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Thermodynamical cost of some interpretations of quantum theory
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1Departamento de Fı́sica Aplicada II, Universidad de Sevilla, E-41012 Sevilla, Spain
2School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore

3Complexity Institute, Nanyang Technological University, 18 Nanyang Drive, Singapore 637723, Singapore
4Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore

5Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Walter-Flex-Straße 3, D-57068 Siegen, Germany
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The interpretation of quantum theory is one of the longest-standing debates in physics. Type I interpretations
see quantum probabilities as determined by intrinsic properties of the observed system. Type II see them as
relational experiences between an observer and the system. It is usually believed that a decision between these
two options cannot be made simply on purely physical grounds but requires an act of metaphysical judgment.
Here we show that, under some assumptions, the problem is decidable using thermodynamics. We prove that
type I interpretations are incompatible with the following assumptions: (i) The choice of which measurement is
performed can be made randomly and independently of the system under observation, (ii) the system has limited
memory, and (iii) Landauer’s erasure principle holds.
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I. INTRODUCTION

The interpretations of quantum theory can be classified [1]
in two types: Those that view quantum probabilities of
measurement outcomes as determined by intrinsic (observer-
independent) properties of the observed system, for example,
Einstein’s [2], Bohmian mechanics [3,4], many worlds [5,6],
Ballentine’s [7], modal interpretations [8,9], Bell’s be-
ables [10], collapse theories [11,12], and Spekkens’s [13],
and those according to which quantum theory does not deal
with intrinsic properties of the observed system but with the
experiences an observer has of the observed system, for exam-
ple, Copenhagen [14,15], Wheeler’s [16], relational [17,18],
Zeilinger’s [19], Fuchs and Peres’s no interpretation [20], and
QBism [21,22]. Here, following Ref. [1], we call them type I
and type II interpretations, respectively. It is usually believed
that deciding between these two options “cannot be made
simply on purely physical grounds but it requires an act of
metaphysical judgement” [23].

While the actual classification of interpretations itself is an
active and interesting subject of discussion, the aim of this
article is to show that type I interpretations are incompatible
with the following assumptions: (i) The choice of which
measurement is performed on a system under observation can
be made randomly and independently of the quantum system,
(ii) the system has limited memory, and (iii) Landauer’s erasure
principle [24] holds. The article is organized as follows. In
Sec. II we introduce the ideal experiment we will consider in
the rest of the article and list our assumptions. In Sec. III
we introduce the optimal finite-state machine needed for
rigorously proving our results. The results and their proofs
are presented in Sec. IV. Finally, in Sec. V we summarize our
conclusions.
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II. SCENARIO

Consider the following ideal experiment: A single qubit is
sequentially measured at time intervals by an observer who
performs projective measurements randomly chosen between
the Pauli observables σz and σx . Each of these measurements
has two possible outcomes: +1 or −1. When measuring σz, if
the outcome is +1, the quantum state after the measurement is
|0〉; if the outcome is −1, the quantum state is |1〉. Similarly,
when measuring σx , if the outcome is +1 the quantum state
is |+〉 = 1√

2
(|0〉 + |1〉) and if the outcome is −1 the quantum

state is |−〉 = 1√
2
(|0〉 − |1〉). Therefore, the quantum state after

each measurement is always one of the four quantum states |0〉,
|1〉, |+〉, and |−〉. The quantum state after the measurement
at time t is the quantum state before the measurement at
t + 1. The process is repeated infinitely many times. If the
measurements are randomly chosen, the quantum state has
probability 1

2 to change and probability 1
2 not to change.

We consider type I interpretations satisfying the follow-
ing assumptions: (i) The choice of which measurement is
performed can be made randomly and independently of the
system under observation, (ii) the system has limited memory,
and (iii) Landauer’s erasure principle holds [24]. In these
interpretations, at any time t the quantum probabilities are
determined by intrinsic properties of the system and, according
to assumption (i), these intrinsic properties change depending
on what measurements are performed. Assumption (ii) implies
that the system cannot have stored the values of the intrinsic
properties for all possible sequences of measurements that
the observer can perform. This implies that the system has
to generate new values and store them in its memory. For that
reason, the system needs to erase part of the previously existing
information. Landauer’s principle states that the erasure of one
bit of information from the information-bearing degrees of
freedom of a system must be accompanied by a corresponding
entropy increase in the non-information-bearing degrees of
freedom of the system, therefore causing dissipation of at least
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kT ln 2 units of heat, where k is the Boltzmann constant and
T is the temperature of the system. Landauer’s principle has
been verified in actual experiments [25,26] and is considered
valid in the quantum domain [27,28]. Therefore, whenever the
temperature is not zero, assumption (iii) implies that the system
should dissipate at least an amount of heat proportional to the
information erased. Since in type I interpretations satisfying
assumptions (i)–(iii) the system under observation will be
represented by a finite-state machine with more than one
state, we can invoke the third law of thermodynamics (i.e.,
it is impossible by any procedure, no matter how idealized, to
reduce the temperature of any system to zero temperature in a
finite number of finite operations) to assume that the erasure
of information in the system occurs at nonzero temperature.

