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Abstract—In this paper, a transmission-line model is developed
for the computation of the insertion loss of magnetostatic-sur-
face wave transducers and measurements are carried out by
the authors to check this model. In a first step of the analysis,
closed-form expressions for the solution of the telegrapher’s
equations for the two microstrip transducers are obtained. The
insertion loss is then derived from this solution as a function of
three transmission-line parameters, i.e., the propagation constant
and the characteristic impedance of the YIG-loaded microstrip
line and the mutual inductance between the two microstrips,
these quantities being, in general, complex. In a second step,
these transmission-line parameters are numerically computed by
applying a full-wave method-of-moments technique. Thus, the
theoretical results obtained are found to be in good agreement
with experimental results.

Index Terms—Leakage, magnetostatic-surface waves (MSSWs),
transmission-line parameters.

I. INTRODUCTION

T HE theoretical and experimental study of the excitation
of magnetostatic-surface waves (MSSWs) by microstrip

transducers was reported many years ago in [1] and [2]. In these
papers, the input resistance and input reactance of MSSW trans-
ducers are analyzed. The radiation resistance is computed by as-
suming that the surface current density on the strip is uniform
across the strip width (transverse direction in the microstrip).
The input resistance is then obtained from the radiation resis-
tance by assuming that the fields are uniform along the width
of the yittrium–iron–garnet (YIG) film (longitudinal direction
in the microstrip). This latter assumption is taken into account
in the calculation by imposing that and ;
and being, respectively, the phase and attenuation constants
of the electromagnetic mode propagating along the YIG-loaded
microstrip and being the width of the YIG film. Later in the
literature, several studies have presented a more realistic anal-
ysis of the excitation of MSSW by microstrip transducers by
disregarding some of the restrictive hypothesis assumed in [1]
and [2]. For example, in [3] and [4], the radiation resistance is
calculated by allowing the current distribution to be nonuniform
across the strip width. In [5], the nonuniform nature of the fields
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due to the finite width of the YIG film is included in the anal-
ysis, but only the delay time is calculated. Actually, the hypoth-
esis and can be very hardly justified, except for
very short transducers, as is shown in [6]–[8].

The calculation of the transmission coefficient (or insertion
loss) is one of the main goals of the theoretical analysis in the
design of MSSW devices such as filters or delay lines [9], [10].
Some works have dealt with the calculation of the insertion loss
of MSSW transducers [11]–[13]. In [11] and [12], the hypoth-
esis and is assumed. In [13], the nonuniform
nature of the fields along the width of the YIG film is taken into
account in the analysis by means of a superposition of modes
[5]. A nonuniform current distribution is also imposed in [13]
and the insertion loss is computed by numerically integrating
the Poynting vector in an infinite domain. In this paper, the
authors show a method for the computation of the insertion
loss of MSSW microstrip transducers that takes into account
the nonuniform nature of both the current distribution across
the strip and the fields along the width of the YIG film using a
relatively simple model. The method is based on the analysis
of the currents excited in the microstrips. These currents are
computed numerically by integrating in a finite domain, i.e.,
the strip width. Unlike in [13], no explicit computation of the
Poynting vector and its numerical integration in an infinite
domain are required. The method has two parts. In the first
part, a transmission-line model is put forward for the microstrip
transducers and the subsequent telegrapher’s equations are
solved analytically. A closed-form solution is obtained for the
telegrapher’s equations and the insertion loss is then derived
from this solution as a function of both the width of the YIG
film and some transmission-line parameters, i.e., the complex
propagation constant and complex characteristic impedance of
the YIG-loaded microstrip line, as well as the mutual induc-
tance between the two microstrips. In the second part, these
transmission-line parameters are numerically computed by
applying a full-wave method-of-moments (MoM) technique.
Note that, although a transmission-line model is used, the
results do not correspond to that of a quasi-TEM approach
since the parameters of this model are obtained following a
full-wave analysis. Thus, the method accounts for MSSW
transducers without restrictions on the transverse dimensions of
the input and output microstrips. In addition, since the analysis
does not assume that or , no restriction on
the width of the YIG film is imposed. A computer code fol-
lowing this method has been implemented for the computation
of the insertion loss of MSSW microstrip transducers with
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Fig. 1. (a) General view of the transducer. (b) Top view. (c) Front view.

a ground plane–dielectric–YIG–gadolinium–gallium–garnet
(GGG) configuration. MSSW microstrip transducers built on
different types of dielectric substrates have been measured and
a good agreement has been found between the experimental
and theoretical results.

