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Abstract—The discrete complex image technique, originally de-
veloped to deal with three-dimensional planar structures, has been
recently applied to two-dimensional planar and nonplanar trans-
mission lines embedded in layered substrates. In spite of succes-
sive refinements, some important practical issues concerning the
sampling path, treatment of spectral Green’s functions poles, and
extension to the leaky regime are still open and deserve deeper ex-
amination. It will be shown that a suitable choice of the sampling
path is key to reducing the number of images and to avoid the ne-
cessity of extracting spectral poles when the bound regime is con-
sidered. The situation arising from the analysis of the leaky regime
becomes more complex and the adequate choice of the sampling
path, as well as an appropriate pole extraction, turn out to be es-
sential. In particular, a new pole-extraction strategy able to deal
with poles associated with both proper and improper modes of the
background waveguide is proposed. The advantages of using the
theory in this paper will be illustrated by diverse numerical results
for the bound/leaky regime of various planar lines. Finally, the suit-
ability of the method for covered planar lines will be demonstrated.

Index Terms—Complex images, layered substrates, pole
extraction, printed lines.

I. INTRODUCTION

AS IS WELL known, the underlying idea of the discrete
complex image technique (DCIT) is to approximate

the spectral-domain Green’s functions as an expansion of
complex exponentials whose spatial counterpart is known in
closed form. This method was originally developed to obtain
the three-dimensional (3-D) spatial Green’s function for the
vector and scalar potentials of dielectric layered media [1]–[3].
Later, Kipp and Chan [4] introduced pertinent corrections to
the formulation in [1] and, further, these same authors [5] and
Aksun [6] proposed a robust approach based on a two-level
approximation of the Green’s functions in the spectral domain.
As in the 3-D case, the advantages of the DCIT approach in the
two-dimensional (2-D) frame rely on the possibility of avoiding
the time-consuming Sommerfeld-type integrals required by
the application of the method of moments for solving the
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mixed potential integral equation (MPIE) in the spatial domain.
Indeed, the relative overall CPU time saving arising from the
use of DCIT is even more important in 2-D problems. In this
latter case, the size of the matrices involved is not as large
as in 3-D problems and, therefore, the relative computational
weight of the few reaction entries is more significant in the total
CPU time. For that reason, any refinement in the application
of the DCIT to transmission-line problems is justified from
the computational point-of-view. Thus, the DCIT was first
adapted to analyze the bound regime of 2-D planar/nonplanar
transmission lines in layered media [7]–[11]. The above 2-D
studies were extended in [12] to also deal with the leaky
regimes of printed lines. In spite of the progress reported in
the aforementioned papers, there are still important questions
concerning the application of the DCIT to 2-D problems that
demand further discussions. This is the case, for example, of
the appropriate choice of the straight-line paths to be used for
sampling the spectral Green’s functions in the frame of the
two-levels scheme proposed in [6]. It can be observed that the
sampling path used for 2-D structures [8]–[12] is actually the
same as that proposed in [6] for 3-D problems. The choice
of this sampling path was properly discussed in this latter
work and is based on the convenience of sampling the spectral
Green’s functions in a region near the inverse integration path
used in spectral-domain analysis (SDA) to obtain their spatial
counterparts. However, it has been somewhat assumed that this
suitable sampling path for 3-D problems is equally convenient
for 2-D cases. This study will show that the suitable path for
sampling the spectral Green’s function in 2-D problems may
not be that used in 3-D problems. In fact, the spatial functions
are not obtained in 2-D SDA from their spectral counterparts by
means of a Fourier–Bessel transform in the radial wavenumber

, but performing an inverse Fourier transform in the lateral
wavenumber for a given fixed value of the longitudinal
wavenumber with . The new sampling paths
proposed in this paper will provide superior accuracy for bound
modes computation. Moreover, the requirement of different
integration paths in the complex plane for surface- and
space-leaky modes [13] has substantial consequences on the
choice of the sampling path in the upper half-space vertical
wavenumber complex plane. (It should be noted that
this latter wavenumber is the proper variable to carry out the
complex images expansion [4], [14].) A systematic study of the
region covered by for the different values of the SDA inte-
gration path is carried out for each type of line modes in order
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to propose suitable sampling paths for bound, surface-leaky,
and space-leaky modes.

It has been pointed out in the literature that, in general, it is
very convenient to extract the poles of the spectral Green’s func-
tions associated with surface-wave (SW) modes of the back-
ground waveguide in both 3-D [1]–[4], [14] and 2-D problems
[9], [10], [12]. Nevertheless, the use of the sampling paths pro-
posed in this paper can make unnecessary pole extraction in the
case of bound modes. There also seems to lack a detailed dis-
cussion about the suitability of the extraction of poles associ-
ated with improper modes of the background waveguide. More-
over, the extraction of these types of poles cannot be carried out
by making use of the strategy used thus far in the literature to
extract the pair of poles related to SW modes. In this paper, a
new pole-extraction strategy is presented, which is able to deal
with poles associated with SW, as well as improper modes of
the background waveguide. In addition, a systematic discussion
on which poles must be extracted when searching for each type
of line modes is carried out.

