + α‖Xk − Xl‖2 + ‖Xl − Aj‖2

≥ ‖Ai − Xk‖2 + ‖Xk − Aj‖2 ≥ ‖Ai − Aj‖2 > dij ,

which contradicts the assumption hkl
ij ≤ dij . Analogously, in all remaining cases we

obtain a contradiction with the assumption hkl
ij ≤ dij . Hence, neither xl < xk nor

xl = xk can be true. We obtain xk < xl . �
If we assume that the optimal m-facility point X = (X1, . . . ,Xm) ∈ Lm with Xi =

(xi,0) satisfies x1 < · · · < xm, we can reformulate Theorem1 as follows:

hkl
ij (X ) ≤ dij and i < j ⇒ k < l.

Under this assumption, and for each (i, j) : i < j and r ∈ {1,2}, we can simplify the
calculation of f r

ij since only hkl
ij or hlk

ij has to be considered, namely that with k < l,
as stated in the following corollary.

Corollary 1 Assume the points A = {Ai = (ai, bi) : i = 1, . . . , n} such that ai ≤ aj

for all i ≤ j and let X = (X1, . . . ,Xm) ∈ Lm with Xi = (xi,0) and x1 < · · · < xm.
Then

f 1
ij (X ) = min

Xk∈PX (Ai )

Xl∈PX (Aj )

k<l

hkl
ij (X ) and f 2

ij (X ) = min
k<l

hkl
ij (X ).

Corollary 1 is particularly helpful for the case m = 2, which is done next.

3 The level set covering method for m = 2 facilities

In this section we will consider two cases: First, we analyze the case where the two
facilities are to be located on the same edge of the network, which is equivalent to
locating the facilities on a straight-line segment. We will then extend the approach
to locating two facilities on a tree network. Note that this method cannot be directly
extended to a general network since the distance between pairs of points on a general
network is not a convex function. We start by providing some general results for the
case of m = 2 new facilities.
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If only two facilities X1 and X2 are to be located on N , the following lemma
shows the analogies between distances f 1

ij and f 2
ij , as defined in (1) and (2), respec-

tively.

Lemma 1 Let X = (X1,X2) ∈ N 2. Then the O/D pair (i, j) is covered using f 1
ij (X )

if and only if (i, j) is covered using f 2
ij (X ). Besides, if (i, j) is covered, then f 1

ij (X ) =
f 2

ij (X ).

Proof The proof is divided into two cases.

– Suppose (i, j) is covered using f 1
ij . Since f 2

ij (X ) ≤ f 1
ij (X ), we have f 2

ij (X ) ≤
f 1

ij (X ) ≤ dij . Hence, (i, j) is also covered using f 2
ij .

– Suppose (i, j) is covered using f 2
ij . Without loss of generality assume that

f 2
ij (X ) = h12

ij (X ), otherwise rename the facilities.

If X1 ∈ PX (Ai) and X2 ∈ PX (Aj ), then we have f 1
ij (X ) ≤ f 2

ij (X ), hence (i, j)

is covered using f 1
ij and f 2

ij (X ) = f 1
ij (X ). We will see that other cases are not

possible.
Let us assume that at least one of the inclusions X1 ∈ PX (Ai) or X2 ∈

PX (Aj ) is not true, say X1 /∈ PX (Ai). Then {X2} = PX (Ai), i.e. ‖Ai − X2‖2 <

‖Ai − X1‖2, and therefore

h12
ij = ‖Ai − X1‖2 + dN (X1,X2) + ‖X2 − Aj‖2

> ‖Ai − X2‖2 + dN (X1,X2) + ‖X2 − Aj‖2

≥ ‖Ai − X2‖2 + ‖X2 − Aj‖2

≥ ‖Ai − Aj‖2 > dij ⇒ f 2
ij (X ) > dij ,

which means that (i, j) is not covered using f 2
ij , in contradiction with the assump-

tion of (i, j) being covered by f 2
ij . �

Due to Lemma 1, F 1 = F 2 for the case of locating two new facilities, and we
therefore make use of the simplified notation

F(X ) = F 1(X ) = F 2(X )

in the case of m = 2. The next definition gives the distance of the best option between
the trip using the high-speed network and the direct trip.

Definition 2 For A = {Ai = (ai, bi) : i = 1, . . . , n} and X = (X1,X2) ∈ N 2 we de-
fine

fij (X1,X2) := min
{‖Ai − X1‖2 + dN (X1,X2) + ‖X2 − Aj‖2,

‖Ai − X2‖2 + dN (X1,X2) + ‖X1 − Aj‖2,

‖Ai − Aj‖2
}

= min
{
h12

12(X1,X2), h
21
12(X1,X2),‖Ai − Aj‖2

}
.
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The following necessary and sufficient condition for an O/D pair to be covered
trivially follows:

Lemma 2 The O/D pair (i, j) is covered by the 2-facility point X = (X1,X2) ∈ N 2

using the functions f 1
ij or f 2

ij if and only if fij (X1,X2) ≤ dij .

3.1 The case of a straight-line segment

In this section we deal with the problem of locating m = 2 new facilities on a straight
line. We use the fact that we can order the two new facilities (from left to right along
the line), hence the problem is given as follows.

OD-pair location on a line (m = 2) Given a straight line L, demand points A,
trip patterns T and acceptance levels D, find an (m = 2)-facility point X =
(X1,X2) ∈ L2 such that the number of covered trips F(X ) is maximized. In short,

max
X ∈L2

F(X ). (4)

As before we may assume L = [0,L] × {0}. Hence the objective is to locate
two facilities X1 = (x1,0) and X2 = (x2,0) on L with x1 ≤ x2. For the sake of
readability, we will write f̄ij (x1, x2) and hkl

ij (x1, x2) to denote fij (X1,X2) and
hkl

ij (X1,X2), respectively. Therefore both functions depend on two variables when
N is a straight-line segment, and not on four variables as in the general case. Note
that for this case, hkl

ij (X ) is either h12
ij (X ) or h21

ij (X ), and according to Theorem 1

we know that h12
ij (X ) ≤ h21

ij (X ) if and only if ai < aj . From now on we will as-
sume ai ≤ aj ∀ i < j . Now two technical results that will help us later on are pre-
sented.

