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Abstract
The main goal in a cooperative game is to obtain a fair allocation of the profit due
the cooperation of the involved agents. The most known of these allocations is the
Shapley value. This allocation considers that the communication among the players
is complete. The Myerson value is a modification of the Shapley value considering a
communication structure which determines the feasible bilateral relationships among
the agents. This allocation of the profit is not always a stable solution. Another payoff
allocation for gameswith a communication structure from the definition of the Shapley
value is the average tree value. This one is a stable solution for any game using
a cycle-free communication structure. Later fuzzy communication structures were
introduced. In a fuzzy communication structure, the membership of the agents and
the relationships among them are leveled. The Myerson value was extended in several
different ways depending on the behavior of the agents. In this paper, the average tree
value is extended to games with fuzzy communication structures taking one particular
version: the Choquet by graphs (cg). We present an application to the management of
an electrical network with an algorithmic implementation.
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1 Introduction

The main mathematical goal of this paper is to extend the average tree value (Herings
et al. 2008) for games restricted by fuzzy communication situations without cycles.
Using the Choquet partition (Choquet 1953), we introduce the cg-average value for
cycle-free fuzzy communicationgames, in shortAFvalue, analyzing its axiomatization
and algorithmic implementation.Game theorywas used inHobbs (1992) andContreras
(1997) to analyze electrical networks. The motivation of this article is to give a cost-
sharing rule for the client nodes in an electric partially interconnected network, which
is supplied with energy by a power plant. The peculiarity of the network is that nodes
do not need the same amount of energy and transmission channels do not have the same
transmission capacity. Indeed, they stop working when their maximum transmission
capacity is reached. The cg-average tree value allows us to achieve this sharing of
costs among the nodes.

A cooperative game with transferable utility over a finite set of players is a mapping
that assigns a real number to each subset of the power set of players, named coalitions.
A payoff vector is a vector in which each component represents the payment for each
player generated due to his cooperation possibilities. The Shapley value (Shapley
1988) is the best known of these outcomes and the first to be defined. This payoff vector
supposes that all the communications are feasible. Later, Myerson (1977) describes
the communication situation by a graph where the vertices are the players and the
links are the feasible bilateral communications among them. This graph is named the
communication structure of the game. So,Myerson proposed a more realistic situation
for the game and a payoff vector for each communication structure. A communication
value assigns a payoff vector to each game with a specific communication structure.
TheMyerson value extends the Shapley value in the sense that both coincide when the
graph is complete. The complexity of computing the Myerson value has been studied
in Bilbao et al. (2002) and Fernández et al. (2002). Another value for games with
communication structure is the average tree value (Herings et al. 2008, 2010). The
average tree value considers that the sets of feasible coalitions follow fromapermission
structure (Gilles et al. 1992) on the set of players, in which players need permission to
cooperate with other players. An oriented tree can be seen as a permission structure.
This means that there is one player at the top of the permission structure and for every
other player there is a unique directed path from the top player to this player.

Aubin (1981) studied fuzzy coalitions, introducing vagueness about the member-
ship of the players. To calculate the worth of a fuzzy coalition in a game, it is necessary
to consider a specific partition by levels of this fuzzy set. One of these partitions was
defined in Tsurumi et al. (2001) using the Choquet integral. Recently, we introduced in
Jiménez-Losada et al. (2010) fuzzy graphs to analyze communication among players.
The idea of partition by levels was extended to fuzzy communication structures in
Jiménez-Losada et al. (2013), proposing different extensions of the Myerson value for
fuzzy situations. In one of them, the Choquet by graph or cg option, players look for
the biggest communication structure at the greatest level at every moment.

In Sect. 2, we introduce a background about cooperative games and communication
structures which allows the reader to follow the paper. Games with fuzzy communi-
cation structure and the cg-partition, the technical elements to introduce our value are
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studied in Sect. 3. Section 4 is dedicated to defining the cg-average value. In Sect. 5,
we obtain an axiomatization of the value and we study its stability. In Sect. 6, we
describe the algorithm AF value to compute the cg-average value and we study its
computational complexity. The conclusions are in the Sect. 7. We think that this study
can be a preliminary work to continue with these applications.

2 Preliminaries

2.1 Graphs

Given a finite set N , we denote by LN = {{i, j} : i, j ∈ N , i �= j} the set of unordered
pairs of different elements in N . A graph is a pair g = (N , L), where N is a finite set
of elements (named vertices or nodes) and L ⊆ LN is a subset of pairs (named edges
or links). We use i j to represent the pair {i, j}. Let g = (N , L) be a graph. A sequence
of k different vertices (i1, . . . , ik) is a path in g if il il+1 ∈ L for l = 1, . . . , k − 1.
The graph is connected if for all i, j ∈ N there is a path (i1, . . . , ik) in which i1 = i
and ik = j . We say that g is cycle-free or forest if for every two different connected
vertices i, j ∈ N , there is at most a unique path connecting i and j . If the graph is
connected and cycle-free, then it is named tree. A tree with n vertices has n−1 edges.
If an edge is removed from a tree, then the resulting graph is not connected. If a single
edge is added to a tree, then the resulting graph contains a single cycle. If S ⊂ N then
gS = (S, L(S)) with L(S) = {i j ∈ L : i, j ∈ S} is a new graph named the subgraph
induced by S. Set S is connected in g if the graph gS is connected. A connected com-
ponent of g is amaximal connected subgraph contained in it. A bridge is an edgewhose
elimination increases the number of components. For any set S, we name components
of S in g the subsets in the family S/g = {R ⊆ S : gR connected component of gS}.
Family S/g is a partition of S.

Let g = (N , L) be a tree and consider any vertex p of g, the selection of the vertex
p, called root, allows the introduction of the following relation of order between the
nodes of g : i ≤ j if, and only if, there exists a path from p to j which contains vertex
i . Vertex p is the first element in this situation. Tree g endowed with the order of vertex
p is often referred as a tree with root p, and is denoted gp. Consider a node i in a
rooted tree gp. Any vertex j on the unique path from p to i is called an ancestor of i . If
j is an ancestor of i , then i is a descendant of j . Every vertex is both an ancestor and a
descendant of itself. If j is an ancestor of i and i �= j , then j is aproper ancestor of i and
i is a proper descendant of j . The subtree rooted at i is the tree induced by descendant
of i, rooted at i . Fixed a rooted tree gp, the rooted subtree at i is denoted by gp

i . The
set of descendants of vertex i isCgp

(i), notice thatCgp
(p) = N . If the last edge in the

unique path from the root p to a node j is i j then i is the parent of j , and j is a child
of i . The set of children of the vertex j in the rooted subtree gp

j is denoted by Ngp
( j).

