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Abstract In this Chapter, we touch upon the wide topic of discrete breather (DB)
formation with a special emphasis on the prototypical system of interest, namely
the φ4 model. We start by introducing the model and discussing some of the ap-
plication areas/motivational aspects of exploring time periodic, spatially localized
structures, such as the DBs. Our main emphasis is on the existence, and especially
on the stability features of such solutions. We explore their spectral stability numeri-
cally, as well as in special limits (such as the vicinity of the so-called anti-continuum
limit of vanishing coupling) analytically. We also provide and explore a simple, yet
powerful stability criterion involving the sign of the derivative of the energy vs.
frequency dependence of such solutions. We then turn our attention to nonlinear
stability, bringing forth the importance of a topological notion, namely the Krein
signature. Furthermore, we briefly touch upon linearly and nonlinearly unstable dy-
namics of such states. Some special aspects/extensions of such structures are only
touched upon, including moving breathers and dissipative variations of the model
and some possibilities for future work are highlighted. While this Chapter by no
means aspires to be comprehensive, we hope that it provides some recent develop-
ments (a large fraction of which is not included in time-honored DB reviews) and
associated future possibilities.
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1 A brief description of discrete breathers: definition, historical
perspective and applications

Dynamics of localized excitations is, undoubtedly, one of the most important topics
within the realm of nonlinear science. In discrete systems, the localized excitations
that can be argued to be most generic [1, 2, 3] are the so-called discrete breathers
(DBs). These can be defined as time-periodic spatially-localized coherent structures
emerging at coupled nonlinear oscillator lattices. This term was coined by Campbell
and Peyrard [4] in order to distinguish them from the “continuous” breathers found
as exact solutions through the inverse scattering machinery in the sine-Gordon PDE
[5]. [It is worthwhile to mention in passing that continuous breathers have a particu-
larly interesting history associated with them in φ4 models [6, 7], which is described
in detail in a different Chapter of this special volume.] Such DBs are also known as
intrinsic localized modes; this name was introduced in order to emphasize that their
origin was in the intrinsic nonlinearity of the system, contrary to the case of Ander-
son modes, where localization stems from lattice disorder [8] and can exist even in
the linear limit.

A major development that springboarded the study of DBs took place in 1988,
through the numerical study of DBs in some prototypical lattice models as reported
in two pioneering works [10, 11] by Takeno, Sievers and Kisoda. In these papers
DBs are calculated for the first time in the two basic kinds of lattices where they
can emerge, namely Fermi–Pasta–Ulam–Tsingou (FPUT)1 [10] and Klein–Gordon
(KG) [11]. Additionally, some of their stability properties were also determined.
FPUT lattices are characterized by the absence of substrate (on-site) potential and
the nonlinearity of the inter-site forces, whereas KG lattices possess nonlinear on-
site potential and (typically) linear inter-site forces. Interestingly, in those refer-
ences, potentials of the φ4 form and related models were considered. There are also
mixed cases of lattices where nonlinearities are present in both the substrate and in-
tersite potentials (see e.g. [12]); these lattices are sometimes denoted as KG/FPUT
lattices.

While these early works provided credible numerical evidence and planted the
seed for studying DBs, they did not rigorously prove their existence. The latter
came in a celebrated 1994 paper by MacKay and Aubry [13] and was based on
the concept of the so-called anti-continuous (AC) limit. They basically demonstrate
in a rigorous fashion, by making use of the implicit function theorem, that DBs can
generically exist in nonlinear KG lattices as a result of unobstructed (when some
suitable resonance restrictions are avoided) continuation of periodic orbits of indi-
vidual (uncoupled) oscillators. Mackay–Aubry’s theorem, together with the rigor-
ous proof of stability by Aubry in 1997 [14] and the numerical methods developed
by Marı́n among others [15] led to an intense interest on DBs in the late 1990’s and
the beginning of the 21st Century, not only from the theoretical but also from the

1 These lattices have been traditionally denoted as Fermi–Pasta–Ulam, forgetting the outstanding
role of Mary Tsingou who was the person responsible for all the numerical simulations in these
first computations of nonlinear lattice dynamics [9]
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experimental point of view. The relevant activity has been very well summarized by
now in a series of reviews; see, e.g., [1, 2, 3, 16, 17].

DBs have been sought for in many fields of Physics. They have been experimen-
tally generated in arrays of Josephson junctions [18, 19], mechanical [20] and mag-
netic pendula [21] and microcantilevers [22], nonlinear electrical lattices [23, 24]
and granular media [25, 26]. They have been observed in molecular and ionic crys-
tals like the so-called PtCl [27] and antiferromagnets [28], and have been argued
as plausible explanations of observational findings in systems such as α-Uranium
[29] or NaI [30]. They have also been speculated to play an important role in DNA
denaturation in an extensive literature reviewed, e.g., in [31], as well as to arise
in reconstructive chemical reactions [32] and in the slow decay of luminiscence
in Pb-doped alkali-halide crystals as KBr [33], and predicted to exist in crystals
of Niobium and Nickel [34] or carbon materials like graphene, carbon nanotubes,
fullerenes or hydrocarbons (see [35] for a review). Under suitable conditions, DBs
can move along the lattice and are known in that setting as moving breathers. As
such, they have been argued to be responsible for the observed tracks in muscovite
mica sheets [16, 36] and of the infinite charge mobility (also dubbed as hypercon-
ductivity) experimentally evidenced in such crystals [37, 38]. Admittedly, these are
only some examples of an ever increasing list of applications which is by necessity,
due to the limited scope of this Chapter, rather incomplete. Nevertheless, it serves
to illustrate the generic nature and wide impact of such structures and their broad
relevance of study.

The present Chapter is devoted to reviewing more concretely some results on the
existence, stability and dynamics of DBs in KG lattices with φ4 on-site potential,
and some other miscellaneous topics related to DBs in such lattices; many of these
results have been found for generic KG lattices, but we will focus here on the prin-
cipal theme of this special volume, namely the φ4 potential. Moreover, by choice,
the emphasis will be on some recent results, not only due to their connections to
the research interests and recent work of the authors, but also because, to the best
of our knowledge, the associated findings and the resulting over-arching stability
perspective have not been collected in such a summarizing body of work to date
elsewhere.