This paper is organized as follows. Section II will briefly
discuss some aspects related to poles and asymptotic behavior
extraction when the DCIT is employed to solve the MPIE
for planar lines. Explicit expressions are given for the spatial
counterparts of each term used in the treatment of the spectral
Green’s functions. In Section III, a thorough discussion on
the sampling paths and the convenience of the pole extraction
is carried out. This study is completed by diverse numerical
results for bound as well as surface- and space-leaky modes.
Finally, the DCIT is applied in Section IV to the analysis of cov-
ered 2-D planar structures. Numerical results for bound/leaky
modes will show that the approximation given by the DCIT for
the spectral Green’s functions is sufficiently accurate leading,
in general, to good agreement with SDA results.

II. ANALYSIS

A. Formulation of the Problem

The transmission line under study (see Fig. 1) consists of
infinitely thin perfect conducting strips embedded in an -layer
planar substrate. All the layers are isotropic dielectrics of per-
mittivity . The usual phase
factor will be assumed for all the fields and currents, with
being the wavenumber along the longitudinal direction and
being the angular frequency.

Following [9] and [15, formulation C], the MPIE for this
problem can be written as

(1)

Fig. 1. Cross section of the multilayer and multiconductor transmission line
under study.

where is the th strip width, is its vertical position,
is the transverse-to- nabla operator, is the compo-
nent of the dyadic Green’s function associated with the mag-
netic vector potential , is the Green’s function associated
with the scalar electric potential , and is the surface elec-
tric current density on the conducting strips. (Due to the choice
of [15, formulation C], which implies , and to
the cylindrical symmetry of the background grounded layered
waveguide, which causes , only the component
of the dyadic Green’s function for is needed to describe, in
general, the case of infinitely thin conductors [9].)

Since the kernels and of the above eigenvalue equa-
tion for are not known in closed form, they are better com-
puted from their spectral-domain counterparts

(2)

( stands for either or ), which can be easily expressed
in closed form using the transmission-line network analogous
[15], [16]. Space-domain kernels are then obtained by per-
forming the following inverse Fourier transform:

(3)

Obtaining an accurate closed form for (3) for any type of mode
is the final goal of this paper.

B. Green’s Functions in the Spectral Domain

Basically, the DCIT [1], [2] is based on the possibility of
finding an approximation of the spectral version of the kernel
in (1) (or of a part of it) in terms of a finite sum of complex
exponentials (the space-domain version of each exponential is
known in closed form). Due to the cylindrical symmetry of the
background waveguide (the waveguide in Fig. 1 without the
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metallic strips), does not depend separately on and ,
but on . Since the DCIT will only work prop-
erly when applied to analytic functions, before attempting the
aforementioned expansion of , this function must be ad-
equately treated and its analytic part identified. First, it should
be reminded that the spectral Green’s function has branch-point
singularities at [16], with being
the free-space wavenumber. In addition, has one pair
of poles corresponding to each background waveguide mode,
whereas has one pair of poles corresponding to each
TE waveguide mode [15, formulation C]. It is also very conve-
nient to extract the asymptotic behavior for large values of
provided that a closed-form expression for its spatial counter-
part can be found.

Relying on physical and/or mathematical arguments, it is
clear that the branch points of the spectral Green’s function can
be removed if is written as a function of

(4)

rather than in terms of ( is the wavenumber along the
-direction in the upper half-space) since this transformation

makes the spectral Green’s function single valued in the
-plane. (It should be noticed that any other choice of

the vertical wavenumber variable, such as using the vertical
wavenumber inside an arbitrary layer of dielectric, would not
be appropriate to reach the above goal). Moreover, the functions
used in the DCIT are exponentials of and the quasi-static
behavior must be written as a function of in order to be
properly extracted [4], [9]. Concerning the extraction of poles,
the variable naturally leads to a different strategy not
having the fundamental limitations inherent to the extraction
by pairs in the -plane used thus far in the literature (these
limitations will be commented upon and discussed further). For
all the above reasons, the choice of as the working variable
makes very natural and readily understandable the expansion
in terms of complex exponentials and the extraction of both the
poles and asymptotic behavior.