III. TOOLS

In type I interpretations the system generates outcomes
whose probabilities (including the case of probability equal to
1) are determined only by intrinsic properties of the system,
that is, by the state of the memory of the system prior to the
measurement. To calculate the minimum information that the
system must erase per measurement, a key observation is that
our ideal experiment is an example of a stochastic input-output
process that can be analyzed in information-theoretic terms.

A stochastic process
←→Y is a one-dimensional chain

. . . ,Y−2,Y−1,Y0,Y1,Y2, . . . of discrete random variables
{Yt }t∈Z that take values {yt }t∈Z over a finite or countably
infinite alphabetY . An input-output process

←→
Y |←→X with input

alphabet X and output alphabet Y is a collection of stochastic
processes

←→
Y |←→X ≡ {←→Y |←→x }←→

x ∈←→X , where each such pro-

cess
←→
Y |←→x corresponds to all possible output sequences

←→
Y

given a particular bi-infinite input sequence ←→
x . It can be

represented as a finite-state automaton or, equivalently, as a
hidden Markov process. In our experiment, xt is the observable
measured at time t and yt the corresponding outcome. By

←−
X

we denote the chain of previous measurements . . . ,Xt−2,Xt−1,
by

−→
X we denote Xt,Xt+1, . . ., and by

←→
X we denote the chain

. . . ,Xt−1,Xt ,Xt+1, . . .. Similarly,
←−
Y ,

−→
Y , and

←→
Y denote the

past, future, and all outcomes, respectively, while
←−
Z ,

−→
Z , and←→

Z denote the past, future, and all pairs of measurements
and outcomes. For deriving physical consequences we have
to consider the minimal and optimal representation of this
process.

The fact that our experiment is an input-output process
implies [29] that there exists a unique minimal and optimal
predictor of the process, i.e., a unique finite-state machine
with minimal entropy over the state probability distribution and
maximal mutual information with the process’s future output
given the process’s input-output past and the process’s future
input. This machine is called the process’s ε-transducer [29]
and is the extension of the so-called ε-machines [30,31]. An
ε-transducer of an input-output process is a tuple (X ,Y,S,T )
consisting of the process’s input and output alphabets X and
Y , the set of causal states S, and the set of corresponding
conditional transition probabilities T . The causal states st−1 ∈
S are the equivalence classes in which the set of input-output

pasts
←−Z can be partitioned in such a way that two input-output

pasts ←−
z and ←−

z ′ are equivalent if and only if the probabilities
P (

−→
Y |−→X ,

←−
Z = ←−

z ) and P (
−→
Y |−→X ,

←−
Z = ←−

z ′) are equal. The
causal states are a so-called sufficient statistic of the process.
They store all the information about the past needed to predict
the output and as little as possible of the remaining information
overhead contained in the past. The Shannon entropy over
the stationary distribution of the causal states H (S) is the
so-called statistical complexity and represents the minimum
internal entropy needed to be stored to optimally compute
future measurement outcomes (this quantity generally depends
on how our measurements

←→
X are selected; here we assume

each Xt is selected from a uniform probability distribution).
The set of conditional transition probabilities T ≡ {P (St+1 =
sj ,Yt = y|St = si,Xt = x)} governs the evolution.