The root is the only vertex in gp with no parent. A node with no children is a leaf. The
number of children of a node i in a rooted tree is called the degree of i . The length of
the path from the root p to a node i is the depth of i in the tree. The height of a node in
a tree is the number of edges on the longest simple downward path from the node to a
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leaf, and the height of a tree is the height of its root. The height of a tree is also equal
to the largest depth of any node in the tree, for more details, see Cormen et al. (2001).

2.2 Cooperative games

A cooperative game with transferable utility, game for short, is a pair (N , v), where N
is a finite set of n players and v : 2N → R with v(∅) = 0 is named the characteristic
function. A subset S ∈ 2N , S �= ∅, is called a coalition. For any coalition S, v(S)

displays the worth of coalition S. In all the paper, we consider a set of players N =
{1, . . . , n} fixed and then we identify a game with a characteristic function over N .
We denote as GN the family of games over N .

A payoff vector of a game v ∈ GN is a vector x ∈ R
N giving a payoff xi to every

player i ∈ N . The core (Gillies 1953) of the game v is the set of stable and efficient
payoff vectors, namely

Core(v) = Big{x ∈ R
N : x(N ) = v(N ), x(S) ≥ v(S), ∀S

}
.

The core is defined supposing that the worth v(S) is understood as a profit. A value
for games over N is a mapping f : GN → R

N that assigns to every game a payoff
vector. A value f is efficient if

∑
i∈N

fi (v) = v(N ),

for every v ∈ GN . The best-known efficient value for games is the Shapley value
(Shapley 1988) defined for any v ∈ GN and i ∈ N as

φi (v) =
∑

T⊆N\{i}

t !(n − t − 1)!
n! [v(T ∪ i) − v(T )],

where t = |T |. The Shapley value is not always in the core. The reader can use
(Driessen 1988) for a deep knowledge about cooperative games.

2.3 Games and communication structures

Myerson (1977) introduced communication structures for games in 1977 to analyze
situations in a game depending on the feasible coalitions of the players. Given our fixed
set N of players, a communication structure over N is a graph g = (N , L), where the
nodes are the players and L ⊆ LN represents the feasible bilateral communications
among them. So,wewill use graph or communication structure alike fromhere on. The
family of communication structures over N is denoted as CSN . The communication
structure g is connected, non connected, cycle-free or tree if such is the graph.

A communication game over N is a pair (v, g) with v ∈ GN and g ∈ CSN . We
denote the collection of all the communication games as CGN and the class of all
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cycle-free communication games by CGN
cf . A communication value f on a subclass

of CGN assigns a unique payoff vector f (v, g) ∈ R
N to every (v, g) in the subclass.

Efficiency takes into account the components of the great coalition.
Efficient by components A communication value f is efficient by components if for
any (v, g) ∈ CGN it holds that

∑
i∈K

fi (v, g) = v(K ),

for every K ∈ N/g.
Let (v, g) ∈ CGN . Myerson (1977) proposed the restricted game vg ∈ GN , defined
by

vg(S) =
∑
R∈S/g

v(R),

for every coalition S, to introduce the information of the communication structure into
the characteristic function. An example of communication value is theMyerson value
(Myerson 1977) defined as μ(v, g) = φ(vg), for every (v, g) ∈ CGN . But this value
is not always in the core of the restricted game as it would be desirable.

Herings et al. (2008) introduced the average tree value, the AT value for short, as
a communication value only on the cycle-free communication structures over N . Let
(v, g) ∈ CGN

cf , suppose first that g = (N , L) is a tree. So, we get the following payoff
vector associated with player j [the hierarchical outcomes introduced in Demange
(2004)],

t ij (v, g) = v(Cgi ( j)) −
∑

u∈Ngi ( j)

v(Cgi (u)), ∀ j ∈ N .

The AT value is defined by

ATj (v, g) = 1

|N |
∑
i∈N

tij (v, g).

If g is cycle free but disconnected then we repeat the process inside each connected
component. This value is a component efficient communication value characterized
by component fairness.
Component fairness If f is communication value and (v, g) ∈ CGN

cf with g = (N , L),
then for all K ∈ N/g and i j ∈ L(K ) it holds

1

|Ki j
i |

∑

h∈Ki j
i

[ fh(v, g) − fh(v, g\i j)] = 1

|Ki j
j |

∑

h∈Ki j
j

[ fh(v, g) − fh(v, g\i j)] ,

Observe that as g is cycle free, then we obtain a partition of K in g\i j = (N , L\i j)
in two sets, Ki j

i containing i and Ki j
j containing j . Hence, component fairness says

that if a link is missing then the average of the payoff losses is the same for both new
connected components.
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Fig. 1 Fuzzy graph γ

3 Fuzzy communication structures

Let P be a finite set. A fuzzy set in P is a function τ : P → [0, 1]. The family of
fuzzy sets in P is denoted as [0, 1]P . Each subset Q ⊆ P is associated with the fuzzy
set eQ ∈ [0, 1]P with eQ (i) = 1 if i ∈ Q and eQ (i) = 0 otherwise. Specifically, we
denote e∅ = 0. The support of τ is supp (τ ) = {i ∈ P : τ (i) �= 0} and the image of τ

is the set im(τ )={λ ∈ R : ∃ i ∈ P with τ(i) = λ}. In this paper we use the operators
∧,∨ as the minimum and the maximum, respectively. Jiménez-Losada et al. (2010)
introduced games with fuzzy communication structures. We consider N our set of
players.

Definition 1 A fuzzy communication structure over N is γ = (τ, ρ) an undirected
fuzzy graph over N , namely a fuzzy set of vertices τ ∈ [0, 1]N and a fuzzy set of
links ρ ∈ [0, 1]LN satisfying ρ (i j) ≤ τ (i) ∧ τ ( j) for all i j ∈ LN . The set of fuzzy
communication structures over N is denoted by FCSN .