Next, it will be shown how to extract an arbitrary set of
poles in the -plane. Since the poles do not
appear in pairs in this plane, they can be extracted from the
spectral Green’s function by simply subtracting the following
sum:

(5)

where is the residue of at , which can be
computed, using Cauchy’s theorem, as

(6)

with being a closed path (CP) around only the pole.
Note that no restriction has been imposed to the nature of the
above poles and, hence, can be any proper/improper pole
of the spectral Green’s function. Despite the convenience of the

above strategy, the authors could not find a closed-form expres-
sion for the spatial counterpart of (see Section II-C). Alter-
natively, the following :

(7)

which does have a closed-form spatial counterpart, can be used
to extract the poles. This strategy is very close to that used thus
far in the literature for 2-D, as well as 3-D problems. How-
ever, it can be appreciated that this function introduces fictitious
poles at . Furthermore, improper poles (poles with

) cannot be extracted by using this alternative
function (see Section II-C for an explanation). The importance
of these facts when searching for bound/leaky modes will be
discussed in Section III, where it is also considered the conve-
nience of employing either (5) or (7).

Concerning the asymptotic behavior of the spectral Green’s
function (namely, the quasi-static limit in the spatial domain),
the following expression is reported in [9]:

(8)

where , for the scalar potential Green’s function, is given by

for

for

for

(9)

and, for the vector potential,

for

for
(10)

If a pole extraction using (5) was carried out, would in-
troduce a new asymptotic term, thus yielding the following
expression for the total asymptotic behavior:

(11)

Once both and have been subtracted from the spec-
tral Green’s function, the remaining function can be now prop-
erly approximated by a finite sum of complex images for given
values of , as follows:

(12)

In practice, function is approximated by a finite
sum of exponentials using, for example, the generalized pencil
of functions (GPoF) method [17]. Since this method requires a
sampling of the function along a path, it will need a criterion
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to choose the regions of the complex -plane in which the
Green’s functions must be sampled. Although this criterion has
been discussed in [1], [2], and [6] for the 3-D problem, a similar
discussion seems to be lacking in the 2-D frame. Section III will
show that this criterion arises naturally and becomes rather clear
when searching for proper, as well as improper/leaky modes by
inspection of the mapping of the suitable SDA integration path
onto the -plane.

C. Green’s Functions in the Spatial Domain

Although no closed-form expression was found for the con-
tribution of in (5) to the spatial Green’s function, it has
been possible to obtain a quasi-analytical expression. The use of
asymptotic and complex plane integration techniques has pro-
vided an efficient algorithm with gives sufficient accuracy with
low computational effort, as explained in the Appendix. On the
other hand, (7) does have a direct closed-form spatial counter-
part in the case of proper poles associated with SW modes of
the background waveguide. Thus, assuming that only one SW
pole is to be extracted, (7) can be rewritten as

(13)

where is the location of the pole in the
-plane (this function has a pair of poles at ). The

spatial counterpart of (13) can be evaluated by a simple residue
calculus for the case of bound, as well as surface-leaky (with re-
spect to this SW mode) modes. Although this computation was
already carried out in [12], it will be reproduced briefly here for
completeness. It is well known in the frame of the SDA [13] that,
for the case of bound modes, the integration path runs along the
real axis of the -plane and, hence, the inverse Fourier trans-
form can be expressed in terms of the pole having .
Otherwise, if the mode is improper with respect to this SW
mode, the integration path no longer lies on the real axis, but it
detours around the pair of SW poles [13], thus taking the residue
of that pole satisfying . These considerations lead
to the following expression for the spatial counterpart of (7):

(14)

where is chosen with negative imaginary part if the mode
is bound and with positive imaginary part if it is improper with
respect to the SW waveguide mode.

Unfortunately, an important drawback of the above pole-ex-
traction strategy is that poles associated with improper wave-
guide modes cannot be extracted. If such a pair of poles were
extracted using (7), a nonexistent pair of poles associated with
a fictitious proper waveguide mode would be unavoidably in-
troduced. Note that similarly when a pair of proper poles are
extracted out, a nonexistent pair of improper poles are also in-
troduced. Nevertheless, this latter case does not pose special
drawbacks because these fictitious improper poles lie on the im-

(a)

(b)

Fig. 2. Two equivalent SDA integration paths when searching for bound
modes.