The fact that the ε-transducer is also the machine producing
minimum heat can be proven as follows. The average informa-
tion that must be erased per measurement is the information
contained in the causal state previous to the measurement, St−1,
that is not contained in the causal state after the measurement,
St [32]. This is equal to the conditional entropy (or uncertainty)
of St−1 given St , Xt , and Yt ,

Ierased = H (St−1|Xt,Yt ,St ). (1)

For the machine reproducing the outcomes of our experiment,
knowledge of the current state gives complete information
about the last outcome, so H (Yt |Xt,St ) = 0. Then the proper-
ties of conditional entropy give

Ierased = H (St |Xt,St−1) − H (St |Xt ) + H (St−1|Xt ). (2)

We note that H (St−1|Xt ) = H (St−1) = H (St ) because mea-
surements are chosen at random and ε-transducers are station-
ary, so for our experiment the amount of information erased is

Ierased = H (St |Xt,St−1) + I (St : Xt ), (3)

where the mutual information I (St : Xt ) = H (St ) −
H (St |Xt ). States Rt of another partition R of input-output
pasts

←−
Z that are as predictive as the causal states [31] obey

H (Rt |Xt,Rt−1) � H (St |Xt,St−1) and the data-processing
inequality (see, e.g., Ref. [33]) guarantees that
I (St : Xt ) � I (Rt : Xt ). It follows that the quantity Ierased is
minimal for an ε-transducer.

In addition, the ε-transducer of our experiment has a
particular property, namely, that there is a one-to-one cor-
respondence between causal states st and quantum states
|ψt 〉 ∈ �. All input-output pasts in a given causal state st give
the same probabilities for all

−→
X , so the quantum states given

by the input-output pasts must be equal. Conversely, a given
quantum state provides probabilities for all

−→
X that correspond

to one causal state of the ε-transducer. As a consequence, the
ε-transducer associated with our experiment has four causal
states that we will denote s0, s1, s+, and s−, corresponding to
the four quantum states |0〉, |1〉, |+〉, and |−〉.

IV. RESULTS

Result 1. For the experiment in which a qubit is sub-
mitted to sequential measurements randomly chosen from
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X = {σx,σz} at temperature T , under assumptions (i)–(iii),
any interpretation of quantum theory in which probabilities
are determined by intrinsic properties of the system predicts
that, on average, the system should dissipate at least 3

2kT ln 2
units of heat per measurement.

Proof. Since, in our experiment, the stationary distribution
of the causal states is uniform and the observer randomly
chooses the measurement, we can calculate Ierased by using
a particular causal state, e.g., St = s0, and a particular
measurement that lead to it, e.g., Xt = σz. Using Eq. (1) and
the fact that H (Yt |St ) = 0 we obtain

Ierased = H (St−1|σz,s0)

= −
∑
sj ∈S

P (St−1 = sj |σz,s0) log2 P (St−1 = sj |σz,s0),

(4)

where logarithms are to base two, 0 log2 0 is taken as zero,
and P (St−1 = sj |σz,s0) is the conditional probability that the
causal state at time step t − 1 was sj , given a measurement
choice σz and subsequent transition to causal state s0 at time
step t . There are only three possible causal states at time
t : s0, s+, and s−, whose respective conditional probabilities
P (St−1 = sj |σz,s0) are 1

2 , 1
4 , and 1

4 . Therefore,

Ierased = − 1
2 log2

1
2 − 2 1

4 log2
1
4 = 3

2 bits. (5)

Applying Landauer’s principle, we obtain the corresponding
lower bound to the average heat per measurement dissipated
by the system. �

In contrast, if probabilities are not determined by intrin-
sic properties of the system, then measurement outcomes
are created randomly when the observables are measured,
without any need to overwrite information in the system
and therefore without the system dissipating heat due to
Landauer’s principle. Landauer’s principle also applies to the
measurement apparatus; we observe that there is no difference
between type I interpretations satisfying assumptions (i)–(iii)
and type II interpretations regarding the heat dissipated by
the measurement apparatus. What is different is that type
I interpretations requires, in addition, a finite-state machine
representing the system under observation (which is absent in
type II interpretations), which produces an extra amount of
heat due to Laudauer’s principle (which is not produced in
type II interpretations).

Result 1 assumes that the observer can only choose
between two measurements. What if the observer chooses
measurements from a larger set?

Result 2. For the experiment in which a qubit is submitted
to sequential measurements randomly chosen from

X (n) =
{

cos

(
πk

2n

)
σz + sin

(
πk

2n

)
σx, k = 0, . . . ,2n−1

}
,

(6)

under assumptions (i)–(iii), any interpretation of quantum
theory in which probabilities are determined by intrinsic
properties of the system predicts that, on average, the system
should dissipate an amount of heat per measurement that tends
to infinity linearly with n.