Hence, we will use fuzzy graph or fuzzy communication structure alike. We denote
as γ = 0 the null fuzzy graph where τ = 0 and ρ = 0. Let γ = (τ, ρ) ∈ FCSN be a
fuzzy communication structure. The set of vertices in γ is N (γ ) = supp (τ ) and the
set of links is L (γ ) = supp (ρ). We identify γ with a real matrix γ of size n × n. We
store the fuzzy set of vertices and the fuzzy set of links in a upper triangular matrix
γ , where the elements in the diagonal are the levels of the vertices and the rest are the
levels of the links.

γ =

⎡
⎢⎢⎢⎣

γ (11) γ (12) · · · γ (1n)

0 γ (22) · · · γ (2n)
...

...
. . .

...

0 0 0 γ (nn)

⎤
⎥⎥⎥⎦

For every link i j of fuzzy graph γ , we have γ (i j) = ρ(i j), otherwise γ (i j) = 0. If a
vertex is active γ (i i) = τ(i), otherwise γ (i i) = 0. The number of non-zero elements
of the matrix γ is |N (γ )| + |L(γ )| .
Example 1 The fuzzy tree γ and its matrix representation in Fig. 1.

γ =

⎡
⎢⎢⎣
0.4 0.3 0.2 0
0 0.6 0 0
0 0 0.8 0.4
0 0 0 0.5

⎤
⎥⎥⎦

All the communication structures over N are fuzzy communication structures. But
not only those, also the communication structures over S for all coalition S. We set
CSN0 = ⋃

{S⊆N :S �=∅} CSS . These graphs are named crisp communication structures.
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Fig. 2 Crisp tree gγ

Every graph g = (S, L) ∈ CSN0 is identified with the fuzzy graph γ = (τ, ρ) ∈
FCSN , where τ = eS and ρ = eL .

In a fuzzy communication structure γ = (τ, ρ), the number τ (i) is interpreted as
the real level of involvement of player i ∈ N in a game situation and the number ρ (i j)
represents the maximal level to which the link i j can be used.

The crisp version of γ is the graph gγ = (N (γ ) , L (γ )) . The minimal level in γ

is

∧γ =
⎛
⎝ ∧

i∈N (γ )

τ (i)

⎞
⎠ ∧

⎛
⎝ ∧

i j∈L(γ )

ρ (i j)

⎞
⎠ .

Another fuzzy graph γ ′ = (
τ ′, ρ′) over N is a subgraph of γ iff τ ′ ≤ τ and ρ′ ≤ ρ.

We use in that case γ ′ ≤ γ . We defined three binary operations for fuzzy graphs in
Jiménez-Losada et al. (2010). Let γ = (τ, ρ) , γ ′ = (

τ ′, ρ′) ∈ FCSN be two fuzzy
graphs over N : (1) if τ (i) + τ ′ (i) ≤ 1 for all i ∈ N then γ + γ ′ = (

τ + τ ′, ρ + ρ′),
(2) if γ ′ ≤ γ and ρ (i j) − ρ′ (i j) ≤ [

τ (i) − τ ′ (i)
]∧ [τ ( j) − τ ′ ( j)

]
for all i, j ∈ N

then γ − γ ′ = (
τ − τ ′, ρ − ρ′), and (3) if t ∈ [0, 1] then tγ = (tτ, tρ). The reader

can see that the subtraction of fuzzy graphs is not always feasible as the opposite
operation of the sum. The restriction of γ to a coalition S is γS = (τS, ρS) ≤ γ

verifying τS(i) = τ(i) ∧ eSi for each player i and ρS(i j) = ρ(i j) ∧ eL(S)(i j) for any
link i j .

Alsowe can represent the crisp graph gγ corresponding to the graph γ with amatrix
gγ such that gγ (i j) = �γ (i j)� for i, j ∈ N . We use the notation

N/γ = N (γ )/gγ

Example 2 The crisp tree gγ , and its matrix representation, of the fuzzy graph in
Example 1 (Fig. 2).

gγ =

⎡
⎢⎢⎣
1 1 1 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

Definition 2 A fuzzy communication game over N is (v, γ ), where v ∈ GN and
γ ∈ FCSN . The family of fuzzy communication games is FCGN and FCGN

cf denotes
those with cycle-free crisp version of the fuzzy communication structure.

Definition 3 A fuzzy communication value F assigns to each fuzzy communication
game (v, γ ) ∈ FCGN a payoff vector F(v, γ ) ∈ R

N .
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Aubin (1981) introduced partitions by levels to determine the worth of a fuzzy
coalition in a given cooperative game. Jiménez-Losada et al., following Aubin and
the Myerson model (Myerson 1977), defined in Jiménez-Losada et al. (2013) a way
to get the total profit in a fuzzy communication structure for a game. They introduced
the concept of partition by levels of a fuzzy graph as a finite sequence (gk, sk)mk=1 of
pairs with gk ∈ CSN0 and sk ∈ (0, 1] which discards the information of the fuzzy
communication structure, in the sense that skgk ≤ γ −∑k−1

l=1 sl gl for all k > 1 and
γ −∑m

k=1 skgk = 0.
In this paper we focus on one of these partitions based in the Choquet integral

(Choquet 1953). We consider that the object of the behavior of the players is the
whole fuzzy graph, the set of vertices and links, as in the first model. So, the Choquet
behavior says: players look first for the biggest crisp graph in the fuzzy communication
structure and second for the uppest level to use all the elements of this graph.We can
see again that there is only one partition representing this particular behavior of the
players. Let γ = (τ, ρ) ∈ FCSN be a fuzzy communication structure. We construct
this new partition with the following algorithm, named cg-partition.
Algorithm cg-partition(γ )

k ← 0, cg ← ∅
while γ �= 0 do

k ← k + 1
sk ← ∧γ

gk ← gγ

cg ← cg ∪ {(gk, sk)}
γ ← γ − skgk

end
The partition by levels is cg.

Definition 4 Let γ ∈ FCSN . The Choquet by graphs partition by levels of γ is the
family cg(γ ) = (gk, sk)mk=1 obtained by the cg-partition algorithm, where gk ∈ CSN0
and sk ∈ [0, 1] for all k. It is denoted as cg (γ ) .

