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a b s t r a c t 

Filtration simplification consists of simplifying a given filtration while simultaneously controlling the per- 

turbation in the associated persistence diagrams. In this paper, we propose a filtration simplification al- 

gorithm for orientable 2-dimensional (2D) manifolds with or without boundary ( meshes ) represented by

2D combinatorial maps. Given a lower-star filtration of the mesh, faces are added into contiguous clusters

according to a “height” function and a parameter ε. Faces in the same cluster are merged into a single 

face, resulting in a lower resolution mesh and a simpler filtration. We prove that the parameter ε bounds 

the perturbation in the original persistence diagrams, and we provide experiments demonstrating the

computational advantages of the simplification process.
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1. Introduction

Topological data analysis (TDA) is a relatively new subfield of

computer science. One of the most useful tools in TDA is persistent

homology , which is an algebraic method for associating topologi-

cal features with discrete data. In particular, persistent homology

requires two crucial components: (1) a cell complex denoted K to

structure the data; and (2) a filtration , or a nested sequence of in-

dexed subcomplexes where the initial complex is the empty com-

plex and the terminating complex is K . See [1–3] for initial reports

and [4] for a modern exposition of the field. 

Much work has been done to simplify complexes and filtrations

in order to quickly compute persistence. In [5] , the authors pro-

posed an efficient algorithm that computes persistent homology

for 3D gray-scale images by first obtaining the Morse-Smale com-

plex, which is much smaller than the input complex K but contains

all necessary information. The authors first computed a combina-

torial gradient vector field using an algorithm from [6] , which in-

duces a Morse-Smale complex. The persistence given by this new

complex is then exactly the same as that given by the input com-

plex. More recently, in [7] , the authors first simplify a filtration of

an arbitrary simplicial complex with “strong collapses”. The per-

sistence associated with the reduced filtration is then the same as

the original one. 
∗ Corresponding author.
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Unlike the previous approaches, we approximate the persis-

ence given by a filtration associated with some 2D mesh (i.e. a

iecewise-linear orientable 2D manifold with or without bound-

ry) within a user specified tolerance ε. This is accomplished by

erging faces in the mesh that meet a criterion. Other authors

ave taken similar approaches. In [8] , the authors gave two dif-

erent approaches for approximating Čech persistence by building

n approximation to the Čech filtration. In [9] , the authors de-

eloped a notion of ( p , ε)-admissible, where upon contracting a

 p , ε)-admissible edge in some complex K , the difference in p -

imensional persistence diagrams given by the initial and the sim-

lified filtration is bounded above by ε. We attain a similar goal:

pon merging clusters of faces which meet our criterion, called ε-

ermissible, the difference in the 0-, 1-, and 2-dimensional persis-

ence diagrams given by the lower-star filtration on the initial and

merged” meshes is bounded by ε. 

In [10] , the authors proposed an efficient algorithm for com-

uting the homology of meshes represented by 2D combinatorial

aps, thereby avoiding the time-consuming step of constructing

nd modifying boundaries and coboundaries of cells. The process

onsists of merging faces if they share a common edge, guarantee-

ng that the structure of the combinatorial map and the homology

f the mesh is preserved throughout the process. 

This paper extends the work in [10,11] by giving an algorithm to

pproximate the lower-star persistent homology of meshes within

 specified tolerance ε. First, faces are grouped into clusters ac-

ording to the parameter ε. Faces in the same cluster are sub-

equently merged. In [11] , cluster membership was determined
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y a distance between faces, and there was no theoretical guar-

ntee that persistence diagrams corresponding to the initial and

implified filtrations were “close.” In this paper, membership is

etermined by the faces’ “height”, and as our main contribu-

ion, we provide such a guarantee in Section 4 . Experiments in

ection 5 demonstrate the utility of our approach, and we con-

lude with a brief discussion of possible directions for future work

n Section 6 . 

. Preliminary notions

In this section we review combinatorial maps and persistent

omology. 

.1. 2D combinatorial maps 

Roughly speaking, a 2D combinatorial map [12,13] , called a 2-

ap, is a representation of a mesh (see Fig. 1 ). A mesh M is a

-tuple ( V, E, F ) where V is a set of vertices or 0-cells, E is a set of

dges or 1-cells, and F is a set of faces or 2-cells.

Cells are in relation together. Two cells are said to be incident

f one cell belongs to the boundary of the other. Two i -cells are

djacent if there exists a (i − 1) -cell incident to both. Two i -cells

re neighbors if they are both in the boundary of an (i + 1) -cell. 

Some cells with specific properties are identified. An edge is

angling if it is incident to a vertex which is incident to no other

dge. An edge is isolated if it has no adjacent edge. An edge is in-

er if it is incident to two different faces. An edge is a border if it

s contained in the boundary of the mesh. 