2 The Klein-Gordon lattice and the anti-continuous limit

After the brief presentation of the DB concept, in this Section we will introduce
some definitions. First of all, we need to address the concept of Klein-Gordon non-
linear dynamical lattice; from a mathematical point of view, it can be defined as a
system of coupled second-order ordinary differential equations of the form:

Fn(u) ≡ ün + V ′(un) +
∑
m

Cm(un − un+m − un−m) = 0 (1)
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where n and m are D-dimensional indices, V (un) is the on-site potential, which is
not necessarily homogeneous, and Cm is the coupling constant, depending on the
distance from the neighbors. In most case examples, the inter-site force is nearest-
neighbour with Cm = Cδm,1, in which case the previous equation can be written
e.g. for the one-dimensional lattice as

Fn(u) ≡ ün + V ′(un) + C(2un − un+1 − un−1) = 0. (2)

This dynamical equation derives from the following Hamiltonian:

H =
∑
n

hn =
∑
n

1

2
u̇2n + V (un) +

C

4

[
(un − un−1)2 + (un − un+1)

2
]

(3)

with hn being the energy density. As mentioned above, the anti-continuous (AC)
limit introduced by MacKay–Aubry’s theorem [13] is of paramount importance in
order not only to prove the existence of discrete breathers in nonlinear KG lattices,
but also to give a hint on how to obtain them numerically. The AC limit is that
of all the lattice oscillators being uncoupled (i.e. C = 0) and either oscillating
with the same frequency ωb or remaining at rest. By virtue of the implicit function
theorem, MacKay and Aubry established that the solution can be continued from
the AC limit to a finite value of C → 0 whenever two conditions are fulfilled: (1)
the potential of the isolated oscillators is anharmonic and (2) no integer multiples
of the DB frequency ωb resonate with the linear modes frequency (i.e. the so-called
phonon band which we will quantify further below). If these conditions are fulfilled,
a coherent (in the sense that all the sites oscillates with the same frequency) and
exponentially localized structure of a DB form will exist. These discrete breathers
are exact periodic orbit solutions (up to machine precision) of the nonlinear KG
equation.

This theorem is not only of theoretical value, but also of practical usefulness as
it provides a strategy on how to numerically calculate DBs that was exploited by
Marı́n and collaborators [15]. Methods based on the AC limit are quite simple: as
at the AC limit the oscillators are uncoupled, it suffices to get a periodic orbit of
single oscillators subjected to potential V (u) and continue this solution by means
of fixed-point methods (like Newton-Raphson) up to the desired coupling. Among
the numerical methods used for attaining DBs, we can highlight two: (1) Fourier
space methods in which DBs are represented by a Galerkin truncation up to index
km in a Fourier series expansion of the form:

un =

km∑
k=−km

zke
ikωbt , (4)

transforming the coupled ODE system (1) into a set of nonlinear algebraic equa-
tions; and (2) shooting methods, where DBs are fixed points of the map:

({un(0)}, {u̇n(0)})→ ({un(T )}, {u̇n(T )}) , (5)
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with T = 2π/ωb being the breather period. Fourier methods have the advantage of
using an analytical Jacobian but one has to pay the price of handling with a larger
number of equations. In addition, there are pathological potentials [23, 39] for which
the convergence of Fourier series is very slow and this method cannot be used.

There is a great number of potentials that can be found in the DB literature. They
can be classified as soft or hard, if the energy decreases or increases, respectively,
with the frequency; a simple way to discern if a potential is soft or hard is by making
use of the hardening coefficient h = 3V ′′′′(0) − 5V ′′′(0) [40] so that the potential
is soft (hard) when h < 0 (h > 0). Moreover, a soft (hard) oscillator vibrates with
a frequency ωb which is smaller (greater) than its natural frequency ωo =

√
V ′′(0)

(notice that in most cases, ωo = 1). Typical examples of soft potentials include the
Morse, Lennard-Jones, cubic (φ3), sine-Gordon and double-well potentials, many
of which arise in applications [1, 2]. Hard potentials are usually particular cases of
polynomials potential which, depending of parameters, can be either soft or hard,
namely cubic-quartic or purely quartic (φ4) anharmonicities, where the quartic term
arises with a positive sign; see below. This latter potential, on which we will focus
in the present Chapter, is given by

V (u) =
1

2
u2 +

1

4
su4 (6)

When s = 1 (s = −1), the potential is hard (soft). The orbits u(t) of an isolated
oscillator can be expressed in terms of Jacobi elliptic functions and the modulus m
is related to the oscillation frequency ωb through a transcendental equation. Thus, if
s = 1,

u(t) =

√
2m

1− 2m
cn

(
2K(m)ωbt

π
,m

)
, ωb =

π

2
√
1− 2mK(m)

(7)

and, if s = −1

u(t) =

√
2m

1 +m2
cd

(
2K(m)ωbt

π
,m

)
, ωb =

π

2
√
1 +m2K(m)

(8)

Notice that in the soft case, there are heteroclinic orbits separating oscillating
states from unbounded ones representing escape from the potential [41]. Another
interesting feature that distinguishes soft and hard potentials is related to the oscil-
lation pattern of the tails. When the potential is hard, the tails are staggered and
they are unstaggered in the soft case [42]. An example of discrete breathers in soft
and hard potentials is shown in Fig. 1 where the profile and the time-evolution is
displayed.

At the AC limit, it is possible to construct DB-like solutions with more than one
excited sites, dubbed as multibreathers. When suitably constructed (typically with
the “excited” oscillators in- or out-of-phase as summarized, e.g., in [43]), these are
also found to persist when the coupling is switched on. Over the years, some of the
DB structures have been endowed with distinguishing names. The Sievers-Takeno
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Fig. 1 Profile (top panels), time-dependence of the central sites (middle panels) and Floquet multi-
plier spectrum (bottom panels) of a 1-site breather in a soft (left panels) and in a hard (right panels)
potential. In the former case, parameters are ωb = 0.85 and C = 0.3, whereas in the latter case,
ωb = 2.5 and C = 1. In the right panels, multipliers with positive (negative) Krein signatures are
depicted with red crosses × (blue pluses +); see the associated discussion around Eq. (15) below.
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mode corresponds to a DB with only one excited site (it can also be denoted as single
site or 1-site breather). Also, the Page mode is a multibreather where two adjacent
sites are excited; notice that the former is a site-centered breather whereas the latter
corresponds to a bond-centered (inter-site-centered) one. When all the sites at the
AC limit are excited, we are dealing with a nonlinear phonon or phonobreather; a
dark breather [44] is a phonobreather with one (or a few) non-excited site(s), resem-
bling the functional form of a dark soliton of the nonlinear Schrödinger equation.

Multibreathers are usually formed by time-reversible oscillators. In these cases,
they can be characterized by a coding sequence σ ≡ {σn} indicating the phase and
the excitation state of the relevant sites at the AC limit. This code is σn = 0 if the
n-th oscillator is at rest, σn = 1 if it oscillates with a frequency ωb and phase 0
(i.e. un(0) > 0) and σn = −1 if oscillates with initial phase π (i.e. un(0) < 0).
For instance, the Sievers-Takeno and Page modes are represented by σ = {1} and
σ = {1, 1} (for soft potentials) or σ = {1,−1} (for hard potentials), respectively.
There are some cases where the code can be more complex as in sine-Gordon po-
tentials, where rotors can coexist with oscillators; in such cases, structures called
rotobreathers (see [14, 45]) can emerge if the excited site corresponds to a rotor;
they have been experimentally generated in Josephson junction arrays [18, 19].