The cg-partition means that players try to get first the biggest graph and second the
top level to connect it. The authors in Jiménez-Losada et al. (2013) defined a fuzzy
version of the Myerson value for games using the cg-partition which is described by
the Choquet formula

M(v, γ ) =
m∑

k=1

skμ(v, gk),

where cg(γ ) = (gk, sk)mk=1. Observe that the set of vertices of each gk is not always
N , so if we denoted as Nk the vertices of gk then μ(v, gk) consists of applying the
Myerson value on CSNk and later extending the vector by zeros in R

N .
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Fig. 3 Steps in the fuzzy graph
of the example

4 Motivation

Let us consider a situation in which a firm must supply energy to a set of four nodes
each day. The nodes are able not only to accumulate energy but also to transmit energy
to other nodes using the channels inside an existing network among them.We suppose
known a maximal quantity of energy q available for each day. Let N = {1, 2, 3, 4}
be the set of the four nodes. For each subset of nodes S we denote as c(S) the fee of
transmission of the q units of energy to the network formed by the nodes in S. If the
network is not connected then the cost must be the sum of the costs of its components.
The problem is that each day neither all of the nodes need the same quantity of energy
nor the channels are capable of conducing the same amount of energy. The conditions
of the problem can be represented by a fuzzy communication structure for each day.
To illustrate this idea let us suppose for a certain day the fuzzy graph γ = (τ, ρ)

over N in Fig. 1 with ρ (1, 3) = 0.2, ρ (1, 2) = 0.3, ρ (3, 4) = 0.4 τ (1) = 0.4,
τ (2) = 0.6, τ (3) = 0.8, τ (4) = 0.5 and otherwise ρ(i, j) = 0. The vertices
represent the set of nodes (receivers, transmitters and accumulators of electricity) and
the edges are transmitter of this energy. For instance, c({1, 2, 3}) represents the saving
of the following action: node 2 receives three units of energy, one is for it and the other
two are sent by link 12 towards 1, which catches one and transmits another through
edge 13 towards node 3, that receives which is left. It is evident that players must be
connected.
The number over each node is the proportion of the q units of energy that this node
needs that day, and the number over every link is the transfer proportion of the q
units of energy. Hence we have a fuzzy communication game. To maximize its saving,
the firm tries to use the minimal number of sources in the network. In fact when
through a channel has passed the maximum amount of energy allowed, it is no longer
available. This fact makes that the different nodes can stop being connected to the
firm and it is obliged to introduce energy through several other nodes at the same
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time. We ask ourselves about the average maintenance saving of any node under these
circumstances. If we look at the graph in Fig. 3, after transmitting 0.2 units of energy,
edge 13 no longer exists. In order to be able to continue supplying energy, the firm
must use a path which does not contain it, see Fig. 3. Nevertheless, there is no way
that already communicates all nodes, so the firm must send the energy directly to a
pair of nodes that are not connected. The next sending is 0.1 units worth. However,
the saving can not be calculated by means of game v, so we assign to this situation a
saving of 0.1v({3, 4}) + 0.1v({1, 2}). Continuing with this action, the firm sees that
nodes 1 and 2 are now isolated while 3 and 4 remain connected, so it must influence
over three of the four nodes to continue providing energy to the nodes. Here the saving
would be 0.1v({1}) + 0.1v({2}) + 0.1v({3, 4}). From now on, node 1 is supplied and
passes individually to the other nodes the saving 0.2v({2}), 0.1c({4}) and 0.4v({3}).
We suppose as saving game the characteristic function v(S) = |S|2 for all S ⊆ N .
A payoff vector of the fuzzy communication game constructed from the saving game
allows us to obtain an allocation of the cost of the real use quantity among the nodes
for each day. The fact that we take different nodes as sources and their rooted trees
leads us to the philosophy of the AT value but adapted to fuzzy communication.

5 The cg-average tree value

We have to define a fuzzy version of the average tree value for cycle-free fuzzy
communication games in the cg-way, we will named cg-average fuzzy value.

Definition 5 Let (v, γ ) ∈ FCGN . For each coalition S we denote cg(γS) =
(gk, sk)mk=1. The cg-restricted game vγ ∈ GN is defined as

vγ (S) =
m∑

k=1

skv
gk (S).

The cg-restricted game determines theworth of a coalition as theMyerson restricted
game in a crisp communication structure but using the cg-partition of the fuzzy com-
munication structure. Suppose S ⊆ N with cg(γS) = (gk, sk)mk=1. Players in coalition
S look for the biggest communication structure among them g1 at level s1 and they
obtain the worth vg1(S). They have γ − s1g1, following the cg-algorithm, and they
repeat the idea.

We follow now the process in Herings et al. (2008). A hierarchical fuzzy outcome
associated with each player is defined on the class of fuzzy communication games
such that the crisp version of the fuzzy graph is cycle free. If γ ∈ FCSN

cf , then for each
player p ∈ N , (gγ )p is the crisp rooted tree at p in the component of γ containing
p, we denote (gγ )p as γ p. The set of descendants of vertex j on the rooted subtree

(gγ )
p
j is denoted asC

γ p

( j), and the set of children of the vertex j on the rooted subtree

(gγ )
p
j is denoted as N

γ p

( j).
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Table 1 Matrices of the fuzzy graphs γk

⎡
⎢⎢⎣
0.4 0.3 0.2 0
0 0.6 0 0
0 0 0.8 0.4
0 0 0 0.5

⎤
⎥⎥⎦

s1 = 0.2

⎡
⎢⎢⎣
0.2 0.1 0 0
0 0.4 0 0
0 0 0.6 0.2
0 0 0 0.3

⎤
⎥⎥⎦

s2 = 0.1

⎡
⎢⎢⎣
0.1 0 0 0
0 0.3 0 0
0 0 0.5 0.1
0 0 0 0.2

⎤
⎥⎥⎦

s3 = 0.1

⎡
⎢⎢⎣
0 0 0 0
0 0.2 0 0
0 0 0.4 0
0 0 0 0.1

⎤
⎥⎥⎦

s4 = 0.1

⎡
⎢⎢⎣
0 0 0 0
0 0.1 0 0
0 0 0.3 0
0 0 0 0

⎤
⎥⎥⎦

s5 = 0.1

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0.2 0
0 0 0 0

⎤
⎥⎥⎦

s6 = 0.2

Definition 6 Let (v, γ ) ∈ FCGN
cf . For each player i ∈ N (γ ), the component j of the

payoff vector associated with player i (t i -payoff vector) is

t ij (v, γ ) = vγ (C
γ i

( j)) −
∑

u∈Nγ i
( j)

vγ (C
γ i

(u)),

for all j ∈ N (γ ). Notice that C
γ i

(i) coincides with the component of gγ containing
i .