II. A NALYSIS

The geometry of the MSSW microstrip transducers analyzed
in this study is shown in Fig. 1(a)–(c). In this figure, two mi-
crostrips are placed parallel at a distancebetween them. The
input microstrip is labeled as microstrip 1 and the output mi-
crostrip as microstrip 2. Both microstrips 1 and 2 are shorted at
the end [ in Fig. 1(b)] and have YIG-loaded sections of
length . The first step in our method is the theoretical analysis
of the telegrapher’s equations in both microstrips. The telegra-
pher’s equations are analytically solved to obtain closed-form
expressions for the current distributions on both microstrips.
This provides a closed-form expression for the transmission co-
efficient of the transducer depending on transmission-line pa-
rameters. In a second step, these transmission-line parameters
are numerically calculated by means of the MoM.

A. Telegrapher’s Equations

In general, the transmission coefficient in decibels for the
transducer is defined as

dB (1)

being the injected power in the unloaded section of mi-
crostrip 1 (i.e., the part of the microstrip without YIG film) and

being the power delivered to the unloaded section of mi-
crostrip 2. The expression in (1) can be written as

dB (2)

being the power injected in the YIG-loaded section of mi-
crostrip 1 and being the reflection coefficient at the transition
between the YIG-loaded section and the unloaded section of the
microstrip 1 [point in Fig. 1(b)], which is defined as

(3)

where is the input impedance at and is the complex
characteristic impedance of the YIG-loaded microstrip.can
be written in the following form:

(4)

where is the amplitude of the current at . Assuming
that the output port (microstrip 2) is matched,can be written
as

(5)

where is the characteristic impedance of the unloaded mi-
crostrip (50 in the experiments carried out in this paper) and

is the amplitude of the current at the input of the YIG-
loaded section of microstrip 2 [point in Fig. 1(b)].

The currents and are obtained theoretically in
this study by solving the telegrapher’s equations after assuming
that only one of the two microstrips is under the influence of
the MSSW radiation coming from the other microstrip. This is a
reasonable hypothesis since the microstrip excitation of MSSW
radiation is essentially unidirectional [1]. In the geometry of
Fig. 1(a)–(c), the dc magnetic bias field is directed along the
-direction so that microstrip 2 is under the influence of the ra-

diation coming from microstrip 1. Since, in this approximation,
microstrip 1 is not influenced by the presence of microstrip 2,

is just the current at the input of a shorted transmission
line of length , i.e.,

(6)

being the complex propagation constant of the electromag-
netic mode excited in the YIG-loaded section of the microstrip
and being the complex amplitude of the current associated
with this mode. The influence on microstrip 2 of the MSSW
radiation coming from microstrip 1 is taken into account by as-
suming that the magnetic flux on the microstrip 2 is due to both
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currents on microstrips 1, , and 2, . Thus, the inho-
mogeneous telegrapher’s equations for the voltage and
the current on microstrip 2 can be written in the following
form:

(7)

(8)

where and are the per unit length (p.u.l.) inductance and
capacitance, respectively, of the YIG-loaded microstrip and

is the p.u.l. mutual inductance between microstrips 1 and
2 through the MSSW radiation. From these equations, the
following wave equation for is derived:

(9)

The general solution of this equation is given by the sum of a
particular solution and an homogeneous solution ,
i.e.,

(10)

(11)

(12)

where is an unknown constant. is determined by imposing
that at

(13)