Lemma 3 For any pair i, j ∈ {1, . . . , n} and any η > 0 the level set

Sij (η) := {
(x1, x2) ∈ [0,L] × [0,L] : fij (x1, x2) ≤ η

}

is convex.

Proof Let η > 0 and assume ai < aj . We consider two cases.

– If η < ‖Ai − Aj‖2, and because Theorem 1 implies x1 < x2, we have
fij (x1, x2) ≤ η if and only if

h12
ij (x1, x2) = ∥∥Ai − (x1,0)

∥∥
2 + α · ∥∥(x1,0) − (x2,0)

∥∥
2 + ∥∥(x2,0) − Aj

∥∥
2 ≤ η.

Let us define hij = min{h12
ij , h21

ij }. Hence Sij (η) = {(x1, x2) ∈ [0,L] × [0,L] :
hij (x1, x2) ≤ η}. Because in this case hij = h12

ij , hij is a convex function in
[0,L] × [0,L], and Sij (η) is a convex set.

– If η ≥ ‖Ai − Aj‖2 we obtain Sij (η) = [0,L] × [0,L] which is convex. �
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The convexity of the level sets implies the quasiconvexity of the corresponding
function, see Márquez-Diez-Canedo (1987).

Corollary 2 The functions fij (x1, x2) are quasiconvex for all i, j ∈ {1, . . . , n},
i.e. we have

fij

(
λX + (1 − λ)Y

) ≤ max
{
fij (X),fij (Y )

}
, ∀ i, j,

for all X = (x1, x2), Y = (y1, y2) ∈ [0,L] × [0,L] and λ ∈ [0,1].

In the following we will use

Sij := Sij (dij ) = {
(x1, x2) ∈ [0,L] × [0,L] : fij (x1, x2) ≤ dij

}
,

Cij := {
(x1, x2) ∈ [0,L] × [0,L] : fij (x1, x2) = dij

}
,

to denote the set of facilities (x1,0), (x2,0) ∈ L which cover the O/D pair (i, j) and
its level curve, respectively. Note that all sets Sij are convex, and that some of them
may be empty. If the intersection of two level curves, say Cij and Ci′j ′ , is nonempty
it consists of (at least) one pair of facilities that cover the demand of both (ordered)
pairs (Ai,Aj ) and (Ai′ ,Aj ′). This yields the following characterization of optimal
solutions.

Theorem 2 Let

C =
⋃

(i,j),(i′,j ′)
(i,j) 	=(i′,j ′)

Cij ∩ Ci′j ′ .

Then (at least) one of the following three cases occurs:

– C contains (at least) one optimal solution to Problem (4).
– There exists an O/D pair (i, j) such that any point of the level set Sij is optimal.
– Any point in [0,L] × [0,L] is optimal.

Proof Let X = (X1 = (x1,0),X2 = (x2,0)) be an optimal solution to Problem (4)
and define

O(X ) := {
(i, j) : (i, j) is covered by X

}
,

G(X ) :=
{⋂

(i,j)∈O(X ) Sij , if O(X ) 	= ∅,

[0,L] × [0,L], if O(X ) = ∅.

Note that G(X ) is non-empty. Moreover, all points in G(X ) yield the same objec-
tive value as X . Hence all points of G(X ) are optimal solutions. We distinguish three
cases:

1. If O(X ) = ∅ all points in [0,L] × [0,L] are optimal, and therefore the objective
function value is equal to zero.

2. If G(X ) = Sij for some pair (i, j) ∈ O(X ) all points in Sij are optimal, since all
points in G(X ) yield the same objective value.
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3. If O(X ) is non-empty and there is no pair (i, j) such that G(X ) = Sij , then G(X )

is the intersection of at least two different level sets. Since all Sij are closed con-
vex (see Lemma 3), we have that G(X ) is convex. Hence, the boundary of G(X )

must contain at least one point Y = (Y1 = (y1,0), Y2 = (y2,0)) ∈ Cij ∩ Ci′j ′ for
some O/D pairs (i, j) and (i′, j ′). Consequently, Y = (Y1, Y2) ∈ C is an optimal
solution to Problem (4). �

In accordance with Bezout’s theorem (see Kirwan 1992) the equation of the inter-
section of Cij and Ci′j ′ has at most 42 roots, but four of them are at infinity. The re-
maining twelve solutions could be multiple and/or complex. Therefore, an immediate
consequence of Theorem 2 is that there exists a finite dominating set for our problem.

Corollary 3 Let B ⊂ [0,L] × [0,L] be a set containing exactly one point of each
level set Sij and let C be the set defined in Theorem 2. Then CAND := C∪B ∪{(0,0)}
is a finite dominating set for Problem (4).

Proof Due to the three cases of Theorem 2, at least one optimal solution to Prob-
lem (4) is contained in CAND. From Bezout’s theorem we may conclude that the
intersection of two level curves Cij and Ci′j ′ contains at most 16 points. Conse-
quently, the set C is finite. Moreover, B is a finite set since we have a finite number
of level sets Sij . Finally note that we need the point (0,0) due to the third case of
Theorem 2, because in this case both B and C are empty. To sum up, CAND is a
finite dominating set for (4). �

If the input size, i.e. the number of demand pairs, is N = O(n2) the number of
intersections is O(N2). Hence the complexity of the finite dominating set CAND
is O(KN2), where K is an upper bound on the number of finite intersection points
between two level sets Cij and Ci′j ′ . As mentioned above, an upper bound for K is
16 but in our numerical experience we saw this constant was always lower than or
equal to 4. Using Corollary 3, Algorithm 1 (see below) solves Problem (4) in O(N3)

time, since evaluating F in step 5(a) takes O(N) and the inclusion test for each pair
can be done in constant time, cf. e.g. Preparata and Shamos (1985).

