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Abstract: A straightforward method for the preparation of trisphosphinite ligands in one step, using
only commercially available reagents (1,1,1-tris(4-hydroxyphenyl)ethane and chlorophosphines) is
described. We have made use of this approach to prepare a small family of four trisphosphinite
ligands of formula [CH3C{(C6H4OR2)3], where R stands for Ph (1a), Xyl (1b, Xyl = 2,6-Me2-C6H3),
iPr (1c), and Cy (1d). These polyfunctional phosphinites allowed us to investigate their coordination
chemistry towards a range of late transition metal precursors. As such, we report here the isolation
and full characterization of a number of Au(I), Ag(I), Cu(I), Ir(III), Rh(III) and Ru(II) homotrimetallic
complexes, including the structural characterization by X-ray diffraction studies of six of these
compounds. We have observed that the flexibility of these trisphosphinites enables a variety of
conformations for the different trimetallic species.

Keywords: phosphinite; multidentate ligands; polymetallic; supramolecular chemistry; trimetallic;
coordination polymer

1. Introduction

The design of new classes of multidentate ligands has attracted much attention over the previous
decades in the context of supramolecular chemistry. Owing to the rigidity and predictable geometries
adopted by nitrogen and oxygen donors, those have been primarily selected to construct well-defined
self-assembled architectures relying on metal-ligand coordination [1–5]. In contrast, multidentate
phosphines have been explored to a lesser extent, despite the prominent position that their monovalent
versions occupy in organometallic chemistry and homogeneous catalysis. Regardless of their more
limited use, the unique features that polydentate phosphines offer (i.e., superior flexibility, irregular
topologies, chirality, 31P NMR analysis), have led to a rich variety of supramolecular structures derived
from metal coordination [6], including cages [7–10], porous solids [11,12], helicates [13,14], coordination
polymers [15–17], and even a chiral nanocluster [18]. Besides, many of these polymetallic structures
reveal a remarkable capacity for molecular recognition and sensing [19,20], interesting photochemical
properties [21–24], or catalytic applications [25].

With all this in mind, it is somehow surprising that related multidentate phosphinites
have barely been investigated. Phosphinites (PR2(OR)) were identified as valuable ligands long
after the widespread use of phosphines. Their superior π-acceptor ability confers the resulting
metal complexes distinctive electronic features that have been broadly exploited for catalytic
applications [26,27]. Besides, the reduced σ-donating capacity of phosphinites compared to phosphines
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may facilitate accessing well-defined supramolecular structures in a more selective manner by dynamic
coordination-dissociation behavior in solution. In addition, multidentate phosphinites could be further
exploited for anchoring homogeneous catalysts to oxide surfaces [28,29] by one or several of their
PR2(OR) functionalities. The use of polypodal phosphorus ligands is particularly appealing in this
context [30].

To the best of our knowledge, the limited number of multidentate phosphinite systems capable of
binding more than two metals [31] mostly rely on the chemistry of functionalized calixarenes [32–35],
with clear catalytic potential [36]. In a more recent study, a triruthenium complex constructed around a
tridentate aminophosphine–phosphinite ligand was recognized as an efficient homogenous catalyst in
transfer hydrogenation reactions [37]. To better understand the chemistry of these underdeveloped
systems, we decided to synthesize several homotrimetallic complexes stabilized by a family of tridentate
phosphinites. An additional advantage of phosphinites, compared to more traditional phosphines,
is the easiness of the experimental procedures by which these ligands can be prepared. Polydentate
phosphines are laborious to synthesize, often lack selectivity, and require the use of highly reactive
reagents [9,38–42]. In stark contrast, we report herein a simple and versatile method to prepare several
tridentate phosphinites by common procedures [43], in one-step, and from commercially available
reagents. The coordination chemistry of these ligands, with a range of transition metal precursors, is
also described.

2. Results and Discussion

2.1. Synthesis of Tripodal Phosphinites

We have focused on a family of trisphosphinites derived from the condensation of commercially
available and affordable 1,1,1-tris(4-hydroxyphenyl)ethane, with several chlorophosphines under basic
conditions in good yields (63–84%; Scheme 1). This method contrasts with traditional approaches
for the preparation of trisphosphines, which require several synthetic steps and the use of aggressive
reagents [9,38–42]. The synthetic procedure is highly versatile and permits the incorporation of phosphines
bearing both aliphatic and aromatic substituents, including sterically congested functionalities, such as
the two xylyl (2,6-Me2-C6H3) groups per phosphorus center in trisphosphinite 1b. While trisphosphinites
1a and 1c could be readily prepared using triethylamine as the base, after overnight stirring, ligands
derived from the bulkier halophosphines PCl(Xyl)2 and PClCy2 required the use of sodium hydride and
longer reaction times. Trisphosphinites 1a–d were fully characterized by multinuclear NMR spectroscopy
(see Section 3 and Supplementary Materials for details). A single 31P{1H} NMR resonance at around 112
ppm was recorded for trisphosphinites 1a and 1b bearing aromatic substituents, while it shifted to higher
frequencies (ca. 146 ppm) for 1c and 1d, as expected for phosphinite ligands with aliphatic fragments. To
avoid oxidation and increase the overall yield of the trimetallic transition metal complexes, these ligands
were typically used after its formation without further purification. However, we managed to grow single
crystals of the more sterically congested ligand of the family (1b) that were suitable for X-ray diffraction
studies. The corresponding ORTEP diagram is depicted in Figure 1 and evinces the C3 geometry of the
trisphosphinite. The P—O bond distances account for around 1.66 Å, while the P—O—CAr angles are not
identical, varying from 117.50(15)◦ (C28—O2—P2) to 123.18(15)◦ (C50—O3—P3), though the differences
do not seem significant.
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phosphorus centers are directly bound, has permitted the design of trimetallic synthons to construct 
more complex supramolecular structures in a predictable manner [6]. Besides, the C3-symmetry of 
those systems can be used to attain genuinely chiral cages [44]. The C3-trisphosphinites prepared 
herein introduce an additional degree of structural flexibility that could be an advantage to search 
for unusual patterns of self-assembly or to access novel supramolecular architectures. However, 
before entering into that matter, it is necessary to better understand the coordination chemistry of 
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2.2. Synthesis and Characterization of Trimetallic Complexes

Many of the reported supramolecular structures built over polydentate phosphines contain rigid
backbones. The introduction of those rigid cores, such as a phenyl or triazine ring to which the
phosphorus centers are directly bound, has permitted the design of trimetallic synthons to construct
more complex supramolecular structures in a predictable manner [6]. Besides, the C3-symmetry of
those systems can be used to attain genuinely chiral cages [44]. The C3-trisphosphinites prepared
herein introduce an additional degree of structural flexibility that could be an advantage to search
for unusual patterns of self-assembly or to access novel supramolecular architectures. However,
before entering into that matter, it is necessary to better understand the coordination chemistry of
trisphosphinites 1. To do so, we decided to prepare a series of trimetallic complexes derived from
common late transition-metal precursors.