Definition 7 Let (v, γ ) ∈ FCGN
cf , the cg-average tree value for a player j is defined

by

AFj (v, γ ) = 1∣∣K j
∣∣
∑
i∈K j

t ij (v, γ ),

where K j ∈ N/γ and j ∈ K j .

Example 3 Let (v, γ ) ∈ FCGN
cf , v(S) = |S|2 for all S ⊆ N , and the fuzzy graph γ of

Fig. 1. To compute the characteristic function of the restricted game vγ , it is necessary
to obtain the cg-partition (gk, sk)mk=1, and the characteristic function of the restricted
games (v, gk), k ∈ {1, . . . ,m}.
Table 1 includes the matrices corresponding to the fuzzy graphs γk = γ − skgk in
each step pf the cg-partition (gk, sk)mk=1, and Table 2 the crisp graphs gk and levels sk .
To compute number t ij (v, γ ), we consider γ i . For example, we have γ 1 in Fig. 4.
Table 3 includes the values of the restricted games vgk and the restricted game vγ

corresponding to the cg-partition cg(γ ) = (gk, sk)mk=1.

Particularly to obtain t1j (v, γ ) for j ∈ N (γ ), first we calculate Cγ 1
( j) and N γ 1

( j)
(Table 4).
Replacing in the expression

t1j (v, γ ) = vγ (Cγ 1
( j)) −

∑

u∈Nγ 1
( j)

vγ (Cγ 1
(u)),
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Table 2 The cg-partition of γ

⎡
⎢⎢⎣
1 1 1 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

s1 = 0.2

⎡
⎢⎢⎣
1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

s2 = 0.1

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

s3 = 0.1
⎡
⎢⎢⎣
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

s4 = 0.1

⎡
⎢⎢⎣
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦

s5 = 0.1

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦

s6 = 0.2

Matrices of the crisp graphs gk and levels sk

Fig. 4 Rooted tree γ 1

we have the t1-payoff:

t11 (v, γ ) = vγ ({1, 2, 3, 4}) − vγ ({2}) − vγ ({3, 4}) = 2.6

t12 (v, γ ) = vγ ({2}) = 0.6

t23 (v, γ ) = vγ ({3, 4}) − vγ ({4}) = 1.6

t14 (v, γ ) = vγ ({4}) = 0.5.

Finally, t1(v, γ ) = (2.6, 0.6, 1.6, 0.5). Notice that this vector is efficient because the
sum of its coordinates is vγ (N ) (in this graph, we have only one component). The
other vectors can be computed in the same way changing the hierarchy. Following the
same process, for the rest of the vertices, we obtain the t i -payoffs

t1(v, γ ) = (2.6, 0.6, 1.6, 0.5) t2(v, γ ) = (1.2, 2, 1.6, 0.5)
t3(v, γ ) = (1, 0.6, 3.2, 0.5) t4(v, γ ) = (1, 0.6, 1.6, 2.1)
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Table 3 Determining the restricted game vγ

S s1v
g1 s2v

g2 s3v
g3 s4v

g4 s5v
g5 s6v

g6 vγ

∅ 0. 0. 0. 0. 0. 0. 0.

{1} 0.2 0.1 0.1 0. 0. 0. 0.4

{2} 0.2 0.1 0.1 0.1 0.1 0. 0.6

{3} 0.2 0.1 0.1 0.1 0.1 0.2 0.8

{4} 0.2 0.1 0.1 0.1 0. 0. 0.5

{1, 2} 0.8 0.4 0.2 0.1 0.1 0. 1.6

{1, 3} 0.8 0.2 0.2 0.1 0.1 0.2 1.6

{1, 4} 0.4 0.2 0.2 0.1 0. 0. 0.9

{2, 3} 0.4 0.2 0.2 0.2 0.2 0.2 1.4

{2, 4} 0.4 0.2 0.2 0.2 0.1 0. 1.1

{3, 4} 0.8 0.4 0.4 0.2 0.1 0.2 2.1

{1, 2, 3} 1.8 0.5 0.3 0.2 0.2 0.2 3.2

{1, 2, 4} 1. 0.5 0.3 0.2 0.1 0. 2.1

{1, 3, 4} 1.8 0.5 0.5 0.2 0.1 0.2 3.3

{2, 3, 4} 1. 0.5 0.5 0.3 0.2 0.2 2.7

{1, 2, 3, 4} 3.2 0.8 0.6 0.3 0.2 0.2 5.3

Table 4 Sets Cγ 1
( j) and

Nγ 1
( j)

j 1 2 3 4

Cγ 1
( j) {1, 2, 3, 4} {2} {3, 4} {4}

Nγ 1
( j) {2, 3} ∅ {4} ∅

In this example, γ is connected. Also N (γ ) = N .

AF(v, γ ) = 1

|N |
∑
i∈N

ti (v, γ ) = 1

4
(t1(v, γ ) + t2(v, γ ) + t3(v, γ ) + t4(v, γ )

= (1.45, 0.95, 2.0, 0.9).

Remark 1 Following Jiménez-Losada et al. (2013) a natural formula for the cg-average
tree value would be a Choquet expression as

F(v, γ ) =
m∑

k=1

sk AT (v, gk),

for all (v, γ ) ∈ FCGN
cf where cg(γ ) = (gk, sk)mk=1. The average tree value AT is

evaluated in the game restricted to the vertices of each gk and then extending by
zeros. But the next example shows that this formula is not valid for our value. In
general F(v, γ ) �= AF(v, γ ). Since Example 3, the average tree values for graphs gk
corresponding to cg(γ ) are:

123



The cg-average tree value 469

AT (v, g1) = (5.5, 2.5, 5.5, 2.5) AT (v, g2) = (2, 2, 2, 2)
AT (v, g3) = (1, 1, 2, 2) AT (v, g4) = (0, 1, 1, 1)
AT (v, g5) = (0, 1, 1, 0) AT (v, g6) = (0, 0, 1, 0)

F(v, γ ) = (1.4, 1, 1.9, 1) �= (1.45, 0.95, 2, 0.9) = AF(v, γ ).