proper sheet in the -plane, whereas the integration path lies
on the proper sheet. On the contrary, the fictitious pair of proper
poles would account for a new proper SW mode that has an im-
portant effect on the behavior of the Green’s function on the
proper sheet. In consequence, it should be decided how its cor-
responding poles must contribute to the inverse Fourier trans-
form. Nevertheless, any choice about these poles will be mean-
ingless because this mode does not actually exist and cannot
play any mathematical/physical role in our problem. To illus-
trate the above discussion, it will be considered a case where
a pair of poles associated with an improper real mode are ex-
tracted and a bound mode is searched for. For simplicity, it will
be assumed that only the -SW mode is above cutoff at the
working frequency. This situation is depicted in Fig. 2(a), which
shows the Sommerfeld branch cuts, integration path along the
real axis, pair of -SW poles (black crosses), and also the
pair of poles associated with the fictitious mode (grey crosses)
that appear on the proper sheet of the Riemann surface. (It is
convenient to recall that these latter poles are not present in the
spectral Green’s function.) Looking now at Fig. 2(b), the inte-
gration path shown here should be completely equivalent to that
in Fig. 2(a) since any of them can be continuously deformed
to match the other one without capturing any actual singularity
of the spectral Green’s function. However, it is apparent that the
contribution of to the spatial-domain Green’s function is not
the same when using the integration paths shown in Fig. 2(a) and
(b). This ambiguity in , which is caused by the introduction
of a nonexistent pair of proper poles, indicates that the extrac-
tion of poles related to improper waveguide modes by means of
(7) is fundamentally unfeasible.
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Finally, the asymptotic and regular contributions to
the spatial Green’s function can be obtained in closed form after
using identity [9, eq. (11)], which can be rewritten as

(15)

where is the modified Bessel function of the second kind
and order zero and . Thus, by comparison of (15)
with (11) and (12), the spatial counterparts of and are
found to be

(16)

(17)

As was pointed in the above section, the sum term in (16) is
present only if (5) has been used to extract poles. Note that,
due to this sum term, the spatial Green’s function seems to
present a nonphysical logarithmic singularity for when

. This singularity is analytically cancelled by the log-
arithmic singularity of the corresponding exponential integral
functions that appear in the spatial counterpart of (see the
Appendix), which means that only the correct quasi-static sin-
gularity is present in the spatial Green’s functions. In (16) and
(17), must be chosen with negative imaginary part if the
mode is bound or surface leaky and with positive imaginary part
for space-leaky modes [12].

III. DISCUSSION ON SAMPLING PATHS AND POLE EXTRACTION

In [1]–[4], a single straight-line sampling path was used to ap-
proximate the spectral Green’s functions (one-level approach)
by means of the DCIT. A two-level approach based on a double-
scale sampling of a single straight line was then proposed by
Kipp and Chan in [5]. Later, Aksun showed in [6] that a two-
level approach using a sampling path now composed of two
straight lines was very convenient to overcome some difficul-
ties associated with the robustness and efficiency of the former
approach. This latter scheme showed a very good performance
when used in the subsequent works devoted to the specific ap-
plication of the DCIT to solve 2-D planar and nonplanar trans-
mission-line problems [8]–[12]. This approach is then adopted
in this study and our discussion will focus on how to choose suit-
ably the two straight lines of the sampling path when searching
for the different types of line modes. This discussion will be
based on the study of the regions of the -plane explored by
the -plane integration paths used in the SDA formulation to
carry out the inverse transform (3) for each type of modes.

(a)

(b)

Fig. 3. (a) Two-level sampling path suitable for proper modes proposed in this
paper. (b) The sampling path used in [8]–[12].

A. Bound Modes

Bound (proper) modes are obtained in SDA by performing
the integral in (3) along the real axis on the proper sheet
of the -plane . Taking into account
(4) and that, for these modes, is real and greater than
the propagation constant of any SW mode at the working
frequency, the mapping of the above integration path onto the
complex -plane corresponds to values of lying on the
negative imaginary axis from to . The upper
limit lies near and below the value associated with
the -SW wavenumber. Thus, the appropriate two-level
sampling path should have both sampling segments on the
negative imaginary axis. Such a path, which will be referred
to as , is illustrated in Fig. 3(a), whereas Fig. 3(b) shows
the path used in [8]–[12] following [6]. Since the
poles associated with SW modes lie in the portion of the
negative imaginary axis where ,
with , a suitable choice for the
starting point of the upper sampling segment (the fine sampling
region) is . Values of and can be
chosen to be and (long-term sampling region),
respectively, and can be taken about . The values
given above have been tested in very different situations (a wide
range of frequencies, number of layers and/or strips, permittiv-
ities, etc.) and they have always given a good performance. The
gap between both sampling segments is convenient because,
according to the two-level sampling scheme, the function has
been already approximated in when the approximation in
the upper sampling segment is carried out. If was chosen to
be equal to , the function to be approximated in this second
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Fig. 4. Normalized phase constant for the structure shown with " = 9:8" ,
" = 12:5" , h = h = 0:635 mm, w = 3 mm, w = 2 mm, and
d = 2:5 mm.

segment would present an abrupt decay at that
may lead to an inaccurate second-level approximation.