Algorithm 1 (Maximum pair covering algorithm in a segment)

Input: A set of points A = {Ai = (ai, bi) : i = 1, . . . , n} ⊂ R
2 with ai ≤ aj ∀ i < j ,

a segment of length L, a demand matrix T = (tij ), the high-speed factor of the line
α ∈ (0,1), and the matrix D = (dij ) with 0 ≤ dij < ‖Ai − Aj‖2 for 1 ≤ i, j ≤ n.

1. Set C = ∅.
2. For each O/D pair (i, j) with i < j compute Cij , the level curve of fij .
3. For each pair of O/D pairs {(i, j), (i′, j ′)} compute the intersection between Cij

and Ci′j ′ . Set C = C ∪ (Cij ∩ Ci′j ′).
4. If Cij ∩ Ci′j ′ = ∅ and Cij ,Ci′j ′ 	= ∅ apply an inclusion test:

(a) If Cij is inside Ci′j ′ (or Ci′j ′ inside Cij ), then take one point of Cij (or Ci′j ′ )
and add it to C, respectively.

(b) Otherwise take one point of Cij and one of Ci′j ′ and add it to C.
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5. (a) If C 	= ∅, then evaluate the objective function F(x1, x2) on every point
(x1, x2) ∈ C and choose a maximum. Let (X∗

1,X∗
2) be such maximum, with

X∗
1 = (x∗

1 ,0),X∗
2 = (x∗

2 ,0).
(b) Otherwise, choose any pair X∗

1,X∗
2 ∈ L.

Output: Two facilities X∗
1,X∗

2 ∈ L solving problem (4).

Example 1 Two facilities are to be located on the line segment L = [0,5] to cover
five sites corresponding to the following coordinates:

A1 = (1,1), A2 = (1,−0.5), A3 = (3,0.5),

A4 = (4,−0.5), A5 = (4,−2).

Let us assume that the O/D matrix is

T =

⎛
⎜⎜⎜⎜⎝

0 46 27 90 75
0 0 70 47 46
0 0 0 25 74
0 0 0 0 46
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

.

Furthermore, we used the high-speed factor α = 0.5 and the acceptance values dij =
0.98 · ‖Ai − Aj‖2, i.e. we assume that the high-speed line will be chosen if at least
2% of traveling time is saved.

Each level set Sij is given by the solution set of the inequality fij ≤ dij ; that is,
each point (x1, x2) ∈ Sij has to satisfy the inequality

√
(ai − x1)2 + b2

i + α(x2 − x1) +
√

(aj − x2)2 + b2
j ≤ dij .

Due to Theorem 1 all level sets are contained in the upper left triangle of [0,5] ×
[0,5]. The intersection of the level sets S14, S15, S23, and S24 is the set of points
(x1, x2) that maximize the trip coverage, meaning that any (x1, x2) in this set covers
the pairs (1,4), (1,5), (2,3), (2,4), yielding an optimal objective value equal to 282,
see Fig. 2.

So, for instance, locating one station at (1.5,0) and the other at (3,0) is an optimal
solution (because (1.5,3) belongs to the optimal region depicted as the gray area in
Fig. 2).

3.2 The case of a tree network

In this section we will deal with the problem of locating two facilities on a given tree
network T (V ,E), stated as follows.

OD-pair location on a tree (m = 2) Given a high-speed tree network T , demand
points A, trip patterns T and acceptance levels D, find an (m = 2)-facility point X =
(X1,X2) ∈ T 2 such that the number of covered trips F(X ) is maximized. In short,

max
X ∈T 2

F(X ). (5)
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Fig. 2 Non-empty coverage
regions for Example 1

Since the problem of locating two facilities on the same edge coincides with that
in the previous subsection, we will now study the case in which the facilities are to be
located on different edges. Thus, this restricted problem can be formulated as follows.

OD-pair location on an edge-pair of a tree (m = 2) Given a high-speed tree net-
work T with two specified edges ep and eq (ep 	= eq ), demand points A, trip patterns
T and acceptance levels D, find an (m = 2)-facility point X = (X1,X2) ∈ ep × eq

such that the number of covered trips F(X ) is maximized. In short,

max
X ∈ep×eq

F (X ). (6)

As usual, F(X ) = ∑
(i,j)∈G(X ) tij and we do not need to distinguish between F 1

and F 2 since we still consider the case m = 2. Our goal is to adapt the Maximum
Pair Covering Algorithm of the previous subsection.

In Dearing et al. (1976), a path convex combination of two points Y and Z in a
tree is defined as follows:

Definition 3 Let Y,Z be two points on a tree and let p(Y,Z) be the unique path from
Y to Z. X is a path convex combination of Y and Z along p(Y,Z) with respect to
λ ∈ [0,1] if

– X ∈ p(Y,Z), and
– dτ (Y,Z) = λdτ (Y,Z).

(Note that in this case we have dτ (X,Z) = (1 − λ)dτ (Y,Z).)

Note as well that this notion of path convex combination is different from the usual
convex combination concept in the plane (see Fig. 3).
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Fig. 3 The point X is a path
convex combination of Y and Z

with respect to λ = 1
3 while X′

is a convex combination of Y

and Z with respect to λ = 1
3

Thus, the segment joining two pairs of points Y = (Yp,Yq), Z = (Zp,Zq) in
ep × eq is P S(Y , Z) = ⋃

λ∈[0,1]{X = (Xp,Xq) ∈ ep × eq : d(Yi,Xi) + d(Xi,Zi) =
d(Yi,Zi);d(Xi,Zi) = λd(Yi,Zi), i ∈ {p,q}}, where P S stands for path segment.
Thus, a function is path convex on ep × eq if f (X ) ≤ λf (Y ) + (1 − λ)f (Z), ∀ X ∈
P S(Y , Z), ∀ λ ∈ [0,1]. See Dearing et al. (1976) for more details, where it is proven
that dN is convex in N × N if and only if N is a tree. As a consequence dτ (· , ·) is a
convex function for (Y,Z) ∈ ep × eq .