A 2D combinatorial map (or simply, a 2-map) is a 3-tuple ( D, β1 ,

2 ) where D is a finite set of darts and β1 and β2 are one-to-one

appings D onto D , and β2 = β−1 
2 

.

Meshes can be represented by 2-maps as follows. A dart d rep-

esents an orientation of an edge; β1 ( d ) is the dart following d and

elonging to the same face as d; β2 ( d ) denotes the opposite orien-

ation of d . In Fig. 1 (b), darts 8 and 11 represent the two possible

rientations of a single edge, so β2 (8) = 11 and β2 (11) = 8 . 

A dart belongs to exactly one vertex, one edge and one face,

nd thus each cell of the mesh is described by a set of darts in

he 2-map. For example, in Fig. 1 (b), vertex v 1 is described by the

et of darts {2, 5, 8, 12}. Even isolated edges (like e 7 in Fig. 1 (a))

elong to a degenerate face (which is why there are 5 faces in

ig. 1 (a)). Inner, dangling, and isolated edges are described always

y two darts d 1 , d 2 . They can be detected in a 2-map thanks to

articular configurations of darts and β links (for example an edge

 d 1 , d 2 } is isolated if β1 (β1 (d 1 )) = d 1 ). 

A border edge is described by one dart d (like dart 16 in

ig. 1 (b)). In such a case, β2 (d) = ∅ and β2 is a partial bijection. 
ig. 1. (a) Example of a mesh with 5 faces (the four faces incident to vertex v 1 ,

nd a “degenerate” face bounded twice by edge e 7 ), 14 edges ( e 6 is dangling, e 7
s isolated, { e 1 , e 2 , e 3 , e 4 } are inner edges and the rest are border edges) and 12

ertices. (b) The corresponding 2-map has 20 darts. Images taken from [10] .
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.2. Persistent homology 

In this subsection we review persistent homology, an important

ool used to assign structure to discrete data. We assume that the

eader has some knowledge of homology (for a reference, see [14] ).

or additional information on persistent homology, we encourage

he reader to consult [4] . 

Persistent homology captures the topological changes occur-

ing in a growing sequence of meshes M 1 ⊆ M 2 ⊆ . . . ⊆ M n = M,

alled a filtration . As one progresses through the filtration, homol-

gy classes of different dimensions may appear (be born) and dis-

ppear (die). Some homology classes may be present in M α as

→ ∞ . Such classes give the homology of M . 

Filtrations are frequently constructed on a mesh M via a real-

alued function h on the vertices of M . One such example is the

ower-star filtration { M α} α∈ R where a cell σ is in M α if for all ver-

ices v which are incident to σ , h ( v ) ≤ α. Intuitively, this filtration

orresponds to taking sublevel sets of M under h . 

If a homology class is born at M i and dies entering M j then

j − i is the persistence of the homology class. If it is born at M i 

ut never dies then its persistence is set to infinity. Intuitively, ho-

ology classes with low persistence are topological noise and the

nes that persist correspond to features of the mesh. 

The information obtained when computing persistent homology

f a filtration can be summarized by a set of persistence diagrams ,

ach of which is a multi-set of (birth, death) pairs in the extended

eal plane, where each pair represents the birth and death of a ho-

ology class. For a filtration M := { M α} α∈ A , there is a persistence

iagram for each dimension p denoted Dgm p (M ) . As expected,

gm p (M ) contains persistence information for p -dimensional ho-

ology classes. In addition, all points on the diagonal given by

 = x are considered to be in each persistence diagram with infi-

ite multiplicity. This enables comparing diagrams with a different

umber of homology classes with positive persistence. One of the

ost popular tools for comparing persistence diagrams is the bot-

leneck distance . 

efinition 1. The bottleneck distance between two persistence di-

grams Dgm p (A ) and Dgm p (B) is 

 b ( Dgm p (A ) , Dgm p (B)) := inf 
ψ∈ �

sup 

a ∈ Dgm p (A ) 
|| a − ψ(a ) || ∞

here � is the set of bijections from Dgm p (A ) to Dgm (B) . 