The reaction of 1a with group 11 metal precursors in a 1:3 molar ratio produced the
corresponding trimetallic complexes (Scheme 2). The reaction between 1a and [AuCl(THT)] (THT =

tetrahydrothiophene) in dichloromethane yielded [CH3C{(C6H4OPPh2)AuCl}3] (2a) as an air-stable
white powder in excellent isolated yield (95%). Following a similar procedure, the related silver
compound [CH3C{(C6H4OPPh2)3Ag(OTf)}3] (3a) (OTf− = OSO2CF3

−; triflate) was isolated in 72% yield
by using AgOTf as the metal precursor. This species was less stable than 2a under ambient conditions,
though it could be handled under air for moderate periods of time. At variance, reaction with CuCl,
led to the formation of an insoluble white solid upon concentration of the resulting dichloromethane
solution under vacuum. This may result from the formation of a coordination polymer (4a) based
on the binding of two phosphinite ligands to each of the copper atoms, as previously reported for
polydentate phosphines [45–48], and even for a related bisphosphinite ligand [49]. This solid could be
conveniently washed with hexane and dissolved in CDCl3 to be characterized by NMR spectroscopy,
though subtle variations in temperature or concentration caused the formation of less tractable viscous
solutions. Distinctive 31P{1H} NMR resonances were recorded at 112.8 (2a), 120.6 (3a), and 96.1 (4a)
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ppm, in agreement with previous related compounds [49,50], while 1H NMR spectra did not reveal
unusual patterns. A distinctive feature that remains constant along all the compounds studied in
this work is the decrease in the scalar coupling constant 1JCP of the carbon centers directly bound
to the phosphorus nuclei upon metal coordination. Thus, while this value accounts for 18 Hz in
1a, it drastically increases in the corresponding trimetallic species (2a, 70 HZ; 3a, 38 Hz; 4a, 81 Hz).
Interestingly, 1H, 1H NOESY studies support the proposed polymeric structure of 4a (Figure 2). As
expected, compounds 2a and 3a exhibit a single correlation peak of opposite phase to the diagonal
signals that connect the apical methyl group of the ligand backbone and one of the aromatic protons
of the three O-phenyl rings. At variance, compound 4a reveals several cross peaks that couple the
same methyl group with all aromatic signals of the 1H NMR spectrum (Figure 2). Moreover, those
correlation peaks present the same sign as the diagonal signals [51], altogether supporting the notion
of 4a as a polymeric structure.Molecules 2019, 24, x 4 of 16 
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The molecular structure of 2a was further authenticated by X-ray diffraction studies after its
crystallization by slow diffusion of pentane over a benzene solution of the compound. Its ORTEP
diagram is depicted in Figure 3a. The flexibility of the trisphosphinite is evinced by the different
orientations adopted by the Au-Cl termini as a result of the rotation along the C—O and O—P bonds.
Thus, the three gold centers appear completely alternate, at variance with the free ligand 1b (Figure 1),
where the orientation of the three lone pairs is convergent [9]. The three P—Au—Cl fragments display
normal bond distances, and the expected linear orientation, without any significant distortion (ca.
175◦). The structure does not contain aurophilic interactions (shortest Au···Au contacts of around
4.28 Å), but the presence of weak C—H/π interactions led to the one-dimensional supramolecular chain
along the a axis represented in Figure 3b. Each trigold molecule is connected to another two along the
a direction by two C—H/π interactions characterized by H···C(sp2) distances of around 2.74 Å, as well
as dH···centroid from 3.37 to 3.60 Å; and C—H···centroid angles between 122 and 131◦.
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Figure 3. (a) ORTEP view of the solid structure of compound 2a with thermal ellipsoids set at
50% probability. Hydrogen atoms have been excluded for the sake of clarity. Selected bond
distances (Å) and angles (◦): Au1–P1, 2.214(3); Au1–Cl1, 2.279(4); Au2–P2, 2.228(3); Au2–Cl2, 2.290(3);
Au3–P3, 2.219(3); Au3–Cl3, 2.277(3); P1–O1, 1.631(8); P2–O2, 1.621(7); P3–O3, 1.618(8); P1–Au1–Cl1,
177.66(13); P2–Au2–Cl2, 173.51(11); P3–Au3–Cl3, 177.91(11); O1–P1–Au1, 114.0(3); O2–P2–Au2, 111.0(3);
O3–P3–Au3, 115.0(3); (b) intermolecular weak C—H/π interactions (red dotted lines) that produce 1D
supramolecular chains of 2a along [1 0 0].
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To gain further insights into the coordination chemistry of trisphosphinite 1a, we next
focused our attention on other common late transition metal precursors. Reactions of 1a with
[(η5-C5Me5)MCl2]2 (M = Rh, Ir) and [Ru(p-cymene)Cl2]2 produced the corresponding trimetallic
compounds [CH3C{(C6H4OPPh2)Rh(η5-C5Me5)Cl2}3] (5a), [CH3C{(C6H4OPPh2)Ir(η5-C5Me5)Cl2}3]
(6a), and [CH3C{(C6H4OPPh2)Ru(p-cymene)Cl2}3] (7a) in moderate to good yields (Scheme 3). In
contrast, reaction with either [Pt(dmso)2Cl2] or [Pt(SMe2)2Cl2] did not lead to clean reaction products,
whereas precursors [Pd(C6H5CN)2Cl2] and [Pd(COD)Cl2] (COD = 1,5-cyclooctadiene) yielded 8a
resulting from C—O bond cleavage at trisphenol 1a in the presence of adventitious water, as previously
reported for a related system [49].
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Coordination of the rhodium and ruthenium precursors to 1a did not lead to a significant variation
of the 31P{1H} NMR spectra of the resulting complexes, which displays resonances at ca. 114 ppm (c. f.
110.5 ppm for 1a). Nevertheless, coordination of the rhodium precursor was evinced by a strong scalar
coupling to phosphorus, with the 31P{1H} signal appearing as a doublet (1JPRh = 170 Hz) for 5a. In turn,
the 31P{1H} resonance of the triiridium complex 6a appeared considerably downshifted at 72.3 ppm.
As discussed above, formation of the trimetallic species could be additionally inferred from an increase
(ca. 30–60 Hz) of the values of the scalar coupling (1JCP) observed for the 13C{1H} NMR resonances
arising from the carbon atoms directly bound to the phosphorus nuclei. Other spectroscopic features
can be consulted in the Section 3.