Normally, the used notion of convexity is clear from the context. Whenever there
might be ambiguity, we will specify whether convexity or path convexity applies.

Next, we will see that Lemma 3 and Corollary 2 can be extended to the case of a
tree network as follows.

Lemma 4 For any pair (i, j) and any η > 0 the level set

Sij (η) := {
(X1,X2) ∈ ep × eq : fij (X1,X2) ≤ η

}

is the union of two disjoint and convex sets.

Proof According to Definition 2 we have

Sij (η) =
⎧⎨
⎩

S12
ij (η) ∪ S21

ij (η), if ‖Ai − Aj‖2 > η,

ep × eq, if ‖Ai − Aj‖2 ≤ η,

with

S12
ij (η) := {

(X1,X2) ∈ ep × eq : h12
ij (X1,X2) ≤ η

}
,

S21
ij (η) := {

(X1,X2) ∈ ep × eq : h21
ij (X1,X2) ≤ η

}
.

Let η > 0. First note that if η ≥ ‖Ai − Aj‖2 we obtain Sij (η) = ep × eq which is
convex. We hence analyze the case η < ‖Ai − Aj‖2, for which we claim:

1. S12
ij (η) ∩ S21

ij (η) = ∅.

2. S12
ij (η) and S21

ij (η) are convex.

These two assertions are proven as follows.

1. Assume that (X1,X2) ∈ S12
ij (η). Then we have

h12
ij = ‖Ai − X1‖2 + dT (X1,X2) + ‖X2 − Aj‖2 ≤ η < ‖Ai − Aj‖2,
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therefore,

‖Ai − X1‖2 + ‖X2 − Aj‖2 < ‖Ai − Aj‖2.

From this we conclude

‖Ai − Aj‖2 ≤ ‖X1 − Ai‖2 + ‖X1 − Aj‖2

< ‖Ai − Aj‖2 − ‖X2 − Aj‖2 + ‖X1 − Aj‖2

≤ ‖Ai − X2‖2 + ‖Aj − X2‖2 − ‖X2 − Aj‖2 + ‖X1 − Aj‖2

= ‖X2 − Ai‖2 + ‖X1 − Aj‖2,

hence,

‖Ai − X2‖2 + dT (X1,X2) + ‖X1 − Aj‖2 > ‖Ai − Aj‖2 > η,

and so (X1,X2) 	∈ S21
ij .

2. h12
ij (X1,X2) ≤ η if and only if

h12
ij (X1,X2) = ‖Ai − X1‖2 + dT (X1,X2) + ‖X2 − Aj‖2 ≤ η,

hence S12
ij (η) = {(X1,X2) ∈ ep × eq : h12

ij (X1,X2) ≤ η}. Since, ‖Ai − X1‖2 and
‖X2 −Aj‖2 are path convex functions on ep and eq , respectively, and dT (X1,X2)

is convex on the convex set ep × eq then h12
ij is a convex function on ep × eq , and

therefore S12
ij (η) is a convex set. The convexity of S21

ij (η) can be proven analo-
gously. �

Corollary 4 The functions h12
ij (X1,X2) and h12

ij (X1,X2) are quasiconvex on ep ×eq .

Remark 3 We remark that the level set in Lemma 4 cannot be taken for any pair
(X1,X2) ∈ T although dT (X1,X2) is still path convex in this case (see Dearing et
al. 1976). The reason for this is that path convex combinations are not the same as
convex combinations for arbitrary X1,X2 on a tree (see Fig. 3), meaning that the
convexity of function hij would be lost if X1 and X2 vary on a tree.

In order to get a computable representation we parametrize the two edges ep and
eq such that

ep = {
X = gp(λ) := Tp + λsp : λ ∈ [0,1]},

ep = {
X = gq(λ) := Tq + λsq : λ ∈ [0,1]}

with Tp,Tq, sp, sq ∈ R
2 and gp(0) = Tp,gq(0) = Tq . Note that Tp , sp , Tq and sq are

the starting points and directions of edges ep and eq , respectively. We hence see that
Problem (6) is a continuous two-dimensional problem formulated as

max
(λp,λq)∈[0,1]2

F
(
gp(λp), gq(λq)

)
(7)
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and the level set Sij := Sij (dij ) is given as

Sij := {
(λp,λq) ∈ [0,1]2 : fij

(
gp(λp), gq(λq)

) ≤ dij

}
.

We now transfer the result of Lemma 4 to this two-dimensional representation.

Corollary 5 The level set Sij = S12
ij ∪ S21

ij ⊆ R
2 is the union of two disjoint and

convex sets, S12
ij , S21

ij .

Proof We know that h12
ij , h21

ij : ep × eq → R are quasiconvex according to Corol-

lary 4, and that g = (gp, gq) : [0,1]2 → ep × eq is linear, hence their compositions
h12

ij ◦ g,h21
ij ◦ g are quasiconvex, yielding the convexity of

S12
ij := {

(λp,λq) ∈ [0,1]2 : h12
ij

(
gp(λp), gq(λq)

) ≤ dij

}
,

S21
ij := {

(λp,λq) ∈ [0,1]2 : h21
ij

(
gp(λp), gq(λq)

) ≤ dij

}
.