From now on, by abuse of notation, we use M to denote a

esh, the 2-map representing the mesh, or the filtration consid-

red on the mesh. In this paper, persistence diagrams are com-

uted via Algorithm 1 , which is a modification of the incremen-

al algorithm given in [15] . Given a mesh and an ordering of its

ells, Algorithm 1 computes a 3-tuple ( M, H, f ) where M is the

lgorithm 1 Computing persistent homology (Algorithm 2 of

15] ).

nput: An ordering of the cells of M: { σ1 , . . . , σm 

} .
utput: Persistent homology of M with respect to such ordering. 

nitialize H ← ∅ and f (σi ) ← 0 , for 1 ≤ i ≤ m . 

or i = 1 to m do 

if f∂(σi ) = 0 then 

f (σi ) ← σi H ← H ∪ { σi } (a new homology class was born)

if f∂(σi ) � = 0 then 

Let σ j ∈ f∂(σi ) , j = max { index (μ) : μ ∈ f∂(σi ) } H ←
H \ { σ j } (an old homology classdied) foreach x ∈ M such

that σ j ∈ f (x ) do 

f (x ) ← f (x ) + f∂(σi ) . 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2 Finding ε-permissible clusters 

Input : A 2 -map M; a parameter ε
Output : A set of ε-permissible clusters 	 = { C 1 , . . . , C n } .
k ← 1 

foreach face σ of M not yet assigned in a cluster do 

add a new cluster C k to 	; 

add σ into C k ; 

Τ ← all faces adjacent to σ ; 

while Τ is non empty do 

τ ← one face in Τ ; 
remove τ from Τ ; 
if τ is not yet assigned in a cluster and 

max { maxh (τ ) , maxh (C k ) } −
min { minh (τ ) , minh (C k ) } ≤ ε then

add τ in C k ; 

add all faces adjacent to τ into Τ ; 

k ← k + 1 ; 

Algorithm 3 Simplification of a cluster. 

Input : A 2 -map K representing the cluster. 

Output : The simplified 2 -map corresponding to K . 

foreach edge e of K do 

if e is an inner edge then remove e ; 

else 

while e is dangling do 

e ′ ← one edge adjacent to e 

remove e ; e ← e ′ . 
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given mesh represented by a 2-map; H is the set of surviving cells ;

and f is a map from the k -cells in M to a sum of surviving cells.

For a k -cell σ , ∂( σ ) denotes the set of (k − 1) -cells in its bound-

ary. Algorithm 1 guarantees that the set of all the surviving k -cells

(for a fixed k ), together with the disjoint union of sets operation +,

forms the group C k ( H ) which is isomorphic to H k ( M ). In addition,

the map f : C k ( M ) → C k ( H ) satisfies the property that if a, b ∈ C k ( M )

are two homologous k-cycles then f (a ) = f (b) . 

Let M σi 
denote the set of cells { σ1 , . . . , σi } considered in the i th

step of Algorithm 1 . Note that σ i belongs to a k -cycle c in C k (M σi 
)

if and only if f ◦ ∂(σi ) = 0 . Consequently, if f ◦ ∂(σi ) = 0 then a

new homology class was born (represented by c ) and σ i is added

to H . Otherwise, if f ◦∂( σ i ) � = 0, then a homology class died, and

an element of f ◦∂( σ ) ⊆H is removed from H . The element removed

from H is the “youngest” one: argmax{ index( μ): μ ∈ f ◦∂( σ i ) },

where index( μ) denotes the position of the cell μ in the ordered

list of cells { σ1 , . . . , σm 

} .
The authors in [16] subsequently established a correspondence

between the incremental algorithm for computing AT-models given

in [15] and the one for computing persistent homology in [4] . The

complexity of Algorithm 1 is O ( m 

3 ), m being the number of cells

in M . 

3. Approximating persistence

We now move to describing our procedure for approximating

the persistence diagram of the lower-star filtration of a mesh M .

The procedure follows three main steps: (1) simplification of the

2-map according to a parameter ε; (2) computation of the lower-

star filtration of the simplified mesh; (3) computation of persistent

homology of the given filtration. 

In step 1, we simplify the input 2-map by merging faces. When

two faces are merged, the number of cells in the 2-map is reduced,

and hence the lower-star filtration corresponding to the reduced

2-map contains fewer cells. By merging several faces, we hope to

drastically reduce the number of cells in the reduced filtration to

accelerate the runtime for computing persistence in step 3. Note

that since the initial and reduced filtrations are different, the per-

sistence is almost certainly different. To ensure that the bottleneck

distance between persistence diagrams corresponding to the initial

and reduced filtrations is within a user specified tolerance ε, we

will require merged faces to satisfy a particular condition. 

We pay particular attention to step 1. In this step, the 2-map

is simplified by dispatching the faces into clusters subject to some

constraints according to the parameter ε. Note that since h is only

defined on the vertex set of M , the index at which a face en-

ters the lower-star filtration is precisely the maximum height value

of a constituent vertex. Hence, for face σ , we use the notation

maxh (σ ) := max { h (v ) | v is a vertex of σ } to denote the height,

while minh (σ ) is defined as expected. We will ensure that all clus-

ters of size greater than 1 are ε-permissible. 

