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Abstract

We study the problem of augmenting the locus N� of a plane Euclidean network N
by inserting iteratively a finite set of segments, called shortcut set, while reducing
the diameter of the locus of the resulting network. We first characterize the existence
of shortcut sets, and compute shortcut sets in polynomial time providing an upper
bound on their size. Then, we analyze the role of the convex hull of N� when
inserting a shortcut set. As a main result, we prove that one can always determine in
polynomial time whether inserting only one segment suffices to reduce the diameter.
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1 Introduction

A plane Euclidean network N = (V (N ), E(N )) is a plane geometric graph
(i.e., an undirected graph whose vertices are points in R

2 and whose edges are
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non-crossing straight-line segments connecting pairs of points) in which edges
are assigned lengths equal to the Euclidean distances between their endpoints.
It is natural to distinguish between a network N and its locus N�, which is
the union of the segments that form the network. When no confusion may
arise, we shall say network, it being understood as plane Euclidean network.

When two points p, q are on edges of N , a path connecting them may con-
sist of a number of edges and at most two fragments of edges. For computing
their distance d(p, q), we sum the lengths of all the edges in a shortest path
between them and the lengths of the possible fragments. The diameter of N�,
denoted by diam(N�), is the maximum among the distances between any two
points on N�

2 . When d(p, q) = diam(N�), points p, q are called diametral.

In this work we study the following problem:

Given a plane Euclidean network N , insert a finite set of segments S =
{s1, . . . , sk} in order to reduce (or minimize) the diameter of the locus of the
resulting network, provided that the endpoints of segment s1 are on N� and the
endpoints of si, 2 ≤ i ≤ k, are on N� ∪ {s1, . . . , si−1}.

We say that S is a shortcut set for N�. When S = {s}, segment s is called
shortcut, and s is simple if it only intersects N� on its endpoints.

This type of problems is mainly motivated by urban network design: to
introduce shortcut sets is a way of improving the worst-case travel time along
networks of roads in a city, highways, etc. Such models are considering the lo-
cus of the network which is also used for related applications to location anal-
ysis and feed-link problems; see for example [1]. Our problem also belongs
to the class of graph augmentation problems. Concretely, it is a variant of
the Diameter-Optimal k-Augmentation Problem for edge-weighted geometric
graphs, where one has to insert k additional edges to an edge-weighted plane
geometric graph in order to minimize the diameter of the resulting graph.
There are very few results on this problem and, in general, on graph augmen-
tation over plane geometric graphs; see for instance [6].

When considering N� instead of N , the hardness of the problem is enor-
mously increased which motivates that, to the best of our knowledge, there
are only two previous works on this topic, both restricted to specific families
of graphs. Yang [8] deals with the problem of inserting only one segment to
a simple polygonal chain, designing three different approximation algorithms
to compute an optimal shortcut (i.e., the one that minimizes the diameter
among all shortcuts). Very recently, De Carufel et al. [4] have studied simple

2 The diameter of N� is the generalized diameter of [3] and the continuous diameter of
[4,7], but we use the context of locus because it fits better to our purpose in this work.



shortcuts for paths and cycles. They consider the possibility of inserting more
than one segment, although the possible intersection points between their seg-
ments are not included as points of the resulting network. With this notion,
they determine in linear time optimal simple shortcuts for paths, and optimal
pairs of simple shortcuts for convex cycles. We present in this work the first
approach to the above-stated problem for general plane Euclidean networks.

2 Existence of shortcut sets

There are networks whose locus have no shortcut (a triangle) and even no
shortcut set of any size (a straight path); the following theorem states a natural
characterization of the existence of shortcut sets. We use CH(N�) to denote
the convex hull of N�, and its diameter diam(CH(N�)) is the maximum among
the Euclidean distances between any two points in CH(N�).

Theorem 2.1 Let N be a plane Euclidean network. Then, the following state-
ments are equivalent:

(i) N� admits a shortcut set.

(ii) The segment defined by any two diametral vertices is not contained in N�.

(iii) diam(CH(N�)) < diam(N�).

As a consequence of the proof of Theorem 2.1 (here omitted for the sake
of brevity), we obtain the following corollary.

Corollary 2.2 Let N be a plane Euclidean network whose locus N� admits
a shortcut set. Then, it is possible to compute in polynomial time a shortcut
set for N� of size at most 2|E(N )| − n1, where n1 is the number of vertices of
degree 1 in N .

By using properties of CH(N�), one can improve the preceding upper
bound, but we stress its linearity with respect to |V (N )|. Nevertheless, the
importance of CH(N�) goes much further as the following theorem reflects.

Theorem 2.3 Let N be a plane Euclidean network whose locus N� satisfies
that diam(CH(N�)) < diam(N�). Then, for every ε > 0 such that diam(CH(N�))+
ε < diam(N�) there exists a shortcut set S for N� verifying that diam(CH(N�)) ≤
diam(N� ∪ S) < diam(CH(N�)) + ε.

Proof (Sketch) LetM = {p ∈ N� | ecc(p) ≥ M} where ecc(p) = maxq∈N�
d(p, q)

and M = diam(CH(N�))+
ε
4
. This set is non-empty and compact in R

2. Fur-
ther, the collection of balls B(p, ε

4
) with p ∈ M is a cover of M, and so there



is a finite subcover, say M ⊆ ⋃k
i=1B(pi,

ε
4
).