Since for η < ‖Ai − Aj‖ we have

Sij (η) = {
(λp,λq) ∈ [0,1]2 : h12

ij

(
gp(λp), gq(λq)

) ≤ η
}

∪ {
(λp,λq) ∈ [0,1]2 : h21

ij

(
gp(λp), gq(λq)

) ≤ η
}

we obtain

Sij = S12
ij ∪ S21

ij

and the result follows. �

For each pair (i, j) let C12
ij and C21

ij be the boundaries of the sets S12
ij and S21

ij . This
gives us all we need to prove the following statement similar to Theorem 2.

Theorem 3 Let

C =
⋃

(i,j),(i′,j ′),(i,j) 	=(i′,j ′)
(k,l),(k′,l′)∈{(1,2),(2,1)}

Ckl
ij ∩ Ck′l′

i′j ′ .

Then (at least) one of the following three cases occurs:

– C contains (at least) one optimal solution to Problem (6).
– There exists an O/D pair (i, j) and (k, l) ∈ {(1,2), (2,1)} such that any point of

the level set Skl
ij is optimal.

– Any point in [0,1] × [0,1] is optimal.

Again in accordance with Bezout’s theorem (see Kirwan 1992) the equation of the
intersection of Ckl

ij and Ck′l′
i′j ′ has at most 42 roots, but four of them are at infinity. The

remaining twelve solutions could be multiple and/or complex. Therefore, we again
obtain a finite dominating set.
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Corollary 6 Let B ⊂ [0,1] × [0,1] be a set containing exactly one point of each set
S12

ij and S21
ij and let C be the set defined in Theorem 2. Then CAND := C∪B∪{(0,0)}

is a finite dominating set for Problem (4).

In summary, Algorithm 1 can be extended to the case in which X1 and X2 are in
different edges.

Algorithm 2 (Maximum pair covering algorithm for two facilities in different edges)

Input: A set of points A = {Ai = (ai, bi) : i = 1, . . . , n} ⊂ R
2, a pair of edges ep ,

eq , a demand matrix T = (tij ), the high-speed factor of the line α ∈ (0,1), and the
matrix D = (dij ) with 0 ≤ dij < ‖Ai − Aj‖2 for 1 ≤ i, j ≤ n.

1. Set C = ∅.
2. For each O/D pair (i, j), and each (k, l) ∈ {(1,2), (2,1)} compute the level

curves Ckl
ij .

3. For each pair of O/D pairs {(i, j), (i′, j ′)}, and (k, l), (k′, l′) ∈ {(1,2), (2,1)}
compute the intersections between Ckl

ij and Ck′l′
i′j ′ . Set C = C ∪ (Ckl

ij ∩ Ck′l′
i′j ′).

4. If Ckl
ij ∩ Ck′l′

i′j ′ = ∅ and Ckl
ij ,Ck′l′

i′j ′ 	= ∅ apply an inclusion test:

(a) If Ckl
ij is inside Ck′l′

i′j ′ (or Ck′l′
i′j ′ inside Ckl

ij ), then take one point of Ckl
ij (or Ck′l′

i′j ′ )
and add it to C, respectively.

(b) Otherwise take one point of Ckl
ij and one of Ck′l′

i′j ′ and add it to C.
5. (a) If C 	= ∅, then evaluate the objective function F(gp(λp), gq(λq)) on every

point (λp,λq) ∈ C and choose a maximum, given by (λ∗
p,λ∗

q).
(b) Otherwise, choose any pair λ∗

p ∈ [0,1], λ∗
q ∈ [0,1].

Output: Two facilities X1 := gp(λ∗
p),X2 := gq(λ∗

q) ∈ ep × eq solving Problem (6).

The complexity of this algorithm is the same as Algorithm 1, O(N3).
Note that Algorithm 2 gives a pair of points X1 ∈ ep,X2 ∈ eq maximizing F .

From Algorithms 1 and 2, a procedure that calculates a pair of facilities maximizing
F on a tree network T (V ,E) is given by the following algorithm. The idea is to
iteratively apply the two previous algorithms to locate a pair of facilities on the same
edge, or to locate a pair of facilities on different edges, respectively, for any possible
combination of edges on the tree, to then pick the best solution. These ideas are
summarized in Algorithm 3.

Algorithm 3 (Maximum pair covering algorithm for a tree network)

Input: A set of points A = {Ai = (ai, bi) : i = 1, . . . , n} ⊂ R
2, a tree network

T (V ,E), a demand matrix T = (tij ), the high-speed factor of the line α ∈ (0,1),
and the matrix D = (dij ) with 0 ≤ dij < ‖Ai − Aj‖2 for 1 ≤ i, j ≤ n.

1. For each edge ep , apply Algorithm 1. Let (X
p

1 ,X
p

2 ) be the solution obtained.
2. For each pair of distinct edges ep , eq with p < q , apply Algorithm 2. Let

(X
pq

1 ,X
pq

2 ) be the solution obtained.
3. Determine the best solution (X1,X2) of all (X

p

1 ,X
p

2 ), (X
pq

1 ,X
pq

2 ).
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Output: Two facilities X1,X2 ∈ T solving problem (5).

The complexity of this algorithm is O(MN3 + M2N3) = O(M2N3), where
M = |E|.

4 The big cube small cube method for m ≥ 2 facilities on a line segment

In this section we present an algorithm for locating m facilities along a line, i.e., we
consider the following problem.

OD-pair location on a line Given a straight line L, demand points A, trip pat-
terns T , function f r with r = 1 or 2, and acceptance levels D, find an m-facility
point X = (X1, . . . ,Xm) ∈ Lm such that the number of covered trips F(X ) is maxi-
mized. In short,

max
X ∈Lm

F (X ). (8)

Our approach is a modification of the big cube small cube method, see Schöbel
and Scholz (2010), which is a generalization of the big square small square (BSSS
for short) algorithm, see Hansen et al. (1985) and Plastria (1992).