The molecular formulation of these three complexes was further confirmed by X-ray diffraction
studies (Figure 4). Suitable crystals of compounds 5a and 6a were grown from slow diffusion of
diethyl ether into their dichloromethane solutions at −30 ◦C, whereas crystals of 7a were obtained from
diffusion of pentane into a dichloromethane/acetone solution of the compound at the same temperature.
The C3-symmetry of the three complexes is crystallographically maintained, with the three structures
grown in trigonal space groups (i.e., P-3 for 5a and 6a; R3 for 7a). At variance with the structure of the
trigold compound 2a, the orientation of the three P—M fragments is convergent, with all the metal
units pointing to the opposite direction of the C—CH3 terminus, which also contrasts with the free
ligand 1a (Figure 1), where the phosphine lone pairs are oriented towards the opposite direction. As
occurs in the structure of 2a, there are no metal-metal interactions, either intra- or intermolecularly (all
intermetallic distances > 4.5 Å). Bond angles and distances lie within normal values for monovalent
phosphinite complexes of these metals. The structures of 5a and 6a are basically equal, with P—O
bond distances of 1.63 Å and M—P lengths of 2.283(2) and 2.261(2) Å, respectively. The M—P—O are
also almost identical, with values of 116.16(14) (5a), 115.89(16) (6a), and 115.2(3)◦ (7a). As expected, the
iso-propyl groups of the cymene fragments in 7a are oriented away from the C3 rotation axis to reduce
steric constraints.
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Figure 4. ORTEP view of the solid structure of compounds 5a, 6a, and 7a with thermal ellipsoids
set at 50% probability. Hydrogen atoms and solvent molecules have been excluded for the sake of
clarity. Selected bond distances (Å) and angles (◦): Compound 5a: Rh1–P1, 2.2829(16); Rh1–Cl1,
2.3945(15); Rh1–Cl2, 2.4017(16); P1–O1, 1.619(4); P1–Rh1–Cl1, 95.44(5); C1–Rh1–Cl2, 155.27(17);
P1–Rh1–Cl2, 91.64(6); Cl1–Rh1–Cl2, 88.57(6); Compound 6a: Ir1–P1, 2.2611(17); Ir1–Cl1, 2.4047(13);
Ir1–Cl2, 2.4114(15); P1–O1, 1.625(5); C1–C2, 1.581(14); C1–Ir1–P1, 111.11(18); P1–Ir1–Cl1, 95.92(5);
P1–Ir1–Cl2, 92.08(6); O1–P1–Ir1, 115.89(16); Compound 7a (selected from the two independent molecules
in the asymmetric unit): Ru1–P1, 2.305(3); Ru1–Cl2, 2.403(3); Ru1–Cl1, 2.418(3); Ru2–P2, 2.300(3);
Ru2–Cl4, 2.410(3); Ru2–Cl3, 2.414(3); P1–O1, 1.637(7); P2–O2, 1.651(7); C2–C1, 1.550(19); P1–Ru1–Cl2,
82.72(9); P1–Ru1–Cl1, 92.94(9); Cl2–Ru1–Cl1, 88.98(10); P2–Ru2–Cl4, 82.69(9); P2–Ru2–Cl3, 93.08(9);
Cl4–Ru2–Cl3, 88.89(10); O1–P1–Ru1, 114.7(3); O2–P2–Ru2, 115.3(3).

Despite the high similarity of the molecular structures of compounds 5a, 6a, and 7a, the pattern of
weak interactions that define their crystal packing differs considerably. For 5a and 7a, the trimetallic
molecules are not interconnected by direct interactions, instead the presence of considerable amounts
of solvent molecules prevents the establishment of an extended covalent network. However, the
presence of numerous π-π stacking and C–H/π interactions in the solid-state structure of 6a gives
rise to well-defined ab layers of triiridium complexes (Figure 5). An initial analysis shows that
each trimetallic motif is connected to three other adjacent ones by two π-π interactions between
η5-C5Me5 and phenyl phosphinite rings, as well as two weak C—H/π interactions between one sp3

CH group of the cyclopentadienyl fragments, and a contiguous phenyl ring. Thus, this pattern gives
rise to hexagonal periodic motifs that form the aforementioned ab layers. The π-π interactions are
characterized by a centroid-centroid distance of 3.772(5) Å, with a plane-plane angle of 11.53(9)◦ and an
offset angle of 6.23(7)◦ [52]. In turn, the C—H/π contacts are defined by a shortest H···C(sp2) distance
of 2.900(6) Å; dH···centroid of 3.13(1) Å; and C—H···centroid angle of 106.5(5)◦, the latter indicating that
these interactions are particularly weak [53,54].