Definition 2. A cluster of faces C = { σ1 , . . . , σm 

} is ε-permissible

if maxh (C) − minh (C) ≤ ε where maxh (C) = max σ∈ C { maxh (σ ) }
(analogously for minh ). 

We partition M into ε-permissible clusters via Algorithm 2 . The

first face of each cluster is chosen arbitrarily, and the rest are

added using neighborhood relations satisfying ε-permissibility. If

σ is not yet assigned into a cluster, we create a new cluster C k 
and assign σ to C k . Then, while C k is ε-permissible, C k is grown by

progressively adding faces which are adjacent to the cluster. Each

cluster is associated with a value corresponding to the minimum

minh of all faces in the cluster and a value corresponding to the

maximum maxh of all faces in the cluster, which makes it easy to

check if adding a new face would violate the ε-permissible condi-

tion. 
We repeat this process until each face is assigned into a

luster. After dispatching all of the faces to clusters, we apply

lgorithm 3 which simplifies the 2-map by merging each clus-

er. The simplification process is depicted in Fig. 2 . Critically,

he result of merging faces via Algorithm 3 always results in a

opological disk with a connected boundary. The complexity of

lgorithm 3 is O ( n α( n )), where n being the number of darts in the

-map and α( n ) is the slow growing inverse Ackermann function

cf. [10,17] for more details). Note that since α( n ) ≤ 5 for all prac-

ical purposes, Algorithm 3 is functionally linear. 

Once the mesh is simplified, the only remaining steps are to

ompute the lower-star filtration of the simplified mesh, and then

o compute the persistent homology using Algorithm 1 . 

The complexity of the whole process is O (n + O (m 

3 )) , n being

he number of darts of the given 2-map, and m being the number

f cells in the simplified 2-map. This shows the interest of simpli-

ying the 2-map before computing the persistent homology. 

. Persistence diagram stability

Let M be a polygonal mesh represented as a 2-map, and let

 

′ denote the mesh obtained by merging clusters as explained in

ection 3 . In this section, we move to showing that merging ε-

ermissible clusters bounds the perturbation in the persistence di-

grams associated with the lower-star filtration. Throughout this

ection, we will use Dgm p (M) to denote the p -dimensional per-

istence diagram given by the lower-star filtration of M . We will

lso use the notation M α to denote { σ ∈ M | maxh (σ ) ≤ α} . In the

interest of simplicity, we abuse notation and do not distinguish

etween vertices in M and M 

′ . If v is a vertex in M 

′ , then there

s a natural corresponding vertex in M . We will use v to refer to

oth of these vertices. Likewise for edges and faces. In addition,



Fig. 2. (a) A cluster composed of three faces with three highlighted inner edges

( e 1 , e 2 , and e 3 ). (b) The corresponding combinatorial map. (c) The inner edges e 1
has been removed. (d) The inner edge e 2 has been removed. In this last case, e 3 is

no longer an inner edge, and hence is not removed by cluster merging.
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e will assume that there is a total order ≺ on the simplices in

 which respects the height function h and dimension. That is, for

, τ ∈ M , if h ( σ ) < h ( τ ), then σ≺τ . Similarly, if h (σ ) = h (τ ) and

im (σ ) < dim (τ ) , then σ≺τ . Hence, for each set of simplices in

 , there exists a unique minimal simplex. This total order allows

s to consider all those simplices in M which precede simplex σ
nder ≺. We denote such a set as M ≺σ . 

emma 1. Let u, v ∈ M be vertices which are also in M 

′ , where M 

′ is

btained by merging a collection of ε-permissible clusters. If u and v

re in the same connected component in M a , then u and v are in the

ame connected component in M 

′ 
a + ε . 

roof. Note that clusters are merged into a single face which is

omeomorphic to a disk. Hence, if u and v are connected in M a by

 path of edges which includes edges that are removed by clus-

er merging, then the segment of edges between two vertices on

he boundary of a cluster can be replaced by instead traversing

he boundary of the cluster. If w is a vertex removed by cluster

erging and which is also the face of an edge that connected u

nd v , then all edges e on the boundary of the cluster containing

 must have height h (e ) ≤ h (w ) + ε ≤ a + ε. Hence, there is a path

etween u and v in M 

′ 
a + ε . �

heorem 1. If M 

′ is obtained from M by merging a collection of ε-

ermissible clusters, then d b ( Dgm 0 (M) , Dgm 0 (M 

′ )) ≤ ε. 