6 Axiomatization of the cg-average tree value

Now, we look for an axiomatization of the cg-average tree value following Herings
et al. (2008). The set of cycle-free fuzzy communication structures over N is denoted
by FCSN

cf .Consider the following axioms for a given fuzzy communication value F
defined over FCGN

cf .
We are interesting in obtaining an allocation of the saving for each structure, namely

weneed an efficient payoff vector for theworth of the great coalition in the cg-restricted
game.
Fuzzy efficiency by components For all (v, γ ) ∈ FCGN

cf , if K ∈ N/γ then by compo-
nents

∑
i∈K

Fi (v, γ ) = vγ (K ).

The subgraph γ t
−i j = (τ t−i j , ρ

t
−i j ) represents the fuzzy graph γ modified by reduc-

ing to t ∈ [0, ρ (i j)] the capacity of i j ∈ L (γ ), that is, τ t−i j = τ and

ρt−i j (i
′ j ′) =

{
ρ(i ′ j ′), if i ′ j ′ �= i j
t, if i ′ j ′ = i j .

Fuzzy component fairness For any link i j ∈ γ with ρ(i j) > 0 and t ∈ [0, ρ(i j)] it
holds that

1

|Ki j
i |

∑

h∈Ki j
i

[
Fh (v, γ ) − Fh

(
v, γ t

−i j

)]
= 1

|Ki j
j |

∑

r∈Ki j
j

[
Fr (v, γ ) − Fr (v, γ t

−i j )
]
.

This axiom means that when we reduce to t the level for a link i j ∈ γ , the resulting
average change for payoff of the players in Ki j

i is equal to the average change for

payoff to the players in Ki j
j . Notice that when we reduce to 0 < t < ρ(i j), the axiom

is satisfied trivially to the playes in Ki j
j .

Lemma 1 Let (v, γ ) ∈ FCGN
cf , with γ connected. For any players i, j ∈ N the ti -

payoff vector satisfies

∑

h∈Cγ i
( j)

t ih(v, γ ) = vγ (C
γ i

( j)).
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Proof We prove the result by induction in the height H of vertex j in the rooted tree
γ i . If H = 0, vertex j is a leaf, then the result is obvious by definition. Suppose that
the result is true for any vertex with height H − 1, H > 1, and we prove the result for
a vertex j with height H . We have that

∑

h∈Cγ i
( j)

t ih(v, γ ) = t ij (v, γ ) +
∑

u∈Nγ i ( j)

∑

h∈Cγ i
(u)

t ih(v, γ )

= t ij (v, γ ) +
∑

u∈Nγ i
( j)

vγ (C
γ i

(u)) = vγ (C
γ i

( j))

The t i -payoff of player j is equal to the contribution of player j when he joins his

descendants in the subtree (gγ )ij . When the setC
γ i

( j) is connected, player j connects
all the subsets of descendants of his children into one connected set and receives his
marginal contribution to it. ��

Theorem 1 The cg-average tree value satisfies fuzzy efficiency by components and
fuzzy components fairness.

Proof Let v ∈ GN . We take (v, γ ) ∈ FCGN
cf with cg-partition cg(γ ) = (gk, sk)mk=1.

Let K ∈ N/γ. As each player i ∈ K is top player in the tree γ i , the rooted tree

associates with i, then Cγ (i) = K . Applying the above lemma, as C
γ i

(i) = K , we
obtain

∑
h∈K

AFh(v, γ ) = 1

|K |
∑
h∈K

∑
i∈K

tih(v, γ ) = 1

|K |
∑
i∈K

∑
h∈K

tih(v, γ )

= 1

|K |
∑
i∈K

∑

h∈Cγ i (i)

t ih(v, γ ) = 1

|K |
∑
i∈K

vγ (C
γ i

(h)) = vγ (K ).

Now, we check fuzzy component fairness for t = ρ(i j). Players i, j are in different
connected components in γ

ρ(i j)
−i j , noted, respectively, by Ki j

i and Ki j
j . Fuzzy efficiency

by components implies that

∑

h∈Ki j
i

AFh(v, γ t−i j ) = vγ (Ki j
i ) and

∑

h∈Ki j
j

AFh(v, γ t−i j ) = vγ (Ki j
j ). (1)

Observe that for each h′ ∈ Ki j
j we have Cγ h′

(i) = Ki j
j , so by Lemma 1 it holds in γ

∑

h∈Ki j
j

t h
′

h (v, γ ) = vγ (Ki j
j ). (2)
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On the other hand, for h′ ∈ Ki j
i we get Cγ h′

( j) = Ki j
j and Cγ h′

(h′) = K . Hence
Lemma 1 again implies

∑

h∈Ki j
i

t h
′

h (v, γ ) =
∑
h∈K

th
′

h (v, γ ) −
∑

h∈Ki j
j

t h
′

h (v, γ )

= vγ (K ) − vγ (Ki j
j ). (3)

Next we get using (2) and (3),

∑

h∈Ki j
i

AFh(v, γ ) =
∑

h∈Ki j
i

1

|K |
∑
h′∈K

th
′

h (v, γ )

=
∑

h∈Ki j
i

1

|K |

⎡
⎢⎣
∑

h′∈Ki j
i

t h
′

h (v, γ ) +
∑

h′∈Ki j
j

t h
′

h (v, γ )

⎤
⎥⎦

=
|Ki j

i |
[
vγ (K ) − vγ (Ki j

j )
]

+ |Ki j
j |vγ (Ki j

i )

|K | .

Finally since (1),

∑

h∈Ki j
i

AFh(v, γ ) = vγ (Ki j
i ) + |Ki j

i |
|K |

[
vγ (K ) − vγ (Ki j

j ) − vγ (Ki j
i )
]

=
∑

h∈Ki j
i

AFh(v, γ t
−i j ) + |Ki j

i |
|K |

[
vγ (K ) − vγ (Ki j

j ) − vγ (Ki j
i )
]
.

So,

∑

h∈Ki j
i

[
AFh(v, γ ) − AFh(v, γ t

−i j )
]

= |Ki j
i |

|K |
[
vγ (K ) − vγ (Ki j

j ) − vγ (Ki j
i )
]
.

If we swap i and j in the above reasoning we obtain the result,

∑

h∈Ki j
j

[
AFh(v, γ ) − AFh(v, γ t

−i j )
]

= |Ki j
j |

|K |
[
vγ (K ) − vγ (Ki j

j ) − vγ (Ki j
i )
]
.