To probe the coordination ability of the reported trisphosphinite ligands 1, we chose precursor
[(η5-C5Me5)IrCl2]2 to prepare the corresponding trimetallic complexes 6b–d (Scheme 4). Following
the same experimental procedure that led us to isolate 6a we could have access to compounds 6c and
6d in excellent yields (ca. 85%). In contrast, targeting 6b proved more challenging, and produced a
complex mixture of products as evinced by multinuclear NMR analysis, which could be attributed
to both steric reasons and to the possibility of phosphine cyclometalation through one or several of
the benzylic methyl groups of the xylyl rings, as previously observed in related compounds based on
the [(η5-C5Me5)Ir] moiety [55–58]. Nevertheless, we could isolate the corresponding trigold complex
[CH3C{(C6H4OP(Xyl)2)AuCl}3] (2b) by reaction between 1b and [AuCl(THT)], the latter being less
sterically congested than the iridium precursor and non-amenable to C(sp3)—H cyclometalation. These
complexes were characterized by microanalysis and multinuclear NMR spectroscopy, with data in
agreement with the previously discussed iridium and gold complexes.
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Single crystals of good quality were grown for compounds 6c and 6d by pentane/chloroform
diffusion and toluene evaporation, respectively. Those permitted us to further corroborate their
molecular formulation by X-ray diffraction analysis (Figure 6). Bond angles and distances are
comparable to those in compound 6a and do not require further discussion. Interestingly, the structure
of 6d, along with that of 2a, are the only ones within this work that present alternate configurations
of the phosphinite moieties in the solid state. While one of the O—P vectors in 6d points away
from the C—CH3 direction (‘torsion angle’ of 135.8◦), in the same manner as in the rest of trimetallic
structures of this work, the other two O—P bonds are placed in an alternate fashion (‘torsion angles’
of 43.5 and 57.2◦). It seems that this peculiar rearrangement does not involve the establishment of
new intramolecular weak interactions, but it certainly demonstrates the flexibility of the multidentate
ligands reported in this work, even after coordination of three metal fragments.
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probability. Hydrogen atoms and solvent molecules have been excluded for the sake of clarity. Selected
bond distances (Å) and angles (◦): Compound 6c: Ir1–P1, 2.295(6); Ir2–P2, 2.296(7); Ir3–P3, 2.302(8);
Ir1–Cl2. 2.396(6); Ir1–Cl1. 2.420(6); Ir2–Cl3, 2.398(8); Ir2–Cl4, 2.398(8); Ir3–Cl6, 2.398(7); Ir3–Cl5, 2.406(6);
P1–O1, 1.637(17); P2–O2, 1.65(2); P3–O3, 1.646(19); C1–C2, 1.62(3); P1–Ir1–Cl2, 92.6(2); P1–Ir–Cl1,
92.1(2); Cl2–Ir1–Cl1, 85.0(2); P2–Ir2–Cl3, 90.0(3); P2–Ir2–Cl4, 88.6(3); P3–Ir3–Cl6, 89.9(3); P3–Ir3–Cl5,
92.1(2). Compound 6d: Ir1–P1, 2.2801(14); Ir1–Cl1, 2.3940(17); Ir1–Cl2, 2.4003(16); Ir2–P2, 2.3088(14);
Ir2–Cl4, 2.3896(17); Ir2–Cl3, 2.4066(16); Ir3–P3, 2.2862(15); Ir3–Cl5, 2.4000(14); Ir3–Cl6, 2.4146(16); P1–O1,
1.642(4); P2–O2, 1.645(4); P3–O3, 1.638(4); C1–C2, 1.562(7); P1–Ir1–Cl1, 92.05(6); C21–Ir1–Cl2, 98.65(18);
P1–Ir1–Cl2, 92.07(5); Cl1–Ir1–Cl2, 86.82(7); P2–Ir2–Cl4, 91.22(5); P2–Ir2–Cl3, 87.27(5); P3–Ir3–Cl5,
90.89(5); P3–Ir3–Cl6, 89.09(6); Cl5–Ir3–Cl6, 89.02(7); O1–P1–Ir1, 112.94(15); O2–P2–Ir2, 115.71(14);
O3–P3–Ir3, 113.42(17).

3. Materials and Methods

General considerations. All preparations and manipulations were carried out using standard
Schlenk and glove-box techniques under an atmosphere of high purity nitrogen. All solvents were
dried, stored over 4 Å molecular sieves, and degassed prior to use. Dichloromethane (CH2Cl2) was
distilled under nitrogen over CaH2. Toluene (C7H8) and n-pentane (C5H12) were distilled under
nitrogen over sodium. Tetrahydrofuran (THF) and diethyl ether were distilled under nitrogen over
sodium/benzophenone. [D6] Benzene was dried over sodium, while CDCl3 and CD2Cl2 over molecular
sieves (4 Å) and distilled under nitrogen. Et3N was dried over KOH and distilled over nitrogen.
[AuCl(THT)] (THT = tetrahydrothiophene) [59], [(η5-C5Me5)RhCl2]2 and [(η5-C5Me5)IrCl2]2 [60],
[(η6-C10H14)RuCl2]2 [61], and chlorodixylyl phosphine [57] were prepared as described previously.
Other chemicals were commercially available and used as received. Solution NMR spectra were
recorded on Bruker AMX-300, DRX-400, and DRX-500 spectrometers. Spectra were referenced to
external SiMe4 (δ: 0 ppm) using the residual proton solvent peaks as internal standards (1H NMR
experiments), or the characteristic resonances of the solvent nuclei (13C NMR experiments), while 31P
was referenced to H3PO4. Spectral assignments were made by routine one- and two-dimensional NMR
experiments where appropriate (Figure 7). For elemental analyses, a LECO TruSpec CHN elementary
analyzer was utilized. CCDC 1973685-1973691 contain the supplementary crystallographic data for this
paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
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δ: 110.5 ppm. Compound 1b. 1H NMR (400 MHz, CDCl3, 25 °C) δ: 7.12 (t, 6 H, 3JHH = 7.5 Hz, p-C6H5), 
6.99–6.93 (m, 18 H, m-C6H5; Hb), 6.91 (d, 6 H, 3JHH = 8.9 Hz, Ha), 2.37 (s, 36 H, CH3 (Xyl)), 2.05 (s, 3 H, 
CCH3). 13C {1H} NMR (100 MHz, CDCl3, 25 °C) δ: 155.1 (d, 2JCP = 14 Hz, C2), 143.0 (s, C1), 141.6 (d, 2JCP 
= 17 Hz, o-Xyl), 136.9 (d, 1JCP = 27 Hz, ipso-Xyl), 129.8 (s, CHa), 129.3 (d, 3JCP = 7 Hz, m-Xyl), 129.3 (s, p-
Xyl), 117.5 (d, 3JCP = 13 Hz, CHb), 51.0 (s, CCH3), 32.3 (s, CCH3), 22.5 (d, 3JCP = 14 Hz, CH3 (Xyl)). 31P 
{1H} NMR (121 MHz, CDCl3, 25 °C) δ: 113.5 ppm. Compound 1c. 1H NMR (300 MHz, CDCl3, 25 °C) 
δ: 6.94 (m, 12 H, Ha; Hb), 2.07 (s, 3 H, CCH3), 1.91 (septd, 6 H, 3JHH = 7.0 Hz, 2JHP = 2.2 Hz, CH (iPr)), 
1.17 (dd, 18 H, 3JHH = 7.0 Hz, 3JHP = 10.7 Hz, CH3 (iPr)), 1.09 ppm (dd, 18 H, 3JHH = 7.2 Hz, 3JHP = 15.9 Hz, 
CH3 (iPr)). 13C {1H} NMR (75 MHz, CDCl3, 25 °C) δ: 157.6 (d, 2JCP = 9 Hz, C2), 143.1 (s, C1), 129.9 (s, CHa) 
118.1 (d, 3JCP = 10 Hz, CHb), 51.1 (s, CCH3), 31.2 (s, CCH3), 28.7 (d, 1JCP = 17 Hz, CH (iPr)), 18.2 (d, 2JCP = 
20 Hz, CH3 (iPr)), 17.4 ppm (d, 2JCP = 8 Hz, CH3 (iPr)). 31P {1H} NMR (121 MHz, CDCl3, 25 °C) δ: 149.4 
ppm. Compound 1d. 1H NMR (400 MHz, CD2Cl2, 25 °C) δ: 7.00 (m, 12 H, Ha; Hb), 2.11 (s, 3 H, CCH3), 
2.00–1.27 ppm (m, 66 H, CH (Cy); CH2 (Cy)). 13C {1H} NMR (100 MHz, CD2Cl2, 25 °C) δ: 158.4 (d, 2JCP 
= 9 Hz, C2), 143.4 (s, C1), 130.2 (s, CHa), 118.5 (d, 3JCP = 10 Hz, CHb), 51.6 (s, CCH3), 38.9 (d, 1JCP = 18 Hz, 
CH2 (Cy)), 31.5 (s, CCH3), 28.9 (d, 2JCP = 19 Hz, CH2 (Cy)), 27.8 (s, CH2 (Cy)), 27.7 (d, 3JCP = 6 Hz, CH2 
(Cy)), 27.6 (s, CH2 (Cy)), 27.3 ppm (s, CH2 (Cy)). 31P {1H} NMR (162 MHz, CDCl3, 25 °C) δ: 144.6 ppm. 