roof. We proceed by constructing a matching γ : Dgm 0 (M) →
gm 0 (M 

′ ) . Consider (b, d) ∈ Dgm 0 (M) . The point ( b, d ) corre-

ponds to the lifetime of some homology class created by vertex

 ∈ M . We use the notation [ v ] M 

to refer to the set of vertices in

 which are in the same connected component as v prior to the

ntroduction of the edge which kills the homology class created by

 at index d (if there is such an edge). If d = ∞ , then [ v ] M 

refers

o those vertices in the same connected component as v in M . For

 

′ ∈ M 

′ , we define [ v ′ ] M 

′ in an analogous way.
In order to define γ , we consider two cases. First, we assume

hat d is finite. In this case, the homology class [ v ] M 

dies when

n edge e is introduced to M d such that the vertices v and u are

n the same connected component, where u ≺v . We associate with

, u a unique vertex in M 

′ , denoted v ′ , u ′ . In particular, we let

 

′ denote the minimal vertex in [ v ] M 

∩ M 

′ under ≺. If there is no

uch v ′ , then [ v ] M 

only includes vertices which are removed via

ace merging. Hence, [ v ] M 

dies when an edge e = { w 0 , w 1 } joins

he connected component containing v with the one containing u .

n particular, both w 0 and w 1 must be in the cluster containing

 , as if w 1 is not in the cluster, then w 0 must be on the bound-

ry of the cluster containing v which would imply that v ′ exists.

rgo, by ε-permissibility, h (v ) = b ≤ h (e ) = d ≤ h (v ) + ε. Hence,

e let γ (b, d) = 

(
b+ d 

2 , b+ d 
2

)
, which satisfies || γ (b, d) − (b, d) || ∞ 

=
ax 

{∣∣ b−d 
2 − b 

∣∣, 
∣∣d − b−d 

2 

∣∣} = max 
{∣∣−b−d 

2 

∣∣, 
∣∣ d−b 

2 

∣∣} = 

(
d−b 

2 

)
≤ ε/ 2 . 

We let u ′ be the minimal element in the set [ u ] M 

∩ M ≺e ∩ M 

′ .
f u ′ does not exist, then when [ u ] M 

merges with [ v ] M 

, the con-

ected component [ u ] M 

contains only vertices which are removed

uring cluster merging. By identical reasoning as in the case where

 

′ was undefined, the connected component [ v ] M 

must contain

 vertex w which is in the same cluster as u . Hence, as [ u ] M 

is

oined to [ v ] M 

upon the introduction of an edge e in M d , where e

s in the cluster containing u , it follows that h (u ) ≤ h (e ) ≤ h (u ) +
by ε-permissibility. Therefore, as h ( v ) ≤ h ( e ), it follows that

 (e ) − h (v ) = d − b ≤ ε. Hence, we let γ (b, d) = 

(
b+ d 

2 , b+ d 
2 

)
, which

e have already shown to satisfy || γ (b, d) − (b, d) || ∞ 

≤ ε/ 2 . 

Hence, we assume that both u ′ and v ′ exist. By Lemma 1 , the

ertices u ′ , v ′ are in the same connected component in M 

′ 
d′ , d ′ ≤

 + ε. It follows that d ≤ d ′ , else u and v would be in the same

onnected component prior to M d . Note that u ′ , v ′ satisfy h (u ) ≤
 (u ′ ) ≤ h (u ) + ε and h (v ) ≤ h (v ′ ) ≤ h (v ) + ε. This is because if u is

ot removed, then u ′ = u and h (u ) = h (u ′ ) . If u is removed and u ′ 
xists, then the connected component containing u prior to join-

ng with v must contain some vertex w on the boundary of the

erged cluster, which satisfies h (u ) ≤ h (w ) ≤ h (u ) + ε, and since

 ( u ) ≤ h ( u ′ ) ≤ h ( w ), it follows that h (u ) ≤ h (u ′ ) ≤ h (u ) + ε. The

ame reasoning applies to v, v ′ . 
Now, we consider two subcases. First, we assume that the

lass [ v ′ ] M 

′ merges into some other class [ w ] M 

′ in subcomplex

 

′
D where d ≤ D ≤ d ′ ≤ d + ε. In such a case, we let γ (b, d) =

(h (v ′ ) , D ) . Since b ≤ h (v ′ ) ≤ b + ε, and d ≤ D ≤ d + ε, it follows

hat || γ (b, d) − (b, d) || ∞ 

≤ ε. Second, we assume that there exists

o such D . However, in M 

′ 
d′ , v ′ and u ′ are in the same connected

omponent, so it follows that [ u ′ ] M 

′ merges into [ v ′ ] M 

′ . Since by

ssumption h ( u ) ≤ h ( v ) and h ( v ′ ) ≤ h ( u ′ ), and we have shown

hat h (u ) ≤ h (u ′ ) ≤ h (u ) + ε, it follows that h (u ) ≤ h (v ) ≤ h (v ′ ) ≤
 (u ′ ) ≤ h (u ) + ε, which implies that 0 ≤ h (u ′ ) − h (v ) ≤ ε. Hence,

e let γ (b, d) = (h (u ′ ) , d ′ ) which satisfies || γ (b, d) − (b, d) || ∞ 

≤ ε.

hese subcases are illustrated in Fig. 3 . 