Once the constant is determined, is obtained as

(14)

After substituting (4)–(6) and (14) into (2) and taking into ac-
count that , an expression for is obtained that
only depends on, , and [ is computed from and
as in a shorted transmission line, i.e., ]. This
expression for is as follows:

dB

(15)

The computation of and in this paper follows the method
described by the authors of this study in a previous paper [8].
The computation of is one of the original contributions
of this paper and is carried out by using a geometry that is
simpler (from the point-of-view of the analysis) than shown
in Fig. 1(a)–(c). This new geometry is shown in Fig. 2 and
consists of two infinite parallel YIG-loaded microstrips placed
at the same distanceas in the transducer of Fig. 1(a)–(c).

Fig. 2. Two infinite parallel YIG-loaded microstrips placed at the same
distanced as in the transducer of Fig. 1(a)–(c).

The infinite microstrip 1 is fed by a delta-gap voltage source
applied at the middle point . This source excites a current

in microstrip 1 that can be written as

(16)

being the complex propagation constant of the electromag-
netic mode excited in the microstrip and being the complex
amplitude of the current associated with this mode (the super-
script refers to the infinite length of the microstrip). Since
the influence of microstrip 2 on microstrip 1 is neglected, the
value of can be computed as explained in [8]. In [8], it is
also shown how the complex characteristic impedancecan
be directly obtained from the value of . The telegrapher’s
equations (7) and (8) are valid for the infinite microstrip 2 in
Fig. 2. After replacing in (7) by , as given in (16),
the following wave equation for the current in the infi-
nite microstrip 2 is obtained:

(17)

The general solution of this equation is given by the sum of a
particular solution and an homogeneous solution ,
i.e.,

(18)

being an unknown constant. For our analysis, it is convenient
to obtain the Fourier transform of the solution (18), i.e.,

(19)

Equation (19) can be written as

(20)

Integrating in the complex -plane around in (20), the
second term in the right-hand side of the equation containing
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vanishes and taking into account Cauchy’s theorem,is
obtained as follows:

(21)

In Section II-B, the MoM is applied to compute numerically
both and . Once and have been obtained,
the integral in (21) can be evaluated numerically to obtain.

B. MoM

To obtain and , two electric field integral equa-
tions (EFIEs) must be solved. First, is obtained by solving
an EFIE for the surface current density on microstrip 1,[8],
as follows:

(22)

where is the electric field imposed by the delta-gap
voltage source on microstrip 1 and is the spatial
dyadic Green’s function, with the variables, extended from

to ( stands for the strip width) and, from
to . This EFIE is solved following the method reported in
[8], which provides both the complex propagation constant and
complex amplitude of the current of the mode excited in a YIG-
loaded infinite microstrip fed by a delta-gap voltage source, i.e.,

and , respectively. Next, to obtain , the following
EFIE for the surface current density on microstrip 2,, must
be solved:

(23)

where is the electric field on microstrip 2 due to the sur-
face current density , and is the electric field
on microstrip 2 due to its own surface current density. The
EFIEs in (22) and (23) are solved using the Galerkin method by
expanding both the transverse and longitudinal components of
the surface current density and into a general
set of complete domain basis functions as follows:

(24)

(25)

The functions are the unknown coefficients in the
Galerkin problem and the functions are the basis
functions, which are the same as in [8], i.e., both odd and even
Chebyshev polynomials weighed by the proper edge condition.
As in [8], these basis functions are normalized in such a way
that the current on the strip is given by the coefficient related to
the zeroth-order basis function, i.e., . Using
the guidelines of the method reported in [8], the EFIEs in (22)
and (23) are transformed into the Fourier domain and, after
applying the Galerkin method, a matrix equation is obtained for

the Fourier transform of the unknown coefficients as
follows:

(26)

The matrix elements are given by

(27)

where and are the Fourier transforms of
the basis functions in (25), is the -component
of the spectral dyadic Green’s function (SDGF), and is a
proper integration path in the complex-plane [8]. It must be
noted that the basis functions and are
related as