Figure 7. Labeling scheme used for 1H and 13C{1H} NMR assignments.
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Synthesis of trisphosphinites. Method A (ligands 1a and 1c). To a Et2O (5 mL) solution of
1,1,1-tris(4-hydroxyphenyl)-ethane (80.0 mg, 0.26 mmol) was added Et3N (365 µL, 2.63 mmol) at room
temperature and under nitrogen atmosphere. Then, the corresponding chlorophosphine (PClPh2: 170
µL, 0.92 mmol; PCliPr2: 145 µL, 0.92 mmol) was added dropwise. The solution was stirred at room
temperature overnight, after which it was filtrated and concentrated (to ca. 1 mL) under vacuum.
Compound 1a was isolated as a white solid (189 mg, 0.22 mmol, 84%) by precipitation with pentane
(5–10 mL) and after filtering off and drying the solid under reduced pressure. Compound 1c was isolated
as a colorless oil (109 mg, 0.17 mmol, 64%) after evaporation of the Et2O solution and used without
further purification. Method B. To a THF (5 mL) suspension of 1,1,1-tris(4-hydroxyphenyl)-ethane
(80.0 mg, 0.26 mmol) and NaH (63.0 mg, 2.63 mmol) in a J. Young ampoule at room temperature, a
THF solution of the corresponding phosphine (PCl(Xyl)2: 255 mg, 0.92 mmol; PClCy2: 215 mg, 0.92
mmol) was added dropwise. The solution was stirred at room temperature for three days. For better
yields, Et3N (220 µL, 1.58 mmol) was subsequently added to the reaction mixture, and the suspension
further stirred overnight. The reaction mixture was filtrated and the solvents were evaporated under
vacuum, yielding a colorless oil that was extracted with pentane. The resulting white sticky foam
was used without further purification (1d: 148 mg, 0.16 mmol, 63%). Crystals of 1b suitable for X-ray
diffraction studies were grown by slow evaporation of the reaction crude (13.2 mg, 0.01 mmol 5%).
These compounds were characterized by spectroscopic methods, except for 1c that also includes a single
crystal X-ray diffraction analysis, and 1a for which elemental analysis is also provided. Compound 1a.
Anal. Calc. for C56H45O3P3: C, 78.31; H, 5.28. Found: C, 78.33; H, 5.57. 1H NMR (400 MHz, CDCl3, 25
◦C) δ: 7.60–7.53 (m, 12 H, o-C6H5), 7.42–7.35 (m, 18 H, m-C6H5; p-C6H5), 6.98 (dd, 6 H, 3JHH = 8.8 Hz,
4JH P = 1.2 Hz, Hb), 6.94 (d, 6 H, 3JHH = 8.8 Hz, Ha), 2.05 ppm (s, 3 H, CCH3). 13C {1H} NMR (100 MHz,
CDCl3, 25 ◦C) δ: 155.5 (d, 2JCP = 10 Hz, C2), 143.5 (s, C1), 141.1 (d, 1JCP = 18 Hz, ipso-C6H5), 130.7
(d, 2JCP = 22 Hz, o-C6H5), 129.8 (s, CHa; p-C6H5), 128.6 (d, 3JCP = 7 Hz, m-C6H5), 118.1 (d, 3JCP = 11
Hz, CHb), 51.1 (s, CCH3), 30.5 ppm (s, CCH3). 31P {1H} NMR (162 MHz, CDCl3, 25 ◦C) δ: 110.5 ppm.
Compound 1b. 1H NMR (400 MHz, CDCl3, 25 ◦C) δ: 7.12 (t, 6 H, 3JHH = 7.5 Hz, p-C6H5), 6.99–6.93
(m, 18 H, m-C6H5; Hb), 6.91 (d, 6 H, 3JHH = 8.9 Hz, Ha), 2.37 (s, 36 H, CH3 (Xyl)), 2.05 (s, 3 H, CCH3).
13C {1H} NMR (100 MHz, CDCl3, 25 ◦C) δ: 155.1 (d, 2JCP = 14 Hz, C2), 143.0 (s, C1), 141.6 (d, 2JCP =

17 Hz, o-Xyl), 136.9 (d, 1JCP = 27 Hz, ipso-Xyl), 129.8 (s, CHa), 129.3 (d, 3JCP = 7 Hz, m-Xyl), 129.3 (s,
p-Xyl), 117.5 (d, 3JCP = 13 Hz, CHb), 51.0 (s, CCH3), 32.3 (s, CCH3), 22.5 (d, 3JCP = 14 Hz, CH3 (Xyl)).
31P {1H} NMR (121 MHz, CDCl3, 25 ◦C) δ: 113.5 ppm. Compound 1c. 1H NMR (300 MHz, CDCl3, 25
◦C) δ: 6.94 (m, 12 H, Ha; Hb), 2.07 (s, 3 H, CCH3), 1.91 (septd, 6 H, 3JHH = 7.0 Hz, 2JHP = 2.2 Hz, CH
(iPr)), 1.17 (dd, 18 H, 3JHH = 7.0 Hz, 3JHP = 10.7 Hz, CH3 (iPr)), 1.09 ppm (dd, 18 H, 3JHH = 7.2 Hz, 3JHP