There are also, however, some special cases where multibreathers are constituted
by non-time-reversible oscillators, as demonstrated in [14]. One can find such kind
of solutions in 1D chains with periodic boundary conditions in the form of phono-
breathers with phase torsion [46, 47], or in 2D percolating clusters or so-called
discrete vortices [48, 49, 43]. They can also emerge in 1D lattices with long-range
interactions [50, 51]. Additionally, they constitute a potential attractor in periodi-
cally forced and damped oscillator networks [52].

The non-resonance condition of MacKay-Aubry’s theorem clearly establishes
that the breather frequency ωb must lie in the gaps between the linear modes
(phonons) band; additionally harmonics of this frequency must avoid resonances
with the band to ensure the absence of energy dispersing mechanisms affecting the
DB. In the case of 1D KG lattices, there is an optical band of phonons given by

ω2
ph = ω2

o + 4C sin2
q

2
(9)

where q is the phonon wavenumber and ωph the frequency of the associated effec-
tively plane wave excitations ∼ ei(qn−ωpht). In finite lattices (which are needed for
numerical computations), the value of q is quantized with the quantization being
determined by the nature of the imposed boundary conditions and the number of
lattice nodes N . Consequently, breathers in hard potentials, can be continued until
ωb collides with the upper edge of the phonon band (q ≈ π), an event occurring
when C ≈ (ω2

b − ω2
o)/4 (the approximation symbol is used to take into account the

fact that, depending on the quantization of q, it could happen that q = π is not in the
band). Resonances in soft potentials are caused by integer multiples of the breather
frequency colliding with the frequencies of the phonon band. The relevant critical
point emerges when the second harmonic in asymmetric potentials and the third
one in symmetric ones (like the purely quartic φ4 analyzed in this Chapter) collides
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once again with the upper edge of the phonon band; that is, when C ≈ ω2
b − ω2

o/4
or C ≈ (9ω2

b − ω2
o)/4, respectively. In addition, in a finite lattice and soft poten-

tials, there are gaps in the phonon band and breathers can “bypass” the resonance
frequency, by existing within these finite gaps. In this case, the breather hybridizes
with the bifurcating phonon creating a structure called phantom breathers; strictly
speaking, they are non-exponentially-localized breathers as they have a tail oscillat-
ing with a frequency nωb with n depending on the multiple of the breather frequency
that resonates [53]. These structures are the discrete analogue of the nanoptera ob-
served at the continuum limit of KG lattices with the φ4 double well potential [7].
As shown in [54] for sine-Gordon and φ4 double well potentials, continuation up
to the continuum limit is similar to a Wannier-Stark ladder. This phenomenon (i.e.
breather-phonon hybridization) takes place because the staggering character of the
phonons is different than that of the breather; if the breather tails had the same stag-
gering character of the bifurcating phonon, the breather would be smoothly con-
tinued from the phonon and its amplitude would be zero at the phonon frequency.
Notice that gaps in phonon band appears naturally in disordered lattices because of
Anderson localization; breathers in such systems can delocalize [55] or remain lo-
calized [56, 57]. The above scenario is typical of Sievers-Takeno and Page modes.
When other multibreathers are considered, breathers cannot reach the phonon band
and the bifurcation scenario is more complex (see e.g. [54]).

Let us also mention that decay of breathers is not necessarily exponential. In lat-
tices with long-range intersite interactions, the decay can be algebraic [58], possibly
featuring a transition from exponential to algebraic; for a recent experimental real-
ization of this transition in system based on magnets, see, e.g., [59]. In addition, in
some KG/FPUT lattices with φ4 intersite potential, breathers can decay superexpo-
nentially being dubbed as (nearly) compact DBs [60, 61].

Finally, we must remark that there are several more existence proofs. For in-
stance, a variational proof was introduced in [62]; this is valid only for hard poten-
tials. A proof based on the center manifold theorem was introduced in [40] and is
valid for DBs whose frequency is close to the phonon band edge.

3 Stability of discrete breathers

This Section can be considered as the core of the present Chapter. The treatment
of the topic will be as follows: first of all, we will present an introduction to the
Floquet theory applied to the linear stability of discrete breathers; then, we will show
different approaches to the linear stability of multibreathers in the vicinity of the AC
limit and introduce the energy-vs-frequency monotonicity criterion for the linear
stability of breathers and multibreathers at arbitrary coupling; afterwards, nonlinear
stability criteria will be summarized together with the dynamical evolution of some
examples of unstable solutions.



Discrete breathers in φ4 and related models 9

3.1 Floquet analysis

In order to assess the dynamical robustness of the identified DB solutions and their
potential accessibility in physical experiments, a key step is the determination of
their stability. In the paper where MacKay and Aubry demonstrate the existence of
breathers [13], it is speculated that 1-site breathers are likely to be stable. This was
finally proven by Aubry in [14] for finite lattices and MacKay and Sepulchre in [63]
for infinite lattices.

As breathers are time-periodic solutions of the equation system (1), their spectral
stability can be determined by means of a Floquet analysis. To this aim, we need to
evaluate the evolution of a perturbation ξn(t) to a solution vn(t). We thus introduce
—in e.g. the 1D equation (2)— the solution un(t) = vn(t) + εξn(t) with ε being a
small constant. Then, the equation that the perturbation satisfies to O(ε) is

ξ̈n + V ′′(vn)ξn + C(2ξn − ξn+1 − ξn−1) = 0. (10)

This equation can be written in a more compact form as

N (v(t))ξ = 0 (11)

where ξ ≡ {ξn(t)} and v(t) ≡ {vn(t)}. N is known as the linearization operator.
If ξ ∈ C2, the study of this operator spectrum offers information about stability. If,
moreover, ξ ∈ E2s (ωb) (i.e. ξ belongs to the space of time-reversible solutions with
frequency ωb), this operator can be identified as the Jacobian (Fréchet derivative) of
the dynamical equations, i.e. ∂vF (v(t)) = N (v(t)). Equation (11) can be viewed
as a the particular case E = 0 of the eigenvalues equation for the Newton operator

N (v(t))ξ = Eξ (12)

The study of the spectrum of N is related to Aubry’s band theory [14] as we
will see further in the present section. In Hamiltonian dynamical systems, this lin-
earization operator is time-symmetric, real, symplectic and Hermitian. In addition,
it is invariant on time translations of period T , so by virtue of Bloch’s theorem, the
corresponding eigenfunctions ξ(t) can be expressed as Bloch functions:

ξ(t) = eiθt/Tυ(t). (13)

To perform Floquet analysis, we need to study the spectrum of the Floquet oper-
ator F , defined from the following map:

Ω(T ) = FoΩ(0), with Ω(t) = [ξ(t), ξ̇(t)] (14)

The representation of Fo in R2N is denoted as the so-called monodromy matrix.
The eigenfunctions of Fo are those of the Newton operator with E = 0. Thus, as
a consequence of Bloch’s theorem (13), Ω(T ) = exp(iθ)Ω(0). In other words,
monodromy eigenvalues (also known as Floquet multipliers) are of the form λ =
exp(iθ) with θ ∈ C. θ is dubbed as Floquet argument.
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As the linearization operator is real and symplectic, the Floquet operator also
possesses both properties. From the fact that F is real, one can deduce that if λ is a
Floquet multiplier, λ∗ is also a multiplier. Because of the symplecticity of F , 1/λ
is also a multiplier. In other words, Floquet multipliers always come in quadruplets
(λ, λ∗, 1/λ, 1/λ∗) if λ /∈ R and in pairs (λ, 1/λ) if λ ∈ R. Consequently, a nec-
essary and sufficient condition for a Hamiltonian dynamical system to be linearly
stable is that θ ∈ R (i.e. that the multipliers lie at the unit circle of the complex
plane). If the system is not Hamiltonian, the symplecticity can be broken and the
previous property does not hold. Then, the condition for stability is that |λ| ≤ 1.

An important concept in Floquet analysis is the Krein signature, which, for a
given eigenvalue λ is defined as

κ(λ) = sgn

(
N∑
n=1

Im
[
ξ∗n(t)ξ̇n(t)

])
(15)

Given the symplectic nature of N , the total Krein signature (i.e. the sum of the
Krein signature of every Floquet multipliers) is conserved in time. If λ is real, ξn ∈
R ∀n and κ(λ) = 0. The Krein signature is helpful for predicting bifurcations when
system parameters vary: due to the properties of Floquet multipliers in Hamiltonian
systems, the only way that an instability takes place is that a pair of eigenvalues
coincide at θ = 0 or θ = π or a quartet of eigenvalues coincide at a θ different than
0 or π. However, the coincidence of eigenvalues is not a necessary condition for
an instability to take place. Krein’s criterion establishes that a necessary condition
for the instability emergence is that the coincident multipliers have different Krein
signature. Nevertheless, this criterion is not a sufficient condition as discussed, e.g.,
in the context of Aubry’s band theory in [14].

The starting point of the band theory is Eq. (12), from which Bloch’s theo-
rem establishes that eigenvalues come in a set of non-overlapping bands Eν(θ),
which is a continuous function, non constant and 2π-periodic. From (13), one can
write ξ(T ) = exp(iθν(E))ξ(0). θν can be chosen in the first Brillouin zone, i.e.
θν ∈ (−π, π]. Then, the set of eigenvalues with θ in the first Brillouin zone is de-
noted as band ν. Bands are asocciated with stable solutions if θν ∈ R. Moreover,
due to the properties of the linearization operator, bands are symmetric with respect
to θν = 0. The values θν(E) are found by diagonalizing matrix FE , which is found
by applying (14) to the integration of (12). The monodromy coincides with F0 and,
consequently, the Floquet arguments are θν(0). That is, in order for the solution to
be stable, there must exist 2N bands that cut or are tangent to the E = 0-axis. As
mentioned above, the band analysis allows to improve Krein’s criterion: as demon-
strated in [14], the Krein signature of a Floquet multiplier is minus the sign of the
slope at E = 0 of the band corresponding to this multiplier; i.e.

κ(θν) = −sgn
(
dEν(θ)

dθ

∣∣
θ=θν

)
(16)
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As discussed in [14, Section 4.4] a necessary and sufficient condition for a bifur-
cation to occur is that the coincident eigenvalues belong to the same band, as in that
case the slopes at the bifurcation point will have opposite signs.

Floquet analysis can also help to identify what kind of bifurcations a breather
experiences. If a pair of eigenvalues collides at θ = 0, the breather undergoes an ex-
ponential (tangent) bifurcation, whereas collisions at θ = π correspond to a period-
doubling bifurcation. In the rest of cases, there is a quartet of multipliers colliding
out of the real axis and the breather experiences a (Hamiltonian) Hopf bifurcation 2.

Prior to show the stability properties of breathers, we want to indicate that when
the dynamical equations are invariant under time translation, there is a pair of eigen-
values that always remain at θ = 0, known as the phase and growth mode, which
come from the fact that ξn = u̇n and ξn = ∂un/∂ωb are solutions of Eq. (10).
The growth mode is, in fact, a marginal mode, as a perturbations along its direc-
tion growth linearly. This mode is associated to a generalized eigenvector along
this eigendirection. These modes will be particularly important when considering
stability criteria below.

3.2 Linear stability near the anti-continuous limit

Prior to introducing the existing approaches for the stability in the vicinity of the
AC limit, we need to understand the structure of the monodromy spectrum at that
limit. Let us suppose that the lattice is formed by N oscillators and we have a multi-
breather with p excited sites at C = 0. Then, it is easy to deduce from (10) that there
are p pairs of degenerated phase/growth modes at θ = 0 corresponding to excited
sites, and N − p pairs of multipliers at θ = ±ωoT mod 2π corresponding to the
oscillators at rest. The Krein signature of the multipliers at θ = 0 is zero, but for the
oscillators at rest, it depends on the hardness/softness of the substrate potential, the
breather frequency and the sign of the coupling constant. From now on, let us sup-
pose that C > 0. In that case, the multiplier in the upper half-circle will have κ = 1
(and those of the lower half-circle will have κ = −1) when ωb > 2ωo if the on-site
potential is hard and 2

2k+1ωo < ωb <
1
kωo with k ∈ N if the potential is soft. On

the contrary, if ωo < ωb < 2ωo for hard potentials and 1
k+1ωo < ωb <

2
2k+1ωo for

soft ones, the multipliers at the upper half-circle will have κ = −1 [63, 64].
When the coupling is switched on, we need to analyze the fate of the multipliers

at θ 6= 0, that will correspond to the linear modes, and those at θ = 0. The former
will expand so that the isolated eigenvalue pair at θ 6= 0 become a couple of arcs
with θ ≈ ±ωphT mod 2π, being ωph the phonon frequencies (9). Notice that the
Krein signature of the eigenvalues of an arc is the same as the multiplier from which
they are born. With this in mind, it is easy to deduce that a 1-site breather must
remain stable when the coupling is switched on because, on the one hand, there are

2 Notice that, strictly speaking, we are dealing with a Neimark-Sacker bifurcation (Hopf bifurcation
of periodic orbits). However, through a slight abuse of the relevant terminology, we denote it simply
as a Hopf bifurcation.
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no bifurcations stemming from the linear mode arcs and, on the other hand, p = 1
and the only pair at θ = 0 corresponds to the phase/growth modes and must remain
there for every coupling. Figure 1 shows a couple of examples of Floquet multipliers
spectrum for a 1-site breather in soft and hard potentials.