If t < ρ(i j) then Ki j
i = K j

i j = K , therefore the axiom is true. ��
Theorem 2 says that our fuzzy communication value is the only one satisfying these

two axioms. We follow the proof of the crisp case in Herings et al. (2008).
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Theorem 2 The cg-average tree value is the only cycle-free fuzzy communication value
satisfying fuzzy efficiency by components and fuzzy component fairness.

Proof Consider F a fuzzy communication value satisfying these axioms. Our proof
will use the same reasoning in each connected component K of γ . As γK is connected
we have |K | − 1 links in L(γK ). Fuzzy efficiency by components implies for each
link i j ∈ L(γ ) two equations as in (1),

∑

h∈Ki j
i

Fh(v, γ
ρ(i j)
−i j ) = vγ (Ki j

i ) and
∑

h∈Ki j
j

Fh(v, γ
ρ(i j)
−i j ) = vγ (Ki j

j ),

where Ki j
i , Ki j

j are again the connected components containing i, j in γ
ρ(i j)
−i j . From

these two equations and using fuzzy component fairness, we obtain this other one,

|Ki j
j |

∑

h∈Ki j
i

Fh(v, γ ) − |Ki j
i |

∑

h∈Ki j
j

Fh(v, γ )

= |Ki j
j |

∑

h∈Ki j
i

Fh(v, γ
ρ(i j)
−i j ) − |Ki j

i |
∑

h∈Ki j
j

Fh(v, γ
ρ(i j)
−i j )

= |Ki j
j |vγ (Ki j

i ) − |Ki j
i |vγ (Ki j

j ) = Ri j .

Adding efficiency by components for (v, γ ) and component K we get a linear equation
system with size |K | × |K |,

⎧⎪⎨
⎪⎩

|Ki j
j | ∑

h∈Ki j
i

Fh(v, γ ) − |Ki j
i | ∑

h∈Ki j
j

Fh(v, γ ) = Ri j ∀ i j ∈ L(γK )

∑
h∈K

Fh(v, γ ) = vγ (K ).

This system is determinate compatible, as we see analyzing its matrix of coefficients.
Take any vertex p ∈ K and suppose any total order <p of the players in K such

that i /∈ Cγ
p
K ( j) if i <p j . We sort the columns of the matrix by this order. Next we

sort the rows of the matrix. We put the last equation in the first row of the matrix,
denote r . Each link i j is taken with i <p j and its equation is put in the position of
j in the order <p, we denote this row as r( j). Observe that the elements in r( j) are

{|Ki j
j |, . . . , |Ki j

j |,−|Ki j
i |} till column j since the chosen order. We do r( j) − |Ki j

j |r
for all j �= p, transforming our matrix in an upper superior matriz with main diagonal
{1,−|K |, . . . ,−|K |}. ��

Now we show a property of stability of the cg-average tree value and as a conse-
quence give an alternative axiomatization based on this property. First we recall the
notion of Core for the game vγ under the communication structure γ .

Core(v, γ ) = {x ∈ R
N : vγ (S) � x(S) ∀S, vγ (N ) = x(N )},
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where x(S) = ∑
i∈S xi . Let π be a permutation of N , the corresponding marginal

vector mπ (v, γ ) ∈ R
N assigns to every player i a payoff mπ

i (v, γ ) = vγ (π i ∪ i) −
vγ (π i ), whereπ i is the set of players preceding i , the lowers of i , in the permutationπ .
Notice that for a hierarchical cycle-free fuzzy communication structure, with i as top
player, and taking (π, i) as the order determined by the hierarchy, we have t ij (v

γ , γ ) =
m(π,i)

j (v, γ ). For example, the permutation associated to the order 4 < 1 < 3 < 2 is
π = (2314). For j = 3,

mπ
3 (v, γ ) = vγ ({1, 4} ∪ {3}) − vγ ({1, 4}).

Notice that this component is the same as the third component of t2(v, γ ).

Theorem 3 The cg-average tree value is the only cycle-free fuzzy communication value
satisfying stability and fuzzy component fairness.

Proof A game v is superadditive if for all S, T ∈ 2N with, S ∩ T = ∅, v(S ∪ T ) �
v(S) + v(T ). In Demange (2004), the authors show that the hierarchical outcomes t i

are in the core of superadditive games. Jiménez-Losada et al. (2010) show that the
game vγ is superadditive for any game v. The core is convex and contains the marginal
vectorsm(π,i)

j (v, γ ). On the other hand t ij (v, γ ) = m(π,i)
j (v, γ ), wherem(π,i)

j (v, γ ) is

the marginal vector m(π,i)
j (v, γ ) when the top player is i. This implies that t i (v, γ ) ∈

Core(v, γ ) and as AF(v, γ ) is the average of these vectors, we have that AF(v, γ ) is
also on the Core(v, γ ).

Obviously, as all the payoff vectors in Core(v, γ ) satisfy efficiency, then since the
above theorem there is only one value satisfying the axioms in the statement. ��

7 Computing the cg-average tree value

In this section, we describe the algorithm AF value to compute the cg-average tree
value, and we study the complexity of it. Let B be an algorithm. The time complexity
of B is measured by a function f : Z+ → Z+ where f (n) is the maximal number of
iterations in a universal Turing machine (before halting) in relation to the size of the
input n. Let f , g : Z+ → Z+. FollowingOΩΘ-notation, proposed by Knuth (1976),
we use f = O (g) if there are c, n0 ∈ Z+ such that f (n) ≤ cg (n) for all n ≥ n0. In
that case, we say f is of the order of g.

Let (v, γ ) ∈ FCGN
cf . We explain the process to compute the cg-average tree value

with a tree, namely gγ is a tree. We describe the algorithm AF value in six steps.
Step 1. Introduction of fuzzy graph γ and game (N , v) .
Step 2. The Choquet by graphs partition, with γ = (τ, ρ), where gγ is a tree.

cg(γ ) = (gk, sk)
m
k=1

Step 3. The characteristic function of the restricted games vgk , k = 1, . . . ,m.

vgk (S) =
∑

T∈S/gk

v(T )
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Step 4. The characteristic function of the cg-restricted fuzzy game vγ .

vγ (S) =
m∑

k=1

skv
gk (S)

Step 5. The number t ij (v, γ ) for every rooted subtree gij , with i, j = 1, . . . , n.

t ij (v, γ ) = vγ (C
γ i

( j)) −
∑

u∈Nγ i
( j)

vγ (C
γ i

(u))

Step 6. The cg-average tree value with the formula,

AFj (v, γ ) = 1

|N |
∑
i∈N

tij (v, γ ) for j ∈ {1, . . . , n}

cg-partition algorithm
We construct the Choquet by graphs partition cg(γ ) = (gk, sk)mk=1 with the cg-

partition algorithm .We use the matrix representation of γ, to obtain the fuzzy graphs
γk and the crisp graphs gk . The time complexity of cg-partition algorithm is O (

m2
)

(Gallego et al. 2014), where m = |N (γ )| + |L(γ )|. For a fuzzy tree, |N (γ )| ≤
n, |L(γ )| ≤ n − 1, hence is required a time O (

n2
)
.