= 15.9 Hz, CH3 (iPr)). 13C {1H} NMR (75 MHz, CDCl3, 25 ◦C) δ: 157.6 (d, 2JCP = 9 Hz, C2), 143.1 (s,
C1), 129.9 (s, CHa) 118.1 (d, 3JCP = 10 Hz, CHb), 51.1 (s, CCH3), 31.2 (s, CCH3), 28.7 (d, 1JCP = 17 Hz,
CH (iPr)), 18.2 (d, 2JCP = 20 Hz, CH3 (iPr)), 17.4 ppm (d, 2JCP = 8 Hz, CH3 (iPr)). 31P {1H} NMR (121
MHz, CDCl3, 25 ◦C) δ: 149.4 ppm. Compound 1d. 1H NMR (400 MHz, CD2Cl2, 25 ◦C) δ: 7.00 (m, 12
H, Ha; Hb), 2.11 (s, 3 H, CCH3), 2.00–1.27 ppm (m, 66 H, CH (Cy); CH2 (Cy)). 13C {1H} NMR (100 MHz,
CD2Cl2, 25 ◦C) δ: 158.4 (d, 2JCP = 9 Hz, C2), 143.4 (s, C1), 130.2 (s, CHa), 118.5 (d, 3JCP = 10 Hz, CHb),
51.6 (s, CCH3), 38.9 (d, 1JCP = 18 Hz, CH2 (Cy)), 31.5 (s, CCH3), 28.9 (d, 2JCP = 19 Hz, CH2 (Cy)), 27.8 (s,
CH2 (Cy)), 27.7 (d, 3JCP = 6 Hz, CH2 (Cy)), 27.6 (s, CH2 (Cy)), 27.3 ppm (s, CH2 (Cy)). 31P {1H} NMR
(162 MHz, CDCl3, 25 ◦C) δ: 144.6 ppm.

Compound 2a. A dichloromethane (5 mL) solution of 1a (334 mg, 0.39 mmol) was slowly added
at 0 ◦C and under nitrogen atmosphere over a dichloromethane (5 mL) solution of [AuCl(THT)] (374
mg, 1.17 mmol). The solution was stirred at 0 ◦C for 5 h, then the solvent was concentrated under
vacuum, and pentane addition caused the precipitation of a white solid, which was further washed
with pentane for several times yielding compound 2a as a white solid (580 mg, 0.37 mmol, 95%). Single
crystals were obtained by slow diffusion of pentane into a benzene solution (3:1). Anal. Calc. for
C56H45Cl3O3P3Au3: C, 43.22; H, 2.91. Found: C, 43.45; H, 3.25. 1H NMR (400 MHz, CD2Cl2, 25 ◦C) δ:
7.92–7.82 (m, 12 H, o-C6H5), 7.67–753 (m, 18 H, m- C6H5; p-C6H5), 7.05 (dd, 6 H, 3JHH = 8.9 Hz, 4JHP =



Molecules 2020, 25, 593 11 of 16

1.2 Hz, Hb), 6.96 (d, 6 H, 3JHH = 8.9 Hz, Hb), 2.12 ppm (s, 3 H, CCH3). 13C{1H} NMR (100 MHz, CD2Cl2,
25 ◦C) δ: 153.2 (d, 2JCP = 5 Hz, C2), 146.3 (s, C1), 133.8 (s, p-C6H5), 133.3 (d, 1JCP = 70 Hz, ipso-C6H5),
133.0 (d, 2JCP = 16 Hz, o-C6H5), 131.0 (s, CHa), 130.0 (d, 3JCP = 12 Hz, m-C6H5), 120.5 (d, 3JCP = 7 Hz,
CHb), 52.2 (s, CCH3), 30.9 ppm (s, CCH3). 31P{1H} NMR (162 MHz, CD2Cl2, 25 ◦C) δ: 112.8 ppm.

Compound 2b. To a toluene solution (1–2 mL) of [AuTHTCl] (12.4 mg, 0.04 mmol) in a Schlenk
flask was added dropwise a toluene solution (1–2 mL) of 1b (13.3 mg, 0.01 mmol) at 0 ◦C. The resulting
solution was stirred for 1 h, then the solvent was concentrated up to the minimum volume and
precipitated with pentane, washed with pentane (2 × 3 mL) yielding a pure white solid (7.000 mg, 31%
yield). Anal. Calc. for C68H69Cl3O3P3Au3: C, 47.36; H, 4.03. Found: C, 46.94; H, 3.98. 1H NMR (400
MHz, CD2Cl2, 25 ◦C) δ: 7.34 (t, 6 H, 3JHH = 7.5 Hz, p-C6H5), 7.17–7.05 (m, 12 H, m-C6H5), 6.95 (d, 6 H,
3JHH = 8.7 Hz, Hb), 6.90 (d, 6 H, 3JHH = 8.7 Hz, Ha), 2.56 (s, 36 H, CH3 (Xyl)), 2.07 ppm (s, 3 H, CCH3).
13C{1H} NMR (100 MHz, CD2Cl2, 25 ◦C) δ: 152.9 (d, 2JCP = 5 Hz, C2), 146.0 (s, C1), 142.3 (d, 2JCP =

12 Hz, o-Xyl), 132.9 (s, p-Xyl), 131.7 (d, 3JCP = 9 Hz, m-Xyl), 131.0 (d, 1JCP = 64 Hz, ipso-Xyl), 130.9 (s,
CHa), 120.2 (d, 3JCP = 7 Hz, CHb), 52.1 (s, CCH3), 30.9 (s, CCH3), 24.5 ppm (d, 3JCP = 9 Hz, CH3 (Xyl)).
31P{1H} NMR (202 MHz, CD2Cl2, 25 ◦C) δ: 103.6 ppm.

Compound 3a. To a CH2Cl2 solution (~2–3 mL) of [AgOTf] (OTf− = OSO2CF3
−) (43.4 mg, 0.17

mmol) in a Schlenk flask was slowly added a CH2Cl2 solution (~2–3 mL) of 1 (50.0 mg, 0.06 mmol) at
room temperature in the absence of light. The resulting solution was stirred for 3–4 h. After this, the
solvent was concentrated up to the minimum volume and precipitated with pentane, washed with
pentane (2 × 5mL) and diethyl ether (1 × 3 mL) yielding a pure white solid (68.0 mg, 0.04 mmol, 72%
yield) that remain stable under air for several hours. Anal. Calc. for C59H45F9O12P3S3Ag3: C,43.48; H,
2.78; S, 5.90. Found: C, 43.28; H, 3.12; S, 5.70. 1H NMR (400 MHz, CD2Cl2, 25 ◦C) δ: 7.80–7.68 (m, 12 H,
o-C6H5), 7.60–7.45 (m, 18 H, m-C6H5; p-C6H5), 7.03 (d, 6 H, 3JHH = 8.6 Hz, Ha), 6.97 (d, 6 H, 3JHH =

8.3 Hz, Hb), 2.05 ppm (s, 3 H, CCH3). 13C{1H} NMR (100 MHz, CD2Cl2, 25 ◦C) δ: 155.1 (s, C2), 146.3
(s, C1), 134.4 (d, 1JCP = 38 Hz, ipso-C6H5), 133.2 (s, p-C6H5), 132.3 (d, 2JCP = 19 Hz, o-C6H5), 131.2 (s,
CHa), 130.0 (d, 3JCP = 11 Hz, m-C6H5), 119.9 (d, 3JCP = 9 Hz, CHb), 52.1 (s, CCH3), 30.7 ppm (s, CCH3).
19F{1H} NMR (376 MHz, CD2Cl2, 25 ◦C) δ: −77.4 ppm. 31P{1H} NMR (202 MHz, CD2Cl2, 25 ◦C) δ:
120.6 ppm.