In the second case, we assume d = ∞ . In M 

′ , it follows that

 

′ creates a class [ v ′ ] M 

′ with lifetime ( h ( v ′ ), ∞ ). We let γ (b, d) =
(h (v ′ ) , ∞ ) . We have established that either h (v ′ ) = h (v ) or 0 ≤
 (v ′ ) − h (v ) ≤ ε. If we have the former, then || γ (b, d) − (b, d) || ∞ 

=
 . In the event of the later, it follows that || γ (b, d) − (b, d) || ∞ 

≤ ε.

We now prove that γ is a matching. When d is finite, if

(b 1 , d 1 ) = γ (b 2 , d 2 ) = (b ′ , d ′ ) , then ( b ′ , d ′ ) has multiplicity at

east 2. Otherwise, a single class was killed twice, which is a con-

radiction. In the case where d is infinite, each connected compo-

ent in M corresponds to a unique connected component in M 

′ , so

must be one-to-one. 

To see that γ is onto, first note that every point with infinite

ersistence is the image of a point with infinite persistence, as

luster merging does not destroy connected components. Second,

ll ( b ′ , d ′ ) ∈ M 

′ , d ′ < ∞ correspond to the lifetime of some class

reated by vertex v ′ denoted [ v ′ ] M 

′ which is killed when it merges



Fig. 3. Let ( b, d ) correspond to the lifetime of [ v ] M , which in M d is com- 

bined in the same class as u , where h ( u ) ≤ h ( v ). We assume that this happens 

upon the introduction of vertex r , where d = h (r) < h (r 1 ) , h (r 2 ) , h (r 3 ) , and by ε- 

permissibility, h (r 1 ) , h (r 2 ) ≤ h (r) + ε. In addition, we let h ( w ) < h ( v ). In M 

′ , v ′ and 

u ′ (resp. v ′ and w ) are in the same connected component following the introduc- 

tion of the vertex r 1 (resp. r 3 ). Hence, if h ( r 1 ) < h ( r 3 ), and h ( u ′ ) < h ( v ′ ), then 

γ (b, d) = (h (v ′ ) , h (r 1 )) . Similarly, if h ( r 1 ) < h ( r 3 ) but h ( v ′ ) < h ( u ′ ), then γ (b, d) = 

(h (u ′ ) , h (r 1 )) . If h ( r 3 ) < h ( r 1 ) and h ( w ) < h ( v ′ ), then [ v ′ ] M ′ is absorbed by [ w ] M ′ and 

not [ u ′ ] M ′ . Then, γ (b, d) = (h (v ′ ) , h (r 3 )) . In all cases, || γ (b, d) − (b, d) || ∞ ≤ ε. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1

Average of the bottleneck distance between the per- 

sistent diagrams computed on: (1) the lower-star

filtration, and (2) the lower-star filtration for differ- 

ent values of 
 for each of the six meshes in (a),

and for the six images in (b).

(a)


 0.32 0.64 1.28 2.56 5.12

ε 1.59 3.17 6.34 12.68 25.36

0-D 1.24 2.17 3.89 6.77 9.87

1-D 1.46 2.82 5.37 9.54 23.06

(b)


 0.32 0.64 1.28 2.56 5.12

ε 1.97 3.93 7.87 15.74 31.47

0-D 0.00 2.57 7.28 14.56 27.41

1-D 0.00 2.57 7.28 14.14 26.13

Fig. 5. Effect of the ε parameter on the size of the different clusters for the Hap- 

pyBuddha mesh, zoomed in on the head.
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with some class created by u ′ denoted as [ u ′ ] M 

′ . Likewise, [ u ′ ] M 

and [ v ′ ] M 

must merge in M at subcomplex M d . Hence, if [ u ′ ] M 

is

the class that dies when merging with [ v ′ ] M 

, and ( b, d ) corresponds

to the lifetime of [ u ′ ] M 

, then γ (b, d) = (b ′ , d ′ ) . Similarly for if [ v ′ ] M
dies. Hence, γ is onto. 