For 2-D problems, in [9], the convenience of extracting all
SW poles, similar to what happens for 3-D structures, was
pointed out. The reason argued was that complex exponentials
are not able to accurately reproduce the behavior associated
with these poles in the spectral domain. A careful analysis
will show that this is true only if path is used for sampling
and that the spectral Green’s function can be very accurately
approximated along the sampling path without extracting
the SW poles. Moreover, the required number of complex
exponentials turns out to be quite low when is employed.
Certainly, this strategy could fail when the pole lies very
close to . Nevertheless, our experience suggests that this
drawback is only important for frequencies at which at least
three SW modes are above cutoff. Even in such a case, this
problem can be overcome by extracting only the pole.
This extraction can be carried out using (7) since the added
nonexistent pole will lie on the positive imaginary axis, far
away from the sampling path and, therefore, it is not expected to
affect the quality of the approximation. Evidently, the problem
reappears when the first higher SW mode approaches ,
although it only occurs when six or more SW modes are above
cutoff, a situation not very common in practice. When the
traditional path is employed, all the poles must be extracted
in order to assure that the possible “good” approximation given
by the GPoF in the upper segment of is still accurate on
the upper segment of , precisely over the region of interest.
Since this latter region of the -plane is part of the actual
region for which the Green’s function must be accurately
computed, any robust strategy must ensure the approximation
within this portion of the -plane to be accurate enough.

The above ideas are illustrated in Fig. 4, which shows the
computed values obtained for the normalized phase constant

of the fundamental quasi-odd mode of a two-layer two-
strip line. The values of the parameters of the and sam-

TABLE I
RESULTS OBTAINED FOR THE FUNDAMENTAL MODE OF A SINGLE-STRIP

SINGLE-LAYER TRANSMISSION LINE WITH " = 9:8" , h = 0:635 mm,
w = 3 mm, AND Freq = 32 GHz. SDA RESULT: k = 3:0342k

pling paths used in this calculations were ,
, , and , the total number of expo-

nentials used to approximate the spectral Green’s function up
to 70 GHz is seven—three for the first sampling segment and
four for the second one—and one more exponential is added
to approximate the second sampling segment above 70 GHz.
The cutoff frequency of the third SW mode of the background
waveguide is approximately 37 GHz (the arrows on the hori-
zontal axis indicate the cutoff frequencies of the higher order
SW modes). For frequencies below 37 GHz, Fig. 4 shows an ex-
cellent agreement between the data obtained using without
extracting any SW pole and the SDA analysis (which can be
considered exact for our purpose). Beyond 37 GHz, the approxi-
mation given by without pole extraction deteriorates sensibly
and can become unstable in some instances, as indicated by the
two spurious values obtained for 52.5 and 55 GHz. On the other
hand, the approximation involving and the extraction of just
the -SW poles gives an excellent agreement with the SDA
results in all the high-frequency range (note that, at 80 GHz, five
SW modes are above cutoff). On the contrary, the results given
by when the -SW mode is extracted out are reliable only
for frequencies below the cutoff frequency of the first higher SW
mode, thus showing that all the poles should be extracted when
this path is used. To give an idea of the computational efficiency
of the present proposal, the CPU time employed on average to
compute each value represented in Fig. 4 by means of a highly
optimized SDA algorithm is at least three times longer than that
required by the proposed algorithm on the same platform.

As a further proof of the suitability of this strategy, Table I
shows the results obtained for the fundamental mode of a mi-
crostrip line using without pole extraction and with pole
extraction, respectively. It has been chosen ,

, , and . and are, respectively,
the number of exponentials used in the first- and second-level
approximation. The SDA result for the propagation constant of
the fundamental mode of this microstrip line is .
It can be observed that the use of makes the algorithm more
robust in the sense that, although no SW pole extraction has
been carried out, a lower number of complex exponentials is
needed to give more accurate results. In fact, note that the rela-
tive error obtained when employing is still below 10 with
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(a) (b)

(c)

Fig. 5. (a) Integration path in the complex k -plane for surface leaky modes.
Two SW modes of the background waveguide are above cutoff although only
the dominant mode is detoured around. (b) Mapping of the above integration
path onto the complex k -plane. (c) Proposed fixed sampling path.

only three exponentials, whereas the results obtained by sam-
pling along show that at least nine exponentials are required
to give a comparable precision. (No more than five significant
digits have been achieved in the computation of the real part of

by means of DCIT for the parameters used in the table.) The
structure in Table I has also been analyzed in [18], where the
propagation constants for the fundamental and first two higher
order modes are provided for several frequencies. Those results,
which are particularly accurate, have been reproduced within, at
least, four significant digits by using the sampling path pro-
posed in this paper without extraction of poles. This strategy is,
in the worst case, at least as efficient as using the path in [9]
(which requires pole extraction).