Proof. The sets X (n) and

�(n)

=
{

cos

(
πj

2n+1

)
|0〉 + sin

(
πj

2n+1

)
|1〉, j = 0, . . . ,2n+1−1

}

(7)

have, for any n ∈ N, the same properties we exploited for
the proof of result 1. Indeed, X (1) = X , �(1) = �, and s0 is
associated with |0〉 for all n. Therefore, we can follow the same
strategy as in the proof of result 1. The number of pure quantum
states attained by the system now grows exponentially with n

and, consequently, the number of causal states in the associated
ε-transducer also grows exponentially with n and the needed
conditional probability is

P (St−1 = sj |σz,s0) = cos2
(

πj

2n+1

)
∑2n+1−1

l=0 cos2
(

πl
2n+1

) = cos2
(

πj

2n+1

)
2n

.

(8)

Inserting this probability in the erased information and using
that cos2 φ < 1 when 0 < φ < π inside the logarithm, we
obtain

Ierased(n) = −
2n+1−1∑

j=0

cos2
(

πj

2n+1

)
2n

log2

cos2
(

πj

2n+1

)
2n

> n. (9)

Therefore, when the temperature of the system is not zero,
the lower bound of the heat dissipated by the system from
Landauer’s principle tends to infinity at least linearly with n.�

V. CONCLUSION

Here we have shown that, for those interpretations of
quantum theory in which quantum probabilities are determined
by intrinsic properties of the observed system, assumptions
(i)–(iii) lead to the prediction that the observed system must
dissipate an unbounded amount of heat in each measurement
due to Landauer’s principle. This conclusion is independent
of how the observed system is defined. The only relevant
assumption about the observed system is that it is finite.

As a reaction to this result one has the following options.
(a) One could abandon the assumption that quantum

probabilities are determined by intrinsic properties of the
observed system.

(b) One could abandon assumption (i), which would mean
that the decision of which measurement is performed on the
system cannot be made randomly and independently of the
system.

(c) One could abandon assumption (ii), which would mean
that, at any given time, a finite system contains infinite
information.

Abandoning both assumptions (i) and (ii) would allow
for superdeterminism. Trying to exclude superdeterminism on
scientific grounds seems “beyond the power of logic” [16].

(d) One could abandon assumption (iii), which would mean
that Landauer’s principle does not apply at the level of type I
interpretations. This would mean that the intrinsic properties
of the observed system behind quantum probabilities satisfy
different physical laws than other intrinsic properties.
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(e) One could assume that the erasure of information in the
system can occur at zero temperature. This would violate the
third law of thermodynamics.

(f) One could assume that the set of possible measurements
and states is actually discretized. Toy theories with this
property have been shown to retain fundamental features
of quantum theory [34,35]. This solution would imply that
quantum theory is only a continuous idealization of a deeper
discrete theory.

(g) One could assume that the precision of the measure-
ments is fundamentally limited.

Nevertheless, even in cases (f) and (g), the observed system
should dissipate a potentially observable amount of heat
that would depend on the size of the system, the length of
the discretization, and/or the limits in the precision of the
measurements. Bounds on these quantities may be established
through precision experiments measuring this hypothetical
heat. Such an experiment can, in principle, be conducted using
two ions confined in separate wells: The target qubit is encoded
in the internal state of one of the ions, while the other ion is
used as an ancillary qubit for readout [36,37].

The aim of this article has been to introduce a fresh
perspective, thermodynamics, in one of the longest-standing
debates in physics, the interpretation of quantum theory. Our
aim has not been excluding any specific interpretation, but
to point out the consequences of some natural assumptions
in those interpretations in which quantum probabilities are
determined by intrinsic properties of the observed system. In
this sense, one can draw a parallel with Bell’s theorem [38].
Bell’s theorem does not exclude Bohmian mechanics. It just
shows that the assumption of local realism is incompatible
with quantum theory and, as a consequence, points out

that any realistic interpretation of quantum theory cannot
be local. Similarly, our result does not exclude Bohmian
mechanics or the many worlds interpretation, since in both
cases assumption (ii) is not satisfied (in Bohmian mechanics
because the observed system includes an underlying con-
tinuous field and in the many worlds interpretation because
the system itself splits in each measurement), but draws
attention to the fact that systems with unlimited memory
are needed in any interpretation in which quantum probabil-
ities are determined by intrinsic properties of the observed
system.
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