Thus, γ is a matching where || γ (b, d) − (b, d) || ∞ 

≤ ε for all

(b, d) ∈ Dgm 0 (M) . Ergo, d b ( Dgm 0 (M ) , Dgm 0 (M 

′ )) ≤ ε. �

Although we could have attempted to give a proof using classi-

cal results from [18,19] related to stability of persistence diagrams,

we preferred to provide a constructive proof giving the explicit

matching between the points in the respective diagrams. 

Theorem 2. If M 

′ is obtained by merging a collection of ε-permissible

clusters, then d b ( Dgm 1 (M) , Dgm 1 (M 

′ )) ≤ ε. 

Proof. Analogously to the proof of Theorem 1 : if an edge e cre-

ates a 1-cycle π = 

∑ 

i e i , then we use [ π ] M 

to refer to the cycle

class containing π . As in the 0-dimensional case, π ′ refers to the

representative cycle of [ π ] M 

that is created at the lowest height

value and for which none of the edges are removed when clusters

are merged. The matching γ is constructed in the same way as

the 0-dimensional case: the points corresponding to those classes

for which a representative cycle is contained entirely in a cluster

and for which the persistence is less than ε are paired with the
Fig. 4. Example of one mesh used in our experiments: the HappyBudda mesh. The table 

generators, # Hi , for i = 0 , 1 , 2 . 
iagonal, points corresponding to those cycles with lifetimes with

nfinite persistence are paired with canonical choice, and points

ith finite persistence which do not satisfy the first case are ei-

her paired with the diagonal or with the point corresponding to

 π ′ ] M 

′ , or, in the event that [ π ′ ] M 

′ kills [ ρ′ ] M 

′ where [ ρ] M 

kills

[ π ] M 

, then the point corresponding to [ π ] M 

is paired with the

oint corresponding to [ ρ′ ] M 

′ .
The only substantive difference is that in the 0-dimensional

ase, if [ u ] M 

and [ v ] M 

merge in M d , then [ u ] M 

′ and [ v ] M 

′ merge at

 d ′ where d ′ satisfies d ≤ d ′ ≤ d + ε. In the 1-dimensional case, if

 π ] M 

and [ ρ] M 

merge in M d , then [ π ′ ] M 

′ and [ ρ′ ] M 

′ merge in M′
d ′

here d − ε ≤ d ′ ≤ d, as merged faces take the maximum value of

he remaining vertices. But this still permits || γ (b, d) − (b, d) || ∞ 

≤
. The function γ is then a matching by the same reasoning. �

heorem 3. If M 

′ is obtained by merging a collection of ε-permissible

lusters, then d ( Dgm (M) , Dgm (M 

′ )) ≤ ε. 
b 2 2 

gives the number of i -cells, # i -cells, for the six meshes used, and the number of Hi



Fig. 6. Number of vertices, edges and faces of the simplified 2-maps (in log 2 scale) depending on the value of 
. These numbers are average values for the six meshes in

(a), and for the six images in (b).
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2 Images taken by C. Hu, D. Dobrila, J. Alexander, K. Toth, M. Asthoff and T.
roof. This proof follows analogously to the proof of Theorem 1 ,

xcept the only case that needs to be considered in when d = ∞ .

ince cluster merging does not destroy 2-cycles or 2-classes, then

or each (b, d) ∈ Dgm 2 (M) there is a canonical choice of a point

(b ′ , d ′ ) ∈ Dgm 2 (M 

′ ) , where b − ε ≤ b ′ ≤ b and d = d ′ = ∞ . Hence,

| γ (b, d) − (b, d) || ∞ 

≤ ε. �

. Experiments

We have implemented our algorithm for lower-star filtration

implification by using the CGAL implementation of combinatorial

aps (see [20] ) and an additional layer, called linear cell complex,

hich represents the geometry. All experiments were run on an

ntel®i7-4790 CPU, 4 cores @ 3.60 GHz with 32 GB RAM. All the

omputation times given here are averages of 10 consecutive runs

n the same mesh. 

.1. 3D meshes 

In our first experiment, we tested our algorithm on six

eshes, 1 one of which is shown in Fig. 4 . The sizes of the meshes

ange between 703,512 and 10,0 0 0,0 0 0 faces. All these meshes

ave only one connected component, except Blade which has

95 connected components because of many small isolated closed

eshes within the blade. 

Our experiments are performed with various values of ε. For

ach mesh, we computed the height of the mesh α (i.e. the max-

mal height minus the minimal one), and let ε = (
 · α) / 100 , 


eing a percentage (0 ≤ 
 ≤ 100). We start with 
 = 0 . 32 , and

an five experiments where, with each additional experiment, 
 is

oubled. We also computed the persistence diagrams correspond-

ng to the lower-star filtration induced by the height value on the

ertices of the original mesh (without simplification). Note that as

increases, ε increases too. The average number of faces in a

ingle cluster increases and thus the combinatorial map becomes

ore and more simplified. This tends to correspond to a rise in

he bottleneck distance between the persistence diagrams corre-

ponding to the simplified mesh and the original mesh, displayed

n Table 1 (a). 