We want to locate m facilities X = (X1, . . . ,Xm) on the line segment L =
[0,L]×{0}, using the overall minimum distance functions f 2

ij . Therefore, identifying
Xi with its first coordinate xi , our objective function

F 2(X ) = F 2(x1, . . . , xm) =
∑

(i,j):f 2
ij ≤dij

tij

deals with m variables.
The idea we use is based on a geometric branch-and-bound: The solution space is

divided into a list of boxes. In every step, one box is selected and split into several
smaller boxes. For each smaller box, an upper bound is computed and the objective
function is evaluated at the center of the smaller boxes. The greatest value of the eval-
uated objective values is stored as incumbent. If the upper bounds of some boxes are
smaller than the incumbent, these boxes can be discarded. Techniques for obtaining
these bounds exist for continuous functions, in particular for d.c-functions.

However, we cannot directly apply these techniques to our problem since for
counting the number of covered pairs we have to introduce a discrete variable for
any O/D-pair. In the following we will demonstrate how we can nevertheless make
use of well-known techniques for solving such a (partly discrete) problem.

We first show how we can make use of our knowledge for calculating bounds for
the continuous functions f 2

ij to derive bounds on the function F 2.

Theorem 4 Assume that for each box Z ⊂ Lm and each pair (i, j) we have a lower
bound, i.e.,

wij (Z) ≤ f 2
ij (X ) for all X ∈ Z,

and let P(Z) ∈ Z. Then we have
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1.

LB(Z) := F 2(P(Z)
) ≤ max

X ∈Z
F 2(X ),

i.e. F 2(P (Z)) is a lower bound on the objective value on Z.
2.

UB(Z) :=
∑

(i,j):wij (Z)≤dij

tij ≥ F 2(X ) for all X ∈ Z,

i.e., UB(Z) is an upper bound on the objective value on Z.
3. Assume that every O/D-pair (i, j) satisfies one of the following three conditions,

(i) f 2
ij (P (Z)) = wij (Z), or,

(ii) dij > f 2
ij (P (Z)), or,

(iii) dij < wij (Z).
Then UB(Z) = LB(Z), i.e., F 2(P (Z)) is the optimal value on Z.

Note that wij (Z) together with P form a bounding operation as defined in Scholz
and Schöbel (2010), i.e., the theorem holds true for any bounding operation on Z.

Proof Consider one box Z and let wij := wij (Z) and P := P(Z).

1. P ∈ Z, i.e., the objective value on Z is better than F 2(P ).
2. Since wij ≤ f 2

ij (X ) for all X ∈ Z we obtain

UB(Z) =
∑

(i,j):wij ≤dij

tij ≥
∑

(i,j):f 2
ij (X )≤dij

tij = F(X ).

3.

UB(Z) − F 2(P ) =
∑

(i,j):wij ≤dij

tij −
∑

(i,j):f 2
ij (P )≤dij

tij =
∑

(i,j):wij ≤dij <f 2
ij (P )

tij .

This expression becomes zero if and only if for all (i, j) we have

dij 	∈ [
wij , f

2
ij (P )

)
,

which is exactly the case if one of the conditions (i), (ii), (iii) applies. �

In order to derive a bounding operation for the functions f 2
ij the whole set of

possibilities used for geometric branch and bound methods can be applied, see e.g.,
Blanquero and Carrizosa (2009), Horst and Thoai (1999), or Scholz (2010), Scholz
and Schöbel (2010) for an overview and a discussion of various methods. Having
such a bounding operation at hand, the following algorithm calculates an approximate
optimal solution.
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Algorithm 4 (Geometric branch and bound)

Input: A set of points A = {Ai = (ai, bi) : i = 1, . . . , n} ⊂ R
2, a segment of

length L, a demand matrix T = (tij ), the high-speed factor of the line α ∈ (0,1),
the matrix D = (dij ) with 0 ≤ dij < ‖Ai − Aj‖2 for 1 ≤ i, j ≤ n.

1. Set Z = {Z = [0,L]m}, P = (L
2 , . . . , L

2 ) ∈ Z.
2. Calculate LB := F 2(P ) and UBmax := UB(Z).
3. Division rule: Select a box Z ∈ Z with largest upper bound UBmax = UB(Z) and

split it into some smaller boxes.
4. Insert the smaller boxes in Z and delete the original box from Z .
5. Evaluate the objective function at the center of each smaller box. If at least one

of these values is ≥ LB, update LB to the largest value and update P to the center
of the associated box.

6. Calculate UB(Z) for all smaller boxes and update UBmax := maxZ∈Z UB(Z).
7. Discarding test: Discard all boxes Z

Z = [x1, x1] × · · · × [xm,xm]
with UB(Z) < LB from Z . If LB has not changed we have to check only the
smaller boxes. Furthermore, discard all smaller boxes with xk > xl for some
k < l from Z .

8. Termination rule: If UBmax = LB, stop. Otherwise return to Step 3.

Output: An optimal solution X = (x1, . . . , xm) := P containing a set of m optimal
facilities (x1,0), . . . , (xm,0) solving Problem (4). (If required, Z is the set of boxes
that contains X and might contain (other) optimal solutions.)

Note that the discarding test in Step 7 of the algorithm uses the result of Theo-
rem 4.

We remark that no bounding operation for f 2
ij yields a consistent bounding opera-

tion for the function F 2, since it may happen that splitting a box into subboxes does
not affect the value of F(Z). Nevertheless, due to the third point of Theorem 4, many
boxes can be discarded throughout the algorithm such that it will finally stop.

We now use another feature of our problem to derive the set of all optimal solutions
for (4). Most algorithms only calculate one individual solution. But sometimes the set
of all optimal solutions is required. For Problem (4) we can use Lemma 3 and propose
Algorithm 5, which computes a subset of all optimal solutions for the case of locating
two facilities if the optimal objective value OPT of Problem (4) is known.