B. Surface-Leaky Modes

It is well known that the -plane integration path used in
SDA to compute surface-leaky modes does not lie along the
real axis, but it detours around the poles that contribute to the
lateral radiation, although still lying on the proper Riemann
sheet [13]. A typical integration path of this type is illustrated
in Fig. 5(a) for the simplest case when lateral radiation takes
place in the form of the dominant -SW mode of the back-
ground waveguide although another SW mode is also above
cutoff. The excursion of the integration path in the complex

-plane outside the real axis is mapped onto the -plane as
an excursion of in the third quadrant starting at the point

, as shown in Fig. 5(b).
According to this, it is apparent the convenience of choosing a

sampling path whose upper sampling segment runs into the third
quadrant starting at . Such a path will then depend
on and, therefore, it would imply a different sampling path
and a new GPoF approximation for each value of during the

searching process of the line propagation constant. It is then
preferred a sampling path like in Fig. 5(c), which can be fixed
for the whole process, although it will oblige us to extract all the
SW modes for the same reasons adduced for the case of bound
modes using . Clearly, the poles associated with the lateral
radiation should be taken with and the remaining
ones with . The poles can be safely extracted making
use of (7) according to the rationale explained in Section III-A.

If a sampling path like was used, all the SW poles should
be also extracted out, although it would be advisable to carry out
this extraction by means of (5). This is because the nonexistent
poles introduced by (7) may, in general, cause the approxima-
tion obtained along the upper sampling segment of to not
give accurate results in the region of interest in the third quad-
rant of the complex -plane. For the same reasons, if some
real improper mode is not far enough from the -plane origin,
it must also be extracted. Of course, this latter extraction must be
done using (5) since (7) is not able to deal with improper poles.
To illustrate these ideas, Table II shows the results obtained for
the propagation constant of a surface-leaky mode of a microstrip
line by extracting the SW poles using either (7) or (5). Both
and are delimited by , , and .
It can be observed in Table II(A) that the results obtained by
using the sampling path are very accurate and convergent,
while those obtained by means of are quite poor because
of the nonexistent poles introduced by the pole extraction and
the existence of an improper real mode at . In
Table II(B), this improper real pole has been also extracted. Note
that, in this table, the results obtained with are as accurate as
those in Table II(A), but the values obtained by sampling on
are now more accurate as a consequence of a suitable extraction
of both the improper real and SW pole. Apart from the improve-
ment of the results with respect to those in Table II(A), note
that the values obtained by means of keep on being more ac-
curate and convergent.

It should be pointed out that the above results correspond to
values of the starting point of the sampling path located
near the negative real axis ( for the
SDA value). For values of near the imaginary axis, a
fixed sampling path like that depicted in Fig. 6, which will be
referenced as , becomes more suitable. In such a case, it is
apparent that the robustness of the approximation given by the
sampling path is less affected by either the presence of the
improper real pole or the false poles introduced because of the
use of (7). Thus, the results are accurate enough whether or

is used, but as far as samples the spectral Green’s function
in the zone of interest, this latter sampling path is preferable.
The results reported in Table II were chosen with a value
near the real axis with the aim of highlighting the advantages of
the new pole extraction strategy and sampling paths presented
in this study.

C. Space-Leaky Modes

Spatial leaky modes can be obtained using the DCIT just by
choosing , which causes fields to grow in the vertical
direction [12]. For the mode to be physically valid (i.e., for it to
be excited by a practical source), must be chosen pos-
itive for all the SW modes of the background waveguide [13].
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TABLE II
RESULTS OBTAINED FOR A SURFACE LEAKY MODE OF A SINGLE MICROSTRIP

LINE WITH " = 9:8" , h = 0:635 mm, w = 3 mm, AND Freq = 32 GHz.
THE VALUE OBTAINED BY SDA IS k =k = 0:2274� j0:9081

Fig. 6. C sampling path suitable for values of k near the imaginary axis.

In the case of space-leaky modes, the SDA -plane integra-
tion path detours around the branch points crossing the Som-
merfeld branch cuts and, therefore, lying partially on the im-
proper sheet [13], as shown in Fig. 7(a). The fact that part of

(a) (b)

(c)

Fig. 7. (a) Integration path for spatial leaky modes. (b) Mapping of the
integration path onto the k -plane. (c) Suitable k -plane sampling path.

the integration path runs along the improper sheet of the com-
plex -plane causes the corresponding mapped values in the

-plane to be located on the first quadrant [see Fig. 7(b)]. The
values of corresponding to the proper part of the integration
path will lie near the negative imaginary axis of the -plane.
As a consequence, a suitable sampling path could be that shown
in Fig. 3(b), but with the starting point located in the
zone to allow for the second-level step of the approximation to
explore the first quadrant. Such a path is depicted in Fig. 7(c)
and will be denoted as . Following the arguments given in
previous sections, when is used, all the SW poles must be
extracted by means of (5) to assure accurate results. However,
our experience suggests that, whichever or was used, it
is the extraction of poles associated to leaky waves (LWs) of the
background waveguide what actually gives accurate results in a
wide variety of situations. Since LW poles lie on the first quad-
rant of the -plane, they may interpose between and the