When dealing with a multibreather, p > 1 and there are p− 1 eigenvalues whose
evolution is not clear (i.e. if they move along the circle or they abandon it through
the real axis). The first attempt to give a generic explanation of the emerging pos-
sibilities was based on Aubry’s band theory [65], while a second approach, which
makes use of the effective Hamiltonian methodology [66], is able to prove the exis-
tence of breathers at small coupling and also to give an expression of the individual
multipliers at low coupling. The work of [43] demonstrated that the two approaches
are equivalent if one assumes that Aubry’s bands are parabolic. The main draw-
back of these findings is that they can only predict the stability or instability of
multibreathers at low coupling when all the excited sites are adjacent. The latter
limitation was overcome in the work of [67] by considering higher order perturba-
tions. However, for simplicity, we will hereafter focus on the description of multi-
breathers whose excited sites are adjacent, as per the earlier studies by the authors
in [43, 65, 66].

As a general result, we proved that, for C → 0+, multibreathers are stable when
all the excited sites at the AC limit are in phase (anti-phase) if the potential is
hard (soft). Two sites i and j are said to be in phase (anti-phase) if σiσj = +1
(σiσj = −1). This property is reversed if C < 0; such a case is relevant when con-
sidering e.g. dipole-dipole interactions in DNA models [68]. If the excitation pattern
is neither uniformly in phase, nor uniformly in anti-phase (e.g. σ = {1,−1,−1, 1})
the multibreather is unstable, independently of the hardness of the potential or sign
of coupling constant, as demonstrated in [69]. The work of [66] provided a detailed
count of the unstable eigendirections in such a case and an estimate of the associated
multipliers in the small C limit.

As an instructive special case example, let us focus on the simplest multibreather
case, namely the 2-site DB in the hard and soft φ4 potential (6). Among these multi-
breathers, the ones that are unstable close to the AC limit, by virtue of the theorems
of [65, 66], are the Page modes whose codes are σ = {1, 1} (if the potential is soft)
and σ = {1,−1} (if the potential is hard). The theorems also predict that one of the
multiplier pairs lying at θ = 0 at the AC limit moves along the real axis with its
(imaginary) argument given by:

θ = ±2iπ

ωb

√
2sC

J

ωb

∂ωb

∂J
, (17)

with

J =
1

2π

∫ T

0

[u̇(t)]2dt =
ωb

2

∑
k≥1

k2z2k, (18)

being the action of an isolated oscillator. In the case of the φ4 potential, finding an
analytical form of ∂ωb/∂J by using (7) and (8) is a cumbersome task. Because of
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this, it is easier to calculate the Fourier coefficients in (18). An alternative is to use
the rotating wave approximation (RWA) u(t) ≈ z1 cos(ωt), obtaining that:

z1 = 2

√
ω2
b − 1

3s
(19)

Then, the Floquet argument of the analyzed multibreathers can be written as:

θ = ±2iπ

ωb

√
2sC

ω2
b − 1

3ω2
b − 1

. (20)

In Figure 2, we compare the Floquet arguments of the stable 2-site multibreathers
found by integrating the perturbation equation (10) with those of the predictions
of [43, 66], i.e. Eq. (20) for C → 0+. Notice the good agreement between all the
curves.

The stability theorems have also been useful towards investigate the stability or
instability (at low coupling) of dark breathers [65] and multibreathers in the pres-
ence of inhomogeneities [69]. They have also been applied to multibreathers with
broken time-reversibility, as phonobreathers with phase torsion [47], multibreathers
in 1D lattices with long-range interactions [50, 51] and vortices in triangular [49]
and rectangular latices [43]. In the latter case, the stability theorems are unable to
get analytical predictions when the on-site potential is even (as e.g. in the hard and
soft φ4 potentials), as the perturbations are of order higher than ∼

√
C. This type

of scenario has been explored in the case of the simpler class of discrete nonlinear
Schrödinger models, as summarized in [70]. In that context, it has been dubbed as
the super-symmetric case, and requires higher order perturbative analysis in order
to identify the leading order contributions to the multipliers for which the corre-
sponding discrete vortices arise at O(C) — although for some of them, they arise
at much higher order (such as O(C3)). A systematic consideration of such stability
findings for DBs is a worthwhile investigation for future work. It should be noted
that in the present contribution we do not expand further on the specifics of both the
Aubry band and the effective Hamiltonian methods and their analytical predictions
and comparisons with full numerical results. A reasonably recent and relatively up-
to-date summary of these methods in more detail can be found in [43].

3.3 Linear stability at arbitrary coupling. An energy-based stability
criterion

When the coupling is increased from the situation described in the previous Subsec-
tion, the phonon arcs will be expanding. The mapping between angles and phonon
frequencies is not exact because there are hybridization between the linear modes
and the breather itself, which is more pronounced when the coupling is progres-
sively higher. In fact, in many cases, beyond a threshold coupling, exponentially
localized so-called “internal modes” can bifurcate from the phonon band. These
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Fig. 2 Imaginary part of the argument of the Floquet multiplier responsible for the instability of
Page modes with respect to C in soft potentials with ωb = 0.80 (left panel) and hard potentials
with ωb = 2.5 (right panel). The figure, which highlights the region of small coupling, also shows
the analytical prediction of Eq. (20).

modes localize in the rightmost (leftmost) edge of the arc if the Krein signature of
the phonons of the upper half-circle is positive (negative). In addition, in the case
of multibreathers, there can also exist localized multipliers that were at θ = 0 at the
AC limit. These modes may move on the unit circle for finite coupling and may lead
to various scenarios of collision between Floquet multipliers. For instance, two pairs
of localized modes can collide at θ 6= 0 or a localized mode pair can collide with
the phonon arcs. Recall that the Krein signature of the colliding multipliers must be
opposite in order for a (Hamiltonian Hopf) bifurcation to take place (otherwise the
pairs are led to a so-called avoided crossing scenario without producing an insta-
bility). In the opposite Krein multiplier collision case, we are dealing with a Hopf
bifurcation (also called Krein crunch) that, in most cases, persists when the lattice
is enlarged. Another situation occurs when the phonon arcs themselves collide. As
they have opposite Krein signature, more Krein crunches can take place. If this bi-
furcation takes place at θ = 0, it is a signal that a resonance of the breather with
the phonon band has taken place and, consequently, the existence condition of the
MacKay-Aubry theorem has been violated. If the arcs’ overlap takes place at θ 6= 0,
the bifurcations are generally ruled out at infinite lattices [71].