(28)

(29)

being the distance between microstrips. The independent ele-
ments for the matrix equation associated with the EFIE in (22)
are the same as in [8], i.e.,

(30)

where are the Kronecker deltas. The independent ele-
ments for the matrix equation associated with the EFIE in (23)
are given by

(31)

where and are the two-dimensional
(2-D) Fourier transform of and in (24).
Both and are computed by solving the
matrix equation associated with the EFIE in (22) and then are
introduced in (31). The Green’s function in (31) has two dif-
ferent complex poles in the complex -plane
given by the two different wavenumbers of the MSSW along
the -direction [4], [8]. Since , the integrand in (31)
oscillates very fast and, therefore, the major contribution to the
integral is given by the residue-pole contribution at .
Since microstrip 1 essentially radiates along the-positive axis
(assuming that the dc-bias field is directed along the-positive
axis), the pole that contributes to the integral is the pole with

, . Taking this into account, and after applying
Cauchy’s theorem, the integral in (31) results as follows:

(32)
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Fig. 3. Photograph of the experimental setup.

It is worth mentioning that it has been verified numerically that
has a dependence on of the kind theoretically de-

rived in (19).

III. RESULTS

The theoretical method presented in this paper has been
checked with experiments. Fig. 3 shows a picture of the
experimental setup used for the measurements. A YIG film
40- m thick, 3-mm wide, and 5-cm long was used (the sat-
uration magnetization was M G and the width
line Oe). To minimize the ripples in the amplitude
response due to wave reflections at film edges, the YIG film
ends were cut at an angle of 45in the plane of the film. The
YIG film was mounted on a printed circuit with two microstrips
in the manner shown in Fig. 1(a). The required magnetic bias
field in the plane of the film and perpendicular to the long axis
of the YIG film [ -direction in Fig. 1(a)–(c)] was provided by
an electromagnet, as shown in Fig. 3. The measurements were
carried out using an HP 8510 B automatic network analyzer.

Figs. 4–6 show the measured transmission response (in
decibels) for the transducer shown in Fig. 3 when the YIG film
is mounted on different dielectric substrates [the structural pa-
rameters shown in the caption of Figs. 4–6 correspond to the
structural parameters depicted in Fig. 1(a)–(c)]. In all the mea-
surements shown in these figures, the distance between strips
was 1 cm [ cm in Fig. 1(a)–(c)], the dc-bias magnetic
field was set to Oe and the strip width in the un-
loaded section of the microstrips was properly chosen in order
to get a characteristic impedance of 50[ in (5)].

Figs. 4–6 also show our results for the computation of the
transmission coefficient in decibels by using the method
presented in this paper (and with in the caption
of these figures correspond, respectively, to the thickness and
dielectric constant of the different layers of the structure). The
convergence of the theoretical results was achieved by taking

in (24). Fig. 4 shows the measured transmission response
for the transducer when the YIG film was mounted on an alu-
mina substrate. The strip width was 100m in the YIG-loaded
section (a tapered section was made between the YIG-loaded
and unloaded sections). This figure shows that there is a good

Fig. 4. Transmission response of a transducer with structural parameters, as
shown in Fig. 1(a)–(c). Dielectric layer:h = 0:635 mm, " = 10. YIG
film: h = 40 �m, " = 10, width l = 3 mm, 4�m = 1880 G,�H =

0:6 Oe. GGG substrate:h = 0:5 mm, " = 15. The strip width isw =

100�m in the YIG-loaded section andw = 0:605mm in the unloaded section.
A tapered section was made between both sections. The distance between strips
is d = 10 mm.H = 500 Oe. Solid line: measurement. Dashed line: theory.
Theoretical value of the insertion loss: 5.6 dB.