Algorithm 5 (Approximation of optimal solution set for m = 2)

Input: A set of points A = {Ai = (ai, bi) : i = 1, . . . , n} ⊂ R
2, a segment of

length L, a demand matrix T = (tij ), the high-speed factor of the line α ∈ (0,1),
the matrix D = (dij ) with 0 ≤ dij < ‖Ai − Aj‖2 for 1 ≤ i, j ≤ n.

1. Solve problem (4) using Algorithm 1 or Algorithm 4.
2. Set Z := {[0,L]2} in case of Algorithm 1; or take the output Z of Algorithm 4 if

this algorithm has been used in Step 1. Set D := ∅.
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3. Split all boxes Z ∈ Z into some smaller boxes.
4. Add all smaller boxes to Z and delete the original boxes from Z .
5. For all boxes Z ∈ Z do: Evaluate the functions fij (Vk) for all i < j at the four

vertexes V1,V2,V3,V4 of Z. Define

rij :=
{

tij , if fij (Vk) < dij for k = 1,2,3,4,

0, otherwise,

and let

R :=
∑
i<j

rij .

If R = OPT , add the box Z to D and delete Z from Z .
6. If all boxes Z ∈ Z are small enough, stop. Otherwise return to Step 3.

Output: A set of optimal solutions D∗ := ⋃
D∈Z D to Problem (4).

The correctness of this algorithm is justified as follows.

Lemma 5 Let Z ∈ D∗ and X ∗ = (X∗
1,X∗

2) ∈ Z. Then X ∗ is an optimal solution to
Problem (4).

Proof We have to show that all X ∈ Z are optimal solutions. Let V1,V2,V3,V4 be the
four vertices of Z. From Step 5 of the algorithm we know that fij (Vk) < dij for k =
1,2,3,4, in particular, Vk ∈ Sij for k = 1, . . . ,4, i < j . Since Sij is convex according
to Lemma 3, the complete box Z is in Sij and the result follows. �

5 Case study and experimental results

We first use Algorithm 4 to analyze the example presented in the introduction for the
case 2 ≤ m ≤ 4.

Example 2 The n = 12 demand points are given by the data in Table 1 (note that
all coordinates have been rotated and translated so that Sevilla (point A1) coincides
with the origin and Córdoba (point A12) is on the x-axis). Furthermore, we used the

Table 1 The demand points for Example 2

Ai ai bi

A1 0.000 0.000

A2 6.426 19.707

A3 11.689 7.352

A4 27.491 10.234

Ai ai bi

A5 59.686 3.392

A6 29.096 −4.160

A7 43.495 5.109

A8 45.980 −19.119

Ai ai bi

A9 65.326 2.004

A10 78.302 −14.491

A11 94.086 −9.701

A12 111.181 0.000
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Table 2 Population of the cities
A1 to A12 for Example 2 p1 704198 p5 3814 p9 21605

p2 5156 p6 28576 p10 40534

p3 12580 p7 19393 p11 13469

p4 5260 p8 19861 p12 328534

Table 3 Optimal solutions for Example 2 obtained by Algorithm 4, objective function values, percentages
of covered potential travelers, and computational times

m x1 x2 x3 x4 F(x1, . . . , xm) % Run time (sec)

2 0.109375 9.078125 13011.657 46.86% 0.01

3 0.109375 9.078125 50.203125 18603.935 67.00% 0.13

4 0.109375 9.078125 95.703125 111.015625 21813.235 78.56% 0.43

Euclidean distance d2, the high-speed factor α = 0.5, the line segment L = [0,112],
and the acceptance values

dij = 0.9 · d2(Ai,Aj ).

The trip patterns are estimated by T = (tij ) using the gravitation rule, see Ortúzar
and Willumsen (2001), as follows:

tij = τ · pi · pj

d2
2 (Ai,Aj )

, and τ = 0.00016029

for i < j and tij = 0 otherwise. Here, pi is the population of city Ai , see Table 2. The
value of τ has been estimated from traffic data between Sevilla and Córdoba. Note
that tij need not be integer.

Table 3 shows optimal solutions for the cases m = 2 to m = 4. The last column
presents the run time of the algorithm. The solutions are depicted in Fig. 4. Note as
well that the gravitational rule penalizes the number of trips between distant cities.

Example 3 In this example we consider the same input data as in Example 2 but
we now ignore all traffic flow between Sevilla and any other city as well as between
Córdoba and any other city. This is a realistic assumption since there already exist
high-speed train stations at Sevilla and Córdoba. Our result for m = 2 new stations
can be found in Fig. 5. Here, one optimal solution is (x1, x2) = (42.65625,66.28125)

with an objective value of 460.05994, which is some 15.30% of the potential demand.

We now illustrate the efficiency of the geometric branch and bound method, Algo-
rithm 4, when we used the d.c bounding operations, see Horst and Thoai (1999). Our
algorithm was implemented in JAVA, compiled by JAVA 2 SDK 1.4, using double
precision arithmetic. All tests were run on a 2.4 GHz computer with 1024 MB of
memory.

We randomly generated 10 ≤ n ≤ 200 existing facilities A1, . . . ,An in [0,10] ×
[−2.5,2.5] ordered by their first coordinates. The line segment was L = [0,10],
the high-speed factor was α = 0.5, and the acceptance values were given by dij =
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Fig. 4 Optimal solutions for
Example 2 and m = 2 to m = 4

Fig. 5 Optimal solutions for
Example 3 and m = 2

0.9 · ‖Ai − Aj‖2. The traffic was also randomly generated as follows: For i < j we
randomly set tij ∈ {0,1, . . . ,8} in such a way that the probability for tij = 0 was 1/3
and for k = 1, . . . ,8 the probability for tij = k was 1/12, respectively.
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Table 4 Results using the big
cube small cube solution method n m Run time (sec)

Ave Min Max

50 2 0.22 0.13 0.32

100 2 2.02 1.22 2.79

150 2 6.71 3.62 10.11

200 2 15.01 9.60 22.28

20 3 0.76 0.41 1.76

40 3 6.01 2.90 15.57

60 3 17.30 9.01 28.31

80 3 63.70 29.24 113.19

10 4 3.10 0.32 11.88

15 4 9.75 1.93 18.67

20 4 25.44 6.79 85.36

25 4 67.09 8.83 216.59

Fig. 6 Plot of average run time
versus number of points for two,
three, and four facilities

Ten problems instances were run for various values of n and m. Algorithm 4
stopped when one optimal solution was found. Our results are reported in Table 4
and Fig. 6. Since all results were quite similar for various values of α, we only re-
ported run times for α = 0.5.