There are other interesting cases. For instance, when localized modes collide at
θ = π, they bring about a period-doubling bifurcation; such a bifurcation was found
for φ4 Hamiltonian lattices at low coupling in [67]. Another scenario corresponds
to the case when a multiplier, which escapes from the phonon arc, corresponds to an
anti-symmetric mode and moves along the unit circle, eventually colliding with its
conjugate at θ = 0; in this case, the mode is structurally similar to the translational
one and a perturbation of a breather along its direction, which increases linearly as
it is a marginal mode, gives rise to a moving breather [72]. We will deal with this
topic in more detail in Subsection 4.1.
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Figure 3 shows examples of the Floquet multiplier dependence with respect to C
for Page (unstable two-site) modes and also for a stable configuration close to the
AC limit, which corresponds to the σ = {1, 1} multibreather in the hard potential.
In the case of the Page modes one can see that the only instability is the one caused
by the Floquet multiplier that abandons the circle at the AC limit, and that, in the
case of hard potentials, this mode comes back to the circle when the breather fre-
quency resonates with the linear modes band. For the σ = {1, 1} multibreather in
the hard potential, it is observed that the instability is caused by the collision with
the phonon arc of the localized mode departing from θ = 0 at the AC limit. Notice
that the σ = {1,−1} multibreather, which is stable for small coupling when the
on-site potential is soft, undergoes a Hopf bifurcation caused by the collision of two
localized modes in KG lattices with Morse on-site potential (see e.g. [73]); however,
in soft φ4 potentials, this bifurcation does not take place and, instead, there is a Hopf
bifucation similar to the one of the σ = {1, 1} multibreather in the hard potential.

Tangent bifurcations can also occur when there exists an extremum in the en-
ergy dependence with respect to the breather frequency. In Klein-Gordon lattices,
such extrema seem only to appear in two-dimensional lattice and, in several cases,
are related to energy thresholds for the existence of breathers [32, 74, 75]. The
stability criterion that we analyzed in [76] is related to such bifurcations. This crite-
rion is a generalization to Klein-Gordon and FPUT lattices (and their DB solutions)
of the well known Vakhitov-Kolokolov (VK) criterion defined for the Nonlinear
Schrödinger (NLS) Equation [77]. In fact, as shown in [76], upon the multiscale
expansions that lead from the former equations to the latter one, the VK criterion
is retrieved as a special case example. This establishes a sufficient condition for the
instability of breathers. In Klein-Gordon lattices, a family of breathers is exponen-
tially unstable if its energy increases with the frequency, if the on-site potential is
soft, or if the energy decreases with the frequency if the on-site potential is hard. In
fact, if the dependence of the energy versus frequency presents an extremum, there
is a tangent bifurcation at that point. Similarly to the Vakhitov-Kolokolov criterion,
our energy criterion is unable to predict oscillatory instability (in our case, caused
by Hopf bifurcations). In addition, it is also unable to predict the bifurcations from
translational modes, i.e. the one which produce moving breathers, or those bifurca-
tions causing blow-up.

In the case of φ4 potentials, one-dimensional 1-site breathers do not present en-
ergy thresholds. But, as mentioned above, the threshold is present for 2D and 3D
lattices. This implies an extremum in the energy-frequency dependence and, conse-
quently, a tangent bifurcation that can be predicted by the energy-based criterion of
[76]. This is shown in Fig. 4. There, it is clear that for the 2D lattices the change of
monotonicity leads to the corresponding change of stability.

The energy criterion has been successfully applied for predicting stability changes
in travelling waves (supersonic lattice solitons) in FPUT lattices with soft poten-
tials [78, 79]. In particular, the connection between breathers and traveling waves is
an intriguing one: traveling waves on a lattice typically return to themselves upon
translation by a single lattice site. As such, if one considers the operation including
traveling by one lattice site and then back-shift to the original starting point, this
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Fig. 3 Dependence with respect to the coupling constant C of the argument (left panels) and
modulus (right panels) of the Floquet multipliers corresponding to the following configurations:
(top panels) σ = {1, 1} multibreather with ωb = 0.8 in soft potentials; (middle panels) σ =
{1,−1} multibreather with ωb = 2.5 in hard potentials; (bottom panels) σ = {1, 1} multibreather
with ωb = 1.5 in hard potentials. Notice that in the right panels, the mode with positive (negative)
Krein signature is depicted in red (blue).
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operation has a fixed point (if the original lattice has a genuine traveling wave). The
period of the associated periodic orbit is directly associated with the speed of the
traveling wave (TW) since ωb = 2πs/h where s is the speed of the wave and h the
spacing of the lattice. We thus give a very short proof of the theorem for the case of
traveling waves and, by direct analogy, for DBs.

Consider the dynamical system:Ut =
(
u
p

)
t

= J∇H(U) where J =

(
0 I
−I 0

)
.

We seek a TW in the form: u = u0(n−st) = u0(ξ) [solving−sU0,ξ = J∇H(U0)]
and linearize around it according to: u(ξ, t) = u0(ξ) + εW (ξ, t) and p(ξ, t) =
p0(ξ) + εP (ξ, t). Then, the linearization operator and its adjoint can be found ex-
plicitly as:M := s∂ξ+J∇2H(U0), M∗ = (−∇2H(U0)J−s∂ξ) = JMJ . Sim-
ilarly to the breather problem, the time translation invariance induces a eigenvector
and a generalized eigenvector with 0 eigenvalue of the form: ∂ξU0 (the eigenvector)
andM(−∂sU0) = ∂ξU0 (the equation for the generalized eigenvector).

Then the straightforward proof of the stability theorem is as follows: If an extra
eigenvector Ỹ with λ = 0 exists, then it must satisfyMỸ = ∂sU0 (yielding an ad-
ditional generalized eigenvector). This, however, imposes the following symplectic
orthogonality condition:

0 = 〈J∂ξU0,MỸ 〉 =
∫

(J∂ξU0) · (∂sU0)dξ =

∫
1

s
∇H(U0) ·

∂U0

∂s
dξ

=
1

s

∫
∂H(U0)

∂s
dξ =

1

s
H ′(s).

Consequently, at this critical point the derivative H ′(s) must vanish, and similarly
for DBs H ′(ωb) = 0. As explained in [76] for DBs and [78, 79] for TWs, one
can take the calculation further providing estimates of the bifurcating instability-
inducing multipliers on the two sides of the critical point.