Fig. 5. Transmission response of a transducer with structural parameters,
as shown in Fig. 1(a)–(c). Dielectric layer:h = 0:135 mm, " = 2:53.
YIG film: h = 40 �m, " = 10, width l = 3 mm, 4�m = 1880 G,
�H = 0:6 Oe. GGG substrate:h = 0:5 mm, " = 15. The strip width is
w = 0:375 mm in both the YIG-loaded section and the unloaded section. The
distance between strips isd = 10mm.H = 500Oe. Solid line: measurement.
Dashed line: theory. Theoretical value of the insertion loss: 8.2 dB.

agreement between both theoretical and experimental results in
the low-frequency region and that our method predicts the max-
imum value of the transmission coefficient, i.e., the insertion
loss, with high accuracy. The disagreement between theory and
experiment in the high-frequency region is due to the only ap-
proximation introduced in the computations. This approxima-
tion consists of the substitution of the integral in (31) by the
residue-pole contribution of the integrand, as shown in (32). The
integrand in (31) oscillates very fast since it contains the expo-
nential term (with ) and this intro-
duces the functions and , which are highly
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Fig. 6. Transmission response of a transducer with structural parameters, as
shown in Fig. 1(a)–(c). Dielectric layer:h = 0:49mm," = 2:43. YIG film:
h = 40 �m, " = 10, width l = 3 mm,4�m = 1880 G,�H = 0:6 Oe.
GGG substrate:h = 0:5 mm, " = 15. The strip width isw = 1:43 mm
in both the YIG-loaded section and the unloaded section. The distance between
strips isd = 10 mm.H = 500 Oe. Solid line: measurement. Dashed line:
theory. Theoretical value of the insertion loss: 8.4 dB.

oscillatory since . The integral shown in (31) will con-
verge very slowly and will increase the CPU time required to
have accurate results. One of the purposes of the authors has
been to develop a quick and accurate computational tool for the
analysis of the transducers. Thus, the convergence of the inte-
grations that provide the elements of the matrix of moments (27)
has been accelerated by applying asymptotic techniques, and the
convergence of the integration in (31) has been also accelerated
by approximating the integral (31) by the residue-pole contribu-
tion of the integrand, as in (32). Nevertheless, this is a good ap-
proximation if the poles of the integrand in (31) are close to the
real axis in the complex -plane. As the frequency increases,
these poles move far from the real axis and their influence on the
integrand diminishes so that to approximate the integral (31) by
the residue-pole contribution in this case leads to overestimate
the value of the integral at high frequencies. Nevertheless, the
maximum value of the transmission coefficient, i.e., the inser-
tion loss, is very well estimated, being that this value is an es-
sential design parameter

In Figs. 5 and 6, structures that are not usual in practical
MSSW devices have been analyzed in order to investigate the
possibilities of our method. Fig. 5 shows both experimental
and theoretical results for the transducer when the YIG film is
mounted on a low-permittivity dielectric substrate. The strip
width was the same for both the YIG-loaded section and the
unloaded section microstrip lines. A good agreement between
both experimental and theoretical results is also shown for this
case. Finally, Fig. 6 shows the results for a low-permittivity
dielectric substrate and a very wide strip width (in this case, the
strip width was the same for both the YIG-loaded and unloaded
sections). The theoretical maximum value of the insertion loss
agrees with the measured value. Since the strip width is very
wide, the current distribution in this case can only be well

determined by means of a full-wave analysis, as was shown
in [8], where the input impedance of this same structure was
measured and computed. Actually, this structure is analyzed
in this paper to make clear that, in spite of a transmission-line
model being used in our method, the method is not a mere
quasi-TEM approach.

IV. CONCLUSION

A method has been presented for the computation of the trans-
mission response of MSSW microstrip transducers. The method
is based on a transmission-line model, which takes into account
the nonuniform nature of both the current distribution across the
strip width and the fields along the YIG film. Since the trans-
mission-line parameters of the model are computed following a
full-wave analysis and the nonuniform nature of the fields along
the YIG-loaded microstrip section is included in the model, the
method can be applied to the analysis of MSSW transducers
with very variable geometries.
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