Compound 4a. To a CH2Cl2 solution (7–8 mL) of CuCl (30.0 mg, 0.30 mmol) in a Schlenk flask
was added dropwise a CH2Cl2 solution (3–4 mL) of 1 (89.1 mg, 0.10 mmol) at room temperature. The
resulting solution was left stirred overnight (~14 h). After this, upon concentration, the solution turns
into a white residue that was washed with pentane, diethyl ether and toluene, yielding a pure white
solid (97.1 mg, 0.08 mmol, 81% yield) that remain stable under air for several hours. Anal. Calc. for
C56H45Cl3O3P3Cu3: C, 58.19; H, 3.92. Found: C, 57.86; H, 4.14. 1H NMR (400 MHz, CDCl3, 25 ◦C) δ:
7.77–7.55 (m, 12 H, o-C6H5), 7.37–7.18 (m, 18 H, m-C6H5; p-C6H5), 6.71–6.56 (m, 6 H, Hb), 6.56–6.38 (m,
6 H, Ha), 1.76 ppm (s, 3 H, CCH3). 13C{1H} NMR (100 MHz, CDCl3, 25 ◦C) δ: 153.0 (s, C2), 143.8 (s, C1),
131.4 (s, 2JCP = 9 Hz, o-C6H5), 130.9 (s, p-C6H5), 129.8 (s, CHa), 128.8 (s, 1JCP = 81 Hz, ipso-C6H5), 128.7
(s, m-C6H5), 118.6 (s, CHb), 50.8 (s, CCH3), 30.5 ppm (s, CCH3). 31P{1H} NMR (162 MHz, CDCl3, 25 ◦C)
δ: 96.1 ppm (br s).

General synthesis of group 9 compounds. A dichloromethane (5 mL) solution of a trisphosphinite
ligand 1a (92.7 mg, 0.11 mmol; 68.7 mg, 0.08 mmol), 1c (81.5 mg, 0.12 mmol), or 1d (63.5 mg, 0.07
mmol) were added at room temperature and under nitrogen atmosphere over a dichloromethane (5
mL) solution of the corresponding transition metal precursor ([(η5-C5Me5)RhCl2]2: 164.0 mg, 0.092
mmol for 5a; [(η5-C5Me5)IrCl2]2: 92.1 mg, 0.23 mmol for 6a; 139mg, 0.17 mmol for 6c; 84.8 mg, 0.11
mmol for 6d). The resulting solution was stirred for one hour, and then the solvent was concentrated
at reduced pressure. A red solid for 5a or a yellow-orange for 6a were precipitated after addition of
pentane, and it was subsequently washed with pentane or diethyl ether for several times yielding the
corresponding trimetallic compounds (5a: 164 mg, 0.09 mmol 84%; 6a: 130 mg, 0.06 mmol 83%; 6c:
192 mg, 0.10 mmol, 84%; 6d: 130 mg, 0.06 mmol, 87%). Single crystals were obtained by either slow
diffusion of diethyl ether into a dichloromethane solution (3:1) of the compound at 25 ◦C (5a, 6a, 6c)



Molecules 2020, 25, 593 12 of 16

or by slow evaporation of a toluene solution of the compound (6d). Compound 5a. Anal. Calc. for
C86H90Cl6O3P3Rh3: C, 57.84; H, 5.08. Found: C, 57.93; H, 5.46. 1H NMR (400 MHz, CD2Cl2, 25 ◦C) δ:
8.15 (m, 12 H, o-C6H5), 7.42–7.32 (m, 18 H, m-C6H5; p-C6H5), 7.28 (d, 6 H, 3JHH = 8.7 Hz, Hb), 6.75 (d, 6
H, 3JHH = 8.8 Hz, Ha), 1.97 (s, 3 H, CCH3), 1.31 ppm (d, 45 H, 4JHP = 3.7 Hz, C5Me5). 13C{1H} NMR
(100 MHz, CD2Cl2, 25 ◦C) δ: 151.2 (d, 2JCP = 6 Hz, C2), 144.8 (s, C1), 136.0 (d, 1JCP = 47 Hz, ipso-C6H5),
133.3 (d, 2JCP = 12 Hz, o-C6H5), 131.9 (s, p-C6H5), 130.3 (s, CHa), 128.7 (d, 3JCP = 10 Hz, m-C6H5),
120.4 (d, 3JCP = 6 Hz, CHb), 101.8 (d, 2JCP = 4 Hz, C5Me5), 51.6 (s, CCH3), 30.9 (s, CCH3), 9.4 ppm (s,
C5Me5). 31P{1H} NMR (121 MHz, CD2Cl2, 25 ◦C) δ: 113.7 ppm (d, 1JPRh = 170 Hz). Compound 6a.
Anal. Calc. for C86H90Cl6O3P3Ir3: C, 50.29; H, 4.42. Found: C, 50.23; H, 4.66. MS (ESI) m/z Calc. for [M
+ H − Cl]+:_2041.3. Expt.: 2041.1. 1H NMR (400 MHz, CD2Cl2, 25 ◦C) δ: 8.21–8.10 (m, 12 H, o-C6H5),
7.43-7.312 (m, 18 H, m-C6H5; p-C6H5), 7.25 (d, 6 H, 3JHH = 8.8 Hz, Hb), 6.79 (d, 6 H, 3JHH = 8.9 Hz, Ha),
1.99 (s, 3 H, CCH3), 1.30 ppm (d, 45 H, 4JHP = 2.2 Hz, C5Me5). 13C{1H} NMR (100 MHz, CD2Cl2, 25 ◦C)
δ: 151.0 (d, 2JCP = 6 Hz, C2), 144.6 (s, C1), 137.4 (d, 1JCP = 60 Hz, ipso-C6H5), 133.0 (d, 2JCP = 12 Hz,
o-C6H5), 131.7 (s, p-C6H5), 130.3 (s, CHa), 128.6 (d, 3JCP = 11 Hz, m-C6H5), 120.0 (d, 3JCP = 6 Hz, CHb),
95.9 (s, C5Me5), 51.6 (s, CCH3), 31.0 (s, CCH3), 8.9 ppm (s, C5Me5). 31P{1H} NMR (121 MHz, CD2Cl2,
25 ◦C) δ: 72.3. ppm. Compound 6c. Anal. Calc. for C68H102Cl6O3P3Ir3: C, 44.15; H, 5.56. Found: C,
44.39; H, 5.61. 1H NMR (400 MHz, CD2Cl2, 25 ◦C) δ: 7.26 (d, 6 H, 3JHH = 8.8 Hz, Hb), 6.98 (d, 6 H, 3JHH