3.4 Nonlinear stability

As illustrated in [80] for a wide range of NLS type models, linear stability is not the
last word, as there are cases of e.g. spatially-antisymmetric solitons, which are lin-
early stable but the dynamics is can be nonlinearly unstable, if it is evolved over suf-
ficiently long time scales. In both lattice and continuum NLS modes, it was shown
in this work that spectral stability may be inconclusive if modes of negative Krein
signature exist in the spectrum and if their (nonlinearity induced) harmonics are
in resonance with the continuous spectrum. In particular, an ordinary differential
equation (ODE) was derived suggesting that for positive energy modes, their en-
ergetic content is depleted due to dispersive wave radiation. However, for negative
Krein signature modes, the reverse process occurs, eventually pumping (over a slow,
power-law in time procedure) the internal mode and ultimately leading to the demise
of the coherent structure due to this genuinely nonlinear mechanism.
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Fig. 4 The top panels show the energy-frequency dependence of discrete breathers in 2D lattices
with a soft potential and C = 0.1 (left panels) and a hard potential and C = 0.3 (right panels).
Bottom panels show the imaginary part of the argument of the Floquet multipliers of these solution
families.

Based in such findings, in [73] we explored the nonlinear instability of linearly
stable multibreathers. We found that nonlinear instability is possible when an integer
multiple of the frequency of an internal (i.e. localized) eigenmode resonates with the
phonon band and the Krein signature of such a mode and the phonon arc are opposite
to each other. Notice that the frequency Ω of the internal eigenmode and its Floquet
argument follows the relation θ = ±ΩT mod 2π; consequently, if the coupling
constant is small enough, the internal mode has not collided with the phonon arc (in
fact, this condition is necessary in order for the breather to be stable against potential
Hamiltonian Hopf bifurcations), then Ω = θ/T = ωbθ/(2π). In this case, however,
a harmonic of such a mode can be located inside the arcs. If it is the 2nd harmonic,
then the slow growth follows a t−1/2 law, if the 3rd, a t−1/4 law etc., as derived by
the corresponding ODE [80, 73].

Having in mind the stability properties of multibreathers near the AC limit, the
only stable solutions among them are those whose codes σ are in phase if the on-site
potential is hard and in anti-phase if the potential is soft. As demonstrated in [73],
the internal modes that detaches from θ = 0 have, in the upper half-circle (i.e. for
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θ ∈ [0, π], Krein signature κ = 1 if the potential is soft and κ = −1 if it is hard.
On the other hand, in order to have nonlinear instability, it is needed that the Krein
signature of the phonon arcs in the upper half-circle are the opposite to the internal
modes. Because of this, as explained at the beginning of Subsection 3.2, nonlin-
ear instability can only be possible if ωo < ωb ≤ 2ωo if the potential is hard and

2
2k+1ωo < ωb <

1
kωo with k ∈ N if the potential is soft. These conditions were cor-

roborated in the detailed numerical computations of [73]. In the simpler case of the
NLS and DNLS models, no such conditions need to be imposed, however numerical
computations verified the existence of the instability in [80]. Here, we only provide
a prototypical case example of the associated phenomenology in the right panel in
Fig. 3. This shows the particular case of a the σ = {1, 1} multibreather in a hard
potential. This solution is linearly stable before the Hopf bifurcation takes place,
although presents nonlinear instability as the conditions of the paragraph above are
fulfilled. The dynamics eventually manifests this instability although the latter only
arises over extremely long times, much longer than the linearly unstable cases of the
left and middle panels.

3.5 Dynamics

In this subsection we will further discuss some prototypical examples of unstable
dynamics stemming from linear and nonlinear instabilities of the (2-site) multi-
breathers shown previously (especially in Fig. 3).

First of all, we consider linearly unstable multibreathers in the soft φ4 potential.
In that case, the main behavior is a blow-up caused by a phenomenon similar to the
escape observed in [41]. Left panels of Fig. 5 illustrate the blowing-up dynamics
observed in an unstable σ = {1, 1} multibreather. Notice that blow-up is caused by
both exponential and oscillatory instabilities. I.e., the linearly unstable growth leads
the oscillators to exit the finite height potential barrier and hence tend to ±∞.

In the case of hard potentials, the main dynamical features consist of the transfor-
mation of the multibreather into a less energetic 1-site breather. In this transforma-
tion, some energy is shed from the breather and, in some cases, it can be localized.
The central panels of Fig. 5 shows the dynamics of the σ = {1,−1} multibreather.
It is natural for the configuration to tend to the site-centered variant as that is gener-
ically stable, as we discussed above.

Finally, the right panels of the figure consider a linearly stable but nonlinearly un-
stable multibreather with σ = {1, 1} displaying a similar behaviour. The nonlinearly
unstable dynamics fulfills the conditions of the theorem of [73] as the frequency of
the internal mode is Ω = 0.2073 and the spectral bands expands in [0.32, 0.5]. As a
result, the second harmonic of the internal mode lies in the phonon arc, ultimately
(at very long times) slowly feeding the nonlinear growth and eventually leading
to the destruction of the two-site configuration. Notice, however, as also indicated
above, the characteristically longer (by at least an order of magnitude) time needed
for the manifestation of this (nonlinear) instability.
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Fig. 5 Dynamical evolution of the unstable configurations displayed in Fig. 3. Top panels show the
space-time dependence of the energy density, middle panels depict the energy density evolution
of the central sites and bottom panels compare to the profiles of the perturbed breather at the
beginning and at the end of the simulation. The multibreathers considered at the figures are: (left
panels) σ = {1, 1} in a soft potential with ωb = 0.8 and C = 0.2; (central panels) σ = {1,−1}
in a hard potential with ωb = 2.5 and C = 0.5; (right panels) σ = {1, 1} in a hard potential with
ωb = 1.5 and C = 0.1.

4 Some glimpses on other breather features

Although the core of the present chapter focuses on the stability properties of dis-
crete breathers in φ4 lattices, we mention in passing some developments related to a
judicious selection of aside topics, namely moving breathers and the generation of
discrete breathers in lattices with dissipation.
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4.1 Moving breathers

As mentioned in the previous section, when an an anti-symmetric eigenmode de-
taches from the phonon arc, it can reach θ = 0 bringing about a tangent bifurcation.
Just at θ = 0, the mode is marginal and resembles a translational mode, so that a per-
turbation along it can set the breather into motion. Contrary to continuous breathers,
moving discrete breathers generically radiate phonons (see e.g. [72]) and they even-
tually stop.