For the case m = 2, all problems with up to n = 200 points and therefore with up
to n(n− 1)/2 = 19,900 O/D pairs could be efficiently solved in less than 23 seconds
of computer time. But if we want to locate more than two facilities, the run time
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increases as typical for geometric branch and bound methods. For m = 4 and n = 25
the average run time was approximately 67 seconds.

6 Conclusions and extensions

In this paper we have dealt with the problem of locating facilities along a given tree-
like or segment-like high speed network with respect to the Euclidean distance.

– A facility location problem over a high speed network has been modeled, so that the
competition with another (slower) existing alternative means is taken into account.

– Thanks to some convexity properties, a method for locating two facilities has been
proposed when the high speed network is a straight line segment or a tree network.

– Geometric branch and bound methods have been extended to deal with the combi-
natorial part of the problem and can be used for the case of locating m ≥ 2 facilities
on a straight-line segment.

– Since the final goal was based on realistic applications, the proposed methodology
demanded a deep theoretical analysis.

– The problem could be extended so that more constraints could be included. This
way a better approximation to real situations could be made just by slightly modi-
fying the methods and algorithms proposed here.

As a first extension, the problem can be generalized to other distances. For exam-
ple, an application for the problem with rectangular distance is the location of bus
stops in a line in Manhattan: The speed along the line is based on the rectangular
distance (multiplied by a speed factor) as well as the speed for accessing the bus line.
Some of our results can be transferred to arbitrary norms and also the big cube small
cube approach can still be used when the norm used is differentiable. Moreover, we
plan to extend our work to other types of metrics and to gauges. In this paper the
allocation of trips was made on the basis of a binary variable. In order to extend
these reasonings, the type of function that substitutes the 0-1 model should be dis-
cussed (see Berman et al. 2003), which is beyond the scope of this work and will be
addressed in a future paper.

In this work we have treated edges as straight-line segments. Nevertheless, assum-
ing these edges are sufficiently regular curves, one could apply homeomorphisms and
their inverses so our reasoning can be extended to this sufficiently-regular-curve case.

Another extension is to allow different speed factors due to different speeds that
might be possible in different parts of the network. To be more precise, in reality the
trip between two facilities is often modeled in three phases: acceleration to maximum
speed (Phase 1), journey at maximum speed (Phase 2), and braking in order to stop
(Phase 3). If distances between facilities do not fall below a critical level, then the
quota of Phases 1 and 3 is small and our model assuming constant speed is appropri-
ate. Therefore and for other reasons (e.g. acceptance by travelers) we are interested
in computing solutions such that facilities do not fall below a minimum inter-facility
space. This extension is to avoid situations in which two stations are located too close
to each other, as one may say happens in Fig. 4. To this end let 2δ ≥ 0 be the mini-
mum inter-facility space we would accept. Then an extension of Problem (3) can be
formulated as
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max
X ⊂N

F r(X ) s.t. N (X1, δ) ∩ N (X2, δ) = ∅ for all X1 	= X2 ∈ X , (9)

where N (X, δ) describes a neighborhood around X with radius δ. In the case where
the given network is a line segment, the neighborhood of a facility becomes a smaller
line segment, i.e. N (X, δ) = [max{0, x − δ},min{x + δ,L}] × {0}.

The Maximum Pair Covering Algorithm can be adapted in order to solve Prob-
lem (9). Roughly speaking, we need to exclude solutions from the finite dominating
set CAND (see Corollary 3) that do not satisfy the inter-facility space condition. This
can be done by deleting all solutions from CAND that lie in the halfspace d(x, y) ≤ δ

(note that if (x, y) ∈ CAND then x ≤ y). After deleting these points from CAND it
could be possible that no optimal solution is included in CAND. Therefore the finite
number of intersections between level sets Cij and the straight line d(x, y) = δ must
be added to CAND.

Beyond inter-facility space, there could be other reasons why it is not possible to
locate facilities in certain sections of a high-speed network. For example it is possible
that a line segment of the network passes under a river or crosses a natural park.
Hence, we also extend Problem (3) to more general forbidden regions:

max
X ⊂N \R

F r(X ), (10)

where R denotes the forbidden regions where the network cannot pass by. Note that
formulation (10) also includes formulation (9) (R = {(x, y) : d(x, y) ≤ δ}) and for-
mulation (3) (R = ∅). Just like for Problem (9), it is possible to adapt the Maximum
Pair Covering Algorithm in order to deal with forbidden regions. To this end we re-
move points that lie in forbidden regions from the finite dominating set CAND and
add finite intersections between R and the union of all level sets Cij .

We have obtained optimal extreme points. In a more general formulation, one
could explore a multi-objective version of the problem. As a second objective, one
could consider the minimization of the distances between covered pairs (MinSum
model, see Körner and Schöbel 2010), or the maximization of the differences between
the acceptance values and the distances hkl

ij (MaxMin model). This new formulation
will yield inner optimal points, which are more realistic than the points that are on
the borders of the acceptance levels.

The fact that all mentioned extensions can be easily included in our models rein-
forces the validity of our reasoning from the applicability point of view.
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