= 8.6 Hz, Ha), 3.36–3.21 (m, 6 H, CH (iPr)), 2.12 (s, 3 H, CCH3), 1.43 (overlapped s, 45 H, C5Me5), 1.42
(overlapped dd, 18 H, 3JHH = 7.5 Hz, 3JHP = 16.4 Hz, CH3 (iPr)), 1.28 (dd, 18 H, 3JHH = 7.3 Hz, 3JHP =

13.9 Hz, CH3 (iPr)). 13C{1H} NMR (100 MHz, CD2Cl2, 25 ◦C) δ: 152.1 (d, 2JCP = 7 Hz, C2), 144.2 (s, C1),
130.6 (s, CHa), 119.2 (d, 3JCP = 5 Hz, CHb), 94.8 (s, C5Me5), 51.8 (s, CCH3), 32.6 (d, 1JCP = 30 Hz, CH
(iPr)), 31.4 (s, CCH3), 20.0 (d, 2JCP = 4 Hz, CH3 (iPr)), 18.2 (s, CH3 (iPr)), 9.7 (s, C5Me5).31P{1H} NMR
(162 MHz, CD2Cl2, 25 ◦C) δ: 108.5 ppm. Compound 6d. Anal. Calc. for C86H126Cl6O3P3Ir3: C, 49.42;
H, 6.08. Found: C, 49.40; H, 5.99. 1H NMR (400 MHz, CDCl3, 25 ◦C) δ: 7.25 (d, 6 H, 3JHH = 9.1 Hz, Hb),
6.94 (d, 6 H, 3JHH = 8.6 Hz, Ha), 3.11–2.92 (m, 6 H, CH (Cy)), 2.78–2.62 (m, 6 H, CH2 (Cy)), 2.11–1.97
(overlapped m, 6 H, CH2 (Cy)), 2.07 (overlapped s, 3 H, CH3), 1.89–1.06 (overlapped m, 46 H, CH2

(Cy)), 1.45 ppm (overlapped s, 45 H, C5Me5). 13C{1H} NMR (100 MHz, CDCl3, 25 ◦C) δ: 151.5 (d, 2JCP

= 7 Hz, C2), 143.4 (s, C1), 129.9 (s, CHa), 118.5 (d, 3JCP = 4 Hz, CHb), 94.0 (s, C5Me5), 51.1 (s, CCH3),
43.3 (d, 1JCP = 29 Hz, CH (Cy)), 30.9 (s, CCH3), 29.3 (d, 3JCP = 3 Hz), 27.9 (d, 2JCP = 10 Hz, CH2 (Cy)),
27.6 (s, CH2 (Cy)), 27.5 (d, 2JCP = 14 Hz, CH2 (Cy)), 26.7 (s, CH2 (Cy)), 9.2 ppm (s, C5Me5). 31P{1H}
NMR (162 MHz, CDCl3, 25 ◦C) δ: 103.2 ppm.

Compound 7a. A dichloromethane (5 mL) solution of 1a (66.0 mg, 0.08 mmol) was added
at room temperature and under nitrogen atmosphere over a dichloromethane (5 mL) solution of
[Ru(p-cymene)Cl2]2 (70.7 mg, 0.23 mmol). The resulting solution was stirred for 1 h. Then the
solvent was concentrated under, vacuum pentane was added to afford the precipitation of a red solid,
which was washed with pentane and diethyl ether. The resulting solid was passed through a pad of
SiO2 in ethyl acetate to obtain 7a as a red powder (93.2 mg, 0.05 mmol, 68%). Single crystals were
obtained by slow diffusion of pentane into a CH2Cl2/acetone solution (3:1) at −30 ◦C. Anal. Calc.
for C86H87Cl6O3P3Ru3: C, 58.11; H, 4.93. Found: C, 57.97; H, 4.92. 1H NMR (400 MHz, CDCl3, 25
◦C) δ: 8.05–7.92 (m, 12 H, o-C6H5), 7.39–7.28 (m, 18 H, m-C6H5; p-C6H5), 7.08 (d, 6 H, 3JHH = 8.5 Hz,
Hb), 6.74 (d, 6 H, 3JHH = 8.4 Hz, Ha), 5.29–5.22 (m, 12 H, Hc), 2.51 (sept, 3 H, 3JHH = 7.3 Hz, CH (iPr)
(p-cymene)), 1.92 (s, 3 H, CCH3), 1.46 (s, 9 H, CH3 (p-cymene)), 0.83 ppm (d, 18 H, 3JHH = 6.9 Hz, CH3

(iPr) (p-cymene)). 13C{1H} NMR (100 MHz, CDCl3, 25 ◦C) δ: 151.2 (s, C2), 144.2 (s, C1), 136.3 (d, 1JCP =

48 Hz, ipso-C6H5), 132.4 (d, 2JCP = 10 Hz, o-C6H5), 131.2 (s, p-C6H5), 129.8 (s, CHa), 128.2 (d, 3JCP = 10
Hz, m-C6H5), 120.3 (s, CHb), 110.4 (s, C3), 97.2 (s, C4), 92.2 (s, CHc), 87.6 (d, 2JCP = 5 Hz, CHc), 51.2 (s,
CCH3), 31.0 (s, CCH3), 30.4 (s, CH (iPr) (p-cymene)), 21.8 (s, CH3 (iPr) (p-cymene)), 17.6 ppm (s, CH3

(p-cymene)). 31P{1H} NMR (121 MHz, CDCl3, 25 ◦C) δ: 113.8 ppm.
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4. Conclusions

In summary, we have described the coordination chemistry of a new family of readily accessible
trisphosphinite ligands by preparing a number of trimetallic complexes based on a range of late
transition metal precursors (i.e., Au(I), Ag(I), Cu(I), Ir(III), Rh(III), and Ru(II)). These ligands present a
remarkable degree of conformational flexibility, as evinced by the X-ray structures of one of the free
ligands and several of the trimetallic complexes. This contrasts with trisphosphines typically employed
to construct supramolecular architectures, which rely on rigid backbones. Thus, trisphosphinites
could offer unique features to design novel self-assembled structures and complement the still
underdeveloped area of multidentate phosphines in the context of supramolecular chemistry. This
work offers key information on the coordination ability of these systems that will be valuable for future
work in that direction.

Supplementary Materials: The following are available online, Figure S1–S40: NMR spectra of new compounds,
Figure S41: MS (ESI) of 6a, Table S1–S2: X-Ray Structural Data of new compounds.
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