Due to the special features of moving breathers, there does not exist a systematic
underlying mathematical theory that can clearly characterize them. Some attempts
of defining a Peierls-Nabarro barrier similar to kinks have been performed, but they
only seem to work in FPUT lattices close to the continuum limit [81]. In any case,
there must be a mechanism alike to Peierls-Nabarro barrier which is related to the
existence of tangent bifurcations of the translational mode that detaches from the
phonon arc. Because of this, moving breathers can only be observed in lattices for
which the breathers experience such bifurcations. There are only a few reported
cases of one-dimensional KG lattices, namely, with Morse, sine-Gordon and double-
well potentials [42]. We have also been able to generate moving breathers in two-
dimensional KG lattices with Morse potential, a result that have not been published
yet. Moving breathers (with high mobility) has been observed in two-dimensional
lattices with in-plane degrees of freedom modeling e.g. muscovite mica [16] which
are also known as quodons and, as mentioned in the Introduction, are speculated to
play an important role in charge transport properties in such materials.

Moving breathers do not exist in KG lattices with the φ4 potential, as the tangent
bifurcation of the translational mode does not take place. However, such a bifurca-
tion was observed for KG/FPUT lattices with on-site and interaction potentials of
the hard φ4 form [64]. Such a lattice has been used for modeling micromechanical
cantilever arrays [22]. In [82] we generated moving breathers in such a model and
analyze their interaction with geometrical defects.

4.2 Dissipative lattices

Most of the experimental findings of discrete breathers have been achieved on lat-
tices with dissipation and external driving, such as micromechanical [22], pendula
[20] and Josephson junctions [18, 19] arrays, nonlinear electrical lattices [23, 24] or
granular media [25, 26]. Such classes of systems remain quite popular to this day
with numerous variations continuously arising including, e.g., piecewise-linear sys-
tems emulating the β-form of the celebrated FPUT lattice [83], or electrical systems
involving beyond-nearest-neighbor interactions [84].

As demonstrated in [85], discrete breathers in dissipative lattices can also ex-
ist away from the anticontinuum limit. Contrary to Hamiltonian lattices, there are
no resonances with phonons (the spectrum of plane wave excitations is pushed to
the left half of the complex spectral plane); as a result such states are now poten-
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tial attractors of the system. The work of [52] shows the complex phenomenology
that is observed in driven and damped Frenkel–Kontorova lattices. If the system is
driven with a frequency ωb, discrete breather solutions acquire the same frequency
as the driving force. In general, all the lattice sites oscillate with the same frequency;
however, we have found an electrical lattice where subharmonic resonance emerges
(that is, the excited sites of the breather oscillate with half of the frequency of the
low amplitude sites) [86]. Recently, multistable variations of pendula, potentially
applicable to SQUID metamaterials, have been manifested as potential sources of
more complex breathing patterns such as the celebrated chimera states [87].

Discrete breathers have been studied in driven and damped one-dimensional KG
lattices with hard φ4 potentials in [88]. Such a lattice is defined by equation:

ün + αu̇n + V ′(un) + C(2un − un+1 − un−1) = Fn(t) + ηn(t) (21)

with Fn(t) being a periodic function of frequency ωb and ηn(t) is a Gaussian white
noise with zero mean and autocorrelation < ηn(t)ηm(t′) >= 2Dδnmδ(t − t′). In
the deterministic case (D = 0) and for a staggered driving of the form Fn(t) =
(−1)nf sin(ωbt), the phenomenology is quite simple: at given damping and fre-
quency, discrete breathers only exist above a threshold fth. However, if the noise is
introduced in the lattice, there are two interesting phenomena: if the driving ampli-
tude is suprathreshold (f > fth), breathers with frequency ωb can be generated even
if the initial condition is uniform; if the driving amplitude is subthreshold (f < fth),
breathers are still produced by the concerted action of noise and the driving force, in
a way that noise, on the one hand, enables system transitions between the uniform
and the coherent localized states and, on the other hand, destroys any degree of or-
der of the system if its amplitude is large enough: in other words, we are dealing
with a stochastic resonance phenomenon.

5 Outlook and future directions

From the above discussion, it is clear that the theme of discrete breathers is one
that is gradually maturing and emerging in a wide range of applications and a di-
verse array of systems. In particular, we are gradually departing from the simplest
nearest-neighbor scenarios of either just KG or just FPUT types and moving on to a
new, more elaborate phase where systems can be designed with beyond-nearest [84]
and even long-range interactions [59] and also with multiple and potentially com-
peting [12] interactions, or with ones that are progressively more amenable to ana-
lytical considerations [83]. This suggests that there is a significant need for further
theoretical and computational developments to support the corresponding emerging
experimental platforms.

While the early stages of development of DBs favored analytical proofs of ex-
istence and associated techniques of numerical existence and stability, subsequent
ones favored a more systematic exploration of spectral properties and an attempt to
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classify the different multibreathers and offer systematic guidelines about when they
may be expected to be dynamically robust. In this Chapter, we summarized some
of this systematic effort in the previous decade and some of its crystallized results
and convergence of different methods over the past few years. More recently, further
tools have arisen in probing spectral and dynamical features of DBs. Among others,
we have explored and summarized here the energy-versus-frequency monotonicity
criteria and how they relate to linear instabilities and given connections between
these and the stability of traveling waves in lattices. Additionally, we have warned
the reader against the naive expectation that spectral stability is the full story, pre-
senting case examples where this fails to be true due to the nonlinear instability of
internal modes with opposite Krein signature than that of the phonon arcs. The slow,
power-law nature of the latter instabilities, as opposed to the exponential growth of
linear instabilities was highlighted. Lastly, some possibilities of further develop-
ments towards moving breathers or dissipative lattices were briefly touched upon.

Clearly, there is need for further theoretical systematics. Many of the relevant
points were brought up in parts of our discussion. Understanding the stability of
phase-shift multibreathers and vortex breathers in higher-dimensional systems is an
important open topic. Carrying out the associated stability computations to higher
order is particularly relevant. Recent work, in fact, brings up the possibility that
relevant solutions may fail to exist at higher orders in some important case exam-
ples [89]. Studying also long-range interactions may bring about surprises and pro-
duce gaps in the spectrum where novel DBs may exist, as per the recent work of [90].
Again, this is a topic meriting further exploration. The study of systems with non-
trivial tails (nanoptera) and the examination of whether the stability features/criteria
presented herein apply to them is also an open topic. The same holds true for sys-
tems with external drive and damping: can we offer some guidelines to characterize
their stability characteristics, suitably adapting what we know in the more structured
Hamiltonian cases or perhaps not ? Plus then there are topics which, while touched
upon, still seem fairly poorly understood or wide open for new insights: among
them moving breathers, or quasi-periodic solutions and their existence and stability,
as well as the role of DBs in asymptotic dynamics and thermalization (see, e.g., [91]
for a recent summary in the discrete NLS case) are only some that come to mind. In
summary, discrete breathers may have matured but have many more challenges to
offer for the years to come both at the fundamental, at the computational and at the
experimental level...
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