We can see an illustration of the effect of the ε parameter on

he size of the different clusters in Fig. 5 . Data showing the num-
1 http://www-graphics.stanford.edu/data/3Dscanrep/ https://www.cc.gatech.edu/

rojects/large _ models/

N

u

u

5

er of cells in the simplified mesh as 
 varies is displayed in

ig. 6 (a). As expected, increasing ε greatly affects mesh size. 

The effect of ε on the computation time is illustrated in

ig. 7 (a), where our method for computing persistence based on 2-

ap simplification is ran with different values of 
. As expected,

omputation time decreases while ε increases, as this corresponds

o a simpler mesh and thus a simpler filtration. We can notice that

or sufficiently large ε, computation time does not decrease be-

ause all the time is taken by the computation of the filtration and

he simplification step. 

The bottleneck distances between the persistence diagrams cor-

esponding to the lower-star filtration and the filtration obtained

hen varying ε are given in Table 1 (a). As expected, the bottle-

eck distances are always smaller than ε. 

.2. 2D Images 

For our second experiment, we used six grayscale images 2 from

nsplash ( https://unsplash.com/ ), one depicted in Fig. 8 , with size

etween 1280 × 853 and 5616 × 3744 pixels. For each image, we

reated a 2D mesh having one vertex per pixel, its height value

eing the intensity of the pixel. This transformation enables appli-

ation of our algorithm for approximating the persistent homology

f 2D meshes to grayscale images. The number of cells in the sim-

lified meshes obtained from the images are given in Fig. 8 . 

We compared the persistent homology computation of the six

eshes for increasing values of 
. The effect of ε on the number

f cells is illustrated in Fig. 6 (b). 

Like for experiments with meshes, we can observe in Fig. 7 (b)

hat computation time decreases while ε increases. We obtain here

 better speed-up compared to the experiment with meshes. This

omes from the numbers of cells which is much larger for im-

ges than for meshes. In this case, simplifying the 2-map greatly

educes the numbers of cells and thus the computation time spent

n the AT-model computation. 

Lastly, the bottleneck distances between the persistence dia-

rams corresponding to the lower-star filtration and the filtration

btained for the different 
 are given in Table 1 (b). As expected,

he bottleneck distances are always smaller than ε. 
accarato. Im1 is changyu-hu-4672-unsplash.jpg; Im2 is damjan-dobrila-39542-

nsplash.jpg; Im3 is jack-alexander-131176-unsplash.jpg; Im4 is kathy-toth-31945-

nsplash.jpg; Im5 is mark-asthoff-78328-unsplash.jpg and Im6 is tony-naccarato-

5-unsplash.jpg

http://www-graphics.stanford.edu/data/3Dscanrep/
https://www.cc.gatech.edu/projects/large_models/
https://unsplash.com/


Fig. 7. Computation time (in seconds) of our method by using the lower-star filtration with increasing 
 values. For 
 = 0 , lower-star filtration is used without simplification 

step. The graph shows average values for the six meshes in (a), and for the six images in (b), and details time spent in the different parts of the method: computation of the

filtration, combinatorial map simplification and persistence computation by using AT-model. Filtration computes the height of each cell (vertices, edges and face) and 

dispatches faces into clusters according to 
. Simplification is the 2-map simplification, and AT-model is the persistent homology computation, including sorting the 

cells.

Fig. 8. (a) One image used in our second experiments. (b) Its representation as mesh, with one color per cluster, for ε = 160 , (c) and for ε = 320 . The table gives the size of 

the images (in pixels), the number of i -cells for the six meshes built from the images, # i -cells. The number of Hi generators is the same for all images, H0 = 1, H1 = 0 and 

H2 = 0. 
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6. Conclusion

We conclude with a brief discussion of future directions for re-

search. First, we plan to extend our work to non-orientable man-

ifolds by using the generalized maps package (the non-orientable

extension of combinatorial maps) of CGAL. We also would like to

define a parallel version of our method: the combinatorial map

simplification was already defined in parallel in [10] but we need

now to study if it is possible to parallelize some parts of the

AT-model computation algorithm. Extension in n D could be given

based on the theoretical results for removal and contraction oper-

ations in any dimension given in [21] . Indeed, all basic tools used

in this work, combinatorial maps, removal / contraction operations

and AT-model computation, are defined in any dimension. 
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