-plane zone involved in the inverse transform or they may
lie in the near vicinity of for a given frequency range. As
a consequence, the second-level approximation of the spectral
Green’s function may be either not extendable to the region of
interest when using or simply poor and unstable when the
sampling path is . It is then very convenient to extract those
LW poles lying on the low-value range of the -plane first
quadrant. As a heuristic criterion, it has been found that the LW
modes with must be extracted in order to assure
proper results when either or is used to sample the spec-
tral Green’s function.

As a numerical illustration of the above ideas, consider the
two-layer microstrip line whose parameters are give in Table III.
At 55 GHz, the background waveguide presents a TM-LW mode
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TABLE III
RESULTS OBTAINED FOR A SPACE-LEAKY MODE OF A TWO-LAYER

MICROSTRIP LINE WITH " = 9:8" , " = 12:5" , h = h = 0:635 mm,
w = 3 mm, AND Freq = 55 GHz. THE CORRESPONDING SDA VALUE IS

k =k = (1:027 � j0:058)

at and a TE-LW mode at
. When the propagation constant is computed

using a -like sampling path, no mode is found near the SDA
value unless the LW poles were previously extracted. On the
other hand, if the sampling path is , but without LW poles
extraction, values with less than 1% error are achieved for
between 2–6 and and no mode is found near the
SDA value for other ranges of and . These facts indi-
cate that although is more suitable than , the approxima-
tion of the spectral Green’s function is unstable when using
and not valid for unless the LW poles are extracted. Thus,
Table III shows the results obtained by using and with

, , , and when
the aforementioned LW poles, as well as the three SW poles
are extracted using (5). As no LW pole is now distorting the
second-level approximation when using , the results obtained
for this sampling path are in very good agreement with SDA.
Similarly, since no LW pole is now between and the region
involved in the inverse transform, the propagation constant com-
puted by using converges properly to the SDA value. This
convergence is slightly faster when is used, which indicates
that this latter sampling path is more appropriate.

IV. COVERED STRUCTURES

This section will analyze the possible extension of the DCIT,
previously developed for grounded lines, to the case of covered
structures (namely, structures having a top ground plane). It has
been widely argued that the good performance of the DCIT to
give closed-form expressions for the spatial Green’s function of
a horizontal electric dipole in 3-D multilayered structures relies
on the convenience of a field expansion in the upper half-space
in terms of spherical waves [14]. Although this assumption is
no longer strictly valid for covered structures and, therefore, it
could be somewhat expected for the DCIT to work properly only
for open structures, this technique has also been applied in [19]
to deal with covered 3-D structures. This study showed that,

TABLE IV
SDA AND DCIT RESULTS FOR THE PROPAGATION CONSTANT OF THE

FUNDAMENTAL MODE IN THE STRIPLINE SHOWN IN THE INSET OF FIG. 8(a)
WITH " = 10" , " = " , h = 1 mm, h = 0:5 mm, AND w = 3 mm

despite the lack of a rigorous physical background, the DCIT
provided a sufficiently accurate mathematical expansion for the
spatial Green’s functions. This same rationale will be here used
to extend the DCIT analysis of previous sections to study the
propagation characteristics of covered 2-D guiding planar struc-
tures (such as that shown in Fig. 1, but covered with an upper
electric wall). Next, some questions concerning the analysis of
such structures, together with some results for bound and leaky
line modes will be shown.

A. Analysis

It is well known that the spectral Green’s functions of covered
planar structures can be expressed in terms of even functions of
the vertical wavenumber associated with each layer [16], which
causes these functions to not have branch points in the -plane,
unlike what happens for open structures. Thus, the expansion of

in terms of complex exponentials can be carried out using the
vertical wavenumber of any layer as the variable of the expan-
sion. Specifically, the choice in this study will be to express the
spectral Green’s function in terms of the vertical wavenumber
associated with the layer of maximum permittivity . The
reason for choosing this variable is to enforce that all the prop-
agative modes of the background waveguide lie on the real axis
of the complex plane (if another vertical wavenumber
was used, these propagative modes will be located on the real,
as well as on the imaginary axes). In consequence, all the ex-
pressions in Section II-B and C can now be used after substi-
tuting by . It should be noticed that, because of the
evenness of the spectral Green’s function, the natural strategy
to now extract the poles is that in (7).