Restricted game algorithm
To calculate the cg-average tree value, for (v, γ ) ∈ FCGN

cf , also it is necessary to
determine first the characteristic function of the cg-restricted game vγ as

vγ (S) =
m∑

k=1

skv
gk (S)

We use the algorithm restricted game to compute the characteristic function of
the restricted games (v, gk) ∈ CGN , k = 1, . . . ,m. The computational cost of this
algorithm is very high, since to compute the games vgk it is necessary, for every
coalition, previously to obtain the set of all the connected components in the induced
subgraph by coalition S in the graph gk .

vgk (S) =
∑

R∈S/gk

v(R)

Let (v, g) ∈ CGN be, to compute the characteristic function vg , we use the algo-
rithm restricted game.
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Algorithm restricted game (v, g)

connected ← Select (S connected in g)
(connected coalitions restricted game (v, g))

F ← connected ∪ ∅

S/g ← component (S,F)

(connected component (v, g))

vg(S) ← ∑
R ∈ S/gv(R)

(restricted game (v, g))

end
We need to calculate the set F g = {S ∈ 2N : gS is connected}and S/g,, where

g is tree. To calculate the feasible coalitions in F g , we can determine if a graph is
connected or not by a depth first search (DFS) (Cormen et al. 2001) we needs a time
O(|N (g)| + |L(g)|) = O(n + n − 1) = O(n).

The worst case is a star tree (a tree with a central node, n − 1 children, and height
1), in this case |F g| = n + 2n−1, if S ∈ F g S/g = {S},if S /∈ F g it is necessary
to do |S|! comparisons to determine the set S/g, the are

(n−1
i

)
coalitions of size i,;

therefore, it is necessary

n−1∑
i=2

(
n − 1

i

)
i ! = −n + eΓ (n, 1) < eΓ (n)

= e(n − 1)! ∈ O((n − 1)!).

Hence, we can to compute vg in a time

O(max(n, 2n−1, (n − 1)!)) = O((n − 1)!).

We suppose known games vgk (S), k = 1, . . . ,m, as m ≤ |im(τ ) ∪ im(ρ)| ≤
n+n−1 = 2n−1, we can compute vγ in a timeO(max(n, (n−1)!) = O((n−1)!).
tvalue algorithm

To compute the numbers t ij (v, γ ), for all i, j ∈ N (γ ), we will use the algorithm

tvalue based on the (DFS) algorithm. Fixed the rooted tree gγ i
,we locate N

γ i

(i)
and store them in a list, and then delete the node i . Next, we consider the directed

routed subtrees gγ i

j for all j ∈ N
γ i

(i) corresponding to the stored nodes and repeat
this process in a lexicographic order. We will continue the process until we visit all
the nodes of the tree gγ i

, simultaneously we are storing the visited nodes in a list,

following an order in which they have been considered as roots of the sub-trees gγ i

j
in this process; in another list we store the unvisited nodes, before the beginning of

each step. We obtain, for each step, {Cγ i

(u) : u ∈ N
γ i

( j)}. Finally, we calculate the
numbers t ij (v, γ ) and store them in a table t(v, γ )n×n .
AF-value algorithm

To compute the cg-average tree value, we use the algorithm AF value.
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Algorithm AF-value (v, γ )

cg ←cg-partition(γ )

(cg-partition cg(γ ) = (sk, gk)k=m
k=1 )

for k=1 to m

vgk ←restricted game (v, g)

vγ (S) ←
m∑

k=1
skvgk (S)

(cg-restricted game (v, γ ))

end

t(v, γ ) ← tvalues(γ )

for i ∈ |N (γ )|
AF(v, γ ) ← 1

|N |
∑
i∈N

ti (v, γ )

(cg-average tree value (v, γ ))

end
Knowing t(v, γ ) we can compute AF(v, γ ) in linear time O(n).

Therefore, considering the six steps,the computational complexity of AF-value
algorithm is

O(max(n, 2n, (n − 1)!,m, n, n) = O((n − 1)!).
Westudied in Jiménez-Losada et al. (2013) the complexity of the cg-Myersonvalue, for
a tree isO(n3n). Thus the calculus of the cg-average tree value has greater complexity
than the Myerson value (from 12 players). This issue occurs because we cannot use
a Choquet formula (see Remark 1) as in the cg-Myerson value (see formula below
Definition 4).

Example 4 Let (v, γ ) ∈ FCGN
cf be, v(S) = |S|2 for all S ⊆ N , and the fuzzy graph γ

of Fig. 5, the cg-average tree value, obtained by the AF-value algorithm is in Table 5.

8 Conclusions

In games with cycle-free communication structures the average tree value is an inter-
esting solution for two reasons, it is an easy solution for calculating and also it is always
stable. In this article we have developed a new value, the cg-average tree value for
games with fuzzy cycle-free communication situations with similar good conditions.
We have provided with an axiomatization and a property of stability. Also, we have
studied the computational complexity of the AF-value algorithm and illustrated the
calculation process. We also introduce an application of the value where this solution
is reasonable. The stability in cooperative games is given by the concept of core and
this one is defined by the idea of domination. Hence, a future work is to extend this
mechanism to interval-valued fuzzy graphs following Debnath (2013).

123



The cg-average tree value 477

Fig. 5 Fuzzy graph γ

Table 5 The cg-average tree value and the cg-Myerson value

Player AF(v, γ ) M(v, γ ) Player AF(v, γ ) M(v, γ )

1 37.21670 21.57860 2 2.48333 6.10833

3 29.16670 18.91190 4 2.31667 5.72500

5 12.09170 14.53690 6 5.925 8.92857

7 2.17500 4.75357 8 2.17500 5.35000

9 2.17500 5.35000 10 13.22500 12.47860

11 2.17500 4.78929 12 2.17500 4.78929
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