B. Results

Table IV shows a comparison between the SDA and DCIT
results obtained for the propagation constant of the fundamental
mode of a two-layer stripline. An excellent agreement has been
found between both methods in the whole frequency range up
to 120 GHz. The DCIT results have been obtained by using a
sampling path of the type, but with the starting point of the
upper segment almost reaching the origin of the complex plane
since . The number of exponentials used
in each sampling segment has been adjusted to assure that the
spectral Green’s functions are approximated with at least four
significant figures.
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(a)

(b)

Fig. 8. Comparison between the results obtained for the normalized: (a) phase
and (b) attenuation constants of a leaky mode for the covered structure
previously analyzed in Table IV.

The DCIT has also been found to be efficient in studying the
leaky regime in covered structures. Thus, Fig. 8(a) and (b) shows
the results of the normalized phase and attenuation constants of
a leaky mode present in the covered structure previously ana-
lyzed in Table IV. The lateral radiation of this leaky mode takes
the form of only the dominant mode of the parallel-plate
waveguide and its propagation constant has been computed by
using a sampling path of the type.

V. CONCLUSIONS

This paper has presented a number of rules for the efficient
application of the DCIT to approximate the kernel of the MPIE
resulting from the analysis of 2-D planar transmission lines in
layered media. It has been found that the path proposed thus far
in the literature to sample the spectral Green’s functions is not
the most appropriate. Thus, new suitable sampling paths have
been proposed for both the bound and leaky regimes. For bound
modes, the use of these sampling paths allows to avoid the ex-
traction of poles of the spectral Green’s functions, whereas all
the SW poles must be extracted when dealing with surface-leaky
modes of the transmission line. For space-leaky modes, it has

been found that some poles associated with LWs of the back-
ground waveguide must also be extracted. A new pole-extrac-
tion strategy was then presented in order to make feasible the
extraction of the poles associated with these improper modes.
The DCIT has also been applied to study covered 2-D planar
transmission lines. A good numerical performance of this tech-
nique has also been found in this case.

APPENDIX

The spatial counterpart of the function employed to extract
the poles (5) is given by

(18)
which renders the following integral to be computed:

(19)

The integrand in (19) has branch points at and

poles at corresponding to ei-
ther proper or improper modes. First, it will assumed that the
pole under consideration corresponds to a proper SW mode. If
the line mode under consideration is a bound mode, the integral
in (19) must be performed along the real axis, whereas if the
mode is a surface/space-leaky mode, the integration path must
be such as that shown in Figs. 5(a) and 7(a). If , the in-
tegrand in (19) decays exponentially to zero as
and, thus, the integration path can be continuously deformed
downwards through the -plane to give the equivalent paths
shown in Fig. 9(a)–(c). It can be easily verified that, for the case

, analogous expressions as those presented in the fol-
lowing are achieved by similarly deforming the integration path
upwards through the -plane. For this reason, will be
substituted next by . Note that the equivalent integration
paths in Fig. 9(a)–(c) consist on a CP that encircles a pole plus a
steepest descent path (SDP). The integral in (19) can, therefore,
be rewritten as

(20)

The integral can be evaluated by a simple residue calculus
yielding

(21)

where is the location of the enclosed pole in the -plane;
namely, for bound modes and for
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(a) (b)

(c)

Fig. 9. Equivalent integration paths for: (a) bound, (b) surface-leaky, and
(c) space-leaky modes. Black/grey colors denote that the integration path lies
on the proper/improper sheet.

leaky modes, similar to [12]. Introducing the change of variable
, can be conveniently expressed as

(22)

where ; for bound and
surface-leaky modes and for space-leaky modes.
For , it is clear that

. This asymptotic behavior can now be extracted
from to give

(23)

where

(24)

(25)

The fraction in the integrand of (25) can be split into a sum of
two fractions that give rise to two integrals having closed-form
expressions [20] as follows:

(26)

where , , and is the
exponential integral function. The remaining integral has to
be computed numerically, although it is rapidly convergent since
the asymptotic behavior has been extracted out. Thus, (24) can
be quickly computed with low computational effort by using,
for instance, a Gauss–Kronrod adaptive quadrature scheme.

In the case of poles associated with improper real modes in
(19), the poles of in the -plane lie on the hyperbola de-
fined by (just as the SW poles), although located
on the improper sheet and, thus, they are never captured by the
integration path. Consequently, for improper real poles, only
the SDP contribution is present. Concerning the extraction of
LW modes, the CP contribution has to be included as long as
the corresponding pole is enclosed as the SDA integration path
is continuously deformed to an SDP. It is clear that this term
will never be present when searching for bound or surface-leaky
modes, but, in the case of space-leaky modes, a former study of
the SDA integration path together with the location of the poles
to infer whether it is (or not) present becomes necessary.

The final quasi-analytical expression for the inverse trans-
form of can then be written as

(27)

where if the pole is (not) enclosed according to
the above discussion.
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