For 1 ≤ i ≤ k, the set Mi = {q ∈ N� | d(pi, q) ≥ M} is also non-empty
and compact in R

2. Thus, for the cover of Mi given by the balls B(q, ε
4
) with

q ∈ Mi, there is a finite subcover, say Mi ⊆
⋃ri

t=1 B(qit,
ε
4
).

One can prove that the set S of segments with endpoints pi and qij, 1 ≤
i ≤ k and 1 ≤ j ≤ ri, verifies that diam(N� ∪ S) < diam(CH(N�)) + ε.
Moreover, it is easy to show that diam(CH(N�)) ≤ diam(N�), which gives
diam(CH(N�)) ≤ diam(N� ∪ S). �

3 Computing shortcuts

In this section, we present our main result in this work. Due to the lack of
space, we sketch very briefly its proof.

Theorem 3.1 For every plane Euclidean network N , it is possible to deter-
mine in polynomial time whether there exists a shortcut for N� and, in that
case, to compute it.

Proof (Sketch) We distinguish the following two main steps.

Step (1). To split the searching space into a polynomial number of “equivalent”
regions.

Consider two arbitrary vertical lines defining a strip enclosing N�. For each
vertex u, take two horizontal segments defined by u as one endpoint and the
other in one of the vertical lines; in total, there are 2n segments. We say that
two lines are equivalent if they intersect the same segments among those 2n
segments.

Given a line m that crosses two edges e, e′ ∈ E(N ), let Pe,e′(m) be the set
of equivalent lines to m that intersect edges e and e′. This set can be viewed
as the set of segments determined by the intersection points of the lines with e
and e′, and the region of the plane that it defines has the shape of an hourglass
[2]. One can check that there are O(n2) regions Pe,e′(m).

Step (2). To seek for a shortcut in each region Pe,e′(m) in polynomial time.

First, we prove the result for simple shortcuts (case (a)) and then we extend
our arguments for general shortcuts (case (b)).

Case (a). Suppose that line m intersects no edges in between e and e′. If
e = uv and e′ = u′v′ then a point p on e can be expressed as p = ut+(1− t)v,
and a point on e′ is p′ = u′t′ + (1 − t′)v′. Thus, a segment pp′ in Pe,e′(m) is
represented by a pair (t, t′). These pairs must lie inside a region Re,e′(m) ⊆ R

2

whose boundary is given by the coordinates of the segments bounding Pe,e′(m),



and so is determined by two polygonal chains; see Figure 1. Each point in
Re,e′(m) represents a segment in Pe,e′(m).
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Fig. 1. Region Pe,e′(m) in (a) and its corresponding region Re,e′(m) in (b).

We now decide in polynomial time whether there is a segment pp′ ∈
Pe,e′(m) (endpoint p on e and p′ on e′) that is a shortcut for N� (which in
this case would be a simple shortcut). That is: (i) pp′ must decrease the dis-
tance of all pairs (w, z) such that d(w, z) = d = diam(N�), and (ii) ecc(q) < d
for every q ∈ pp′. These conditions can be captured by two arrangements of
conics, denoted by Q (for condition (i)) and Q′ (for condition (ii)).

To construct Q (similar for Q′) we analyze, for each type of diametral pair
(w, z), the meaning of having a segment pp′ ∈ Pe,e′(m) in a path that passes
through, say u and u′, and decreases d(w, z) = d. For example, when w and z
are vertices, if such a segment pp′ exists then d(u, p)+d(p, p′)+d(p′, u′) < d−d1
where d1 is either d(w, u)+d(z, u′) or d(w, u′)+d(z, u). That inequation gives
us the interior points (t, t′) (corresponding to points p, p′) of a conic Qw,z

u,u′ (it
is a conic because d(u, p) and d(u′, p′) are, respectively, linear functions of t
and t′). We also obtain conics Qw,z

u,v′ , Q
w,z
v,u′ , and Qw,z

v,v′ for paths passing through
the corresponding endpoints of e and e′ (instead of u, u′). When considering
all types of diametral pairs (w, z), we get the arrangement Q.

There exists a shortcut for N� in Pe,e′(m) if and only if there is a cell in
Q∩Q′ ∩Re,e′(m) that is contained in all conics of Q′ and, per each diametral
pair (w, z), in at least one of the four conics of Q associated to (w, z).

Case (b). Suppose that line m intersects k − 2 edges in between e and e′.
Instead of considering only the four combinations of endpoints of e and e′,
we take the 4k(k − 1)/2 suitable combinations of endpoints of different pairs



of edges among the k intersected edges (counting e and e′). Further, we do
not obtain conics because the terms d(u, p) and d(u′, p′) may not be linear
functions of t and t′ but, for each diametral pair (w, z), certain curves Qz,w

ui,uj

are obtained. The key to handle the situation in a similar fashion of case (a)
is to prove that those curves are convex.

For the complexity, note that the preceding analysis must be performed at
most in the O(n2) regions Pe,e′(m) for each of the O(n2) pairs of edges e, e′.
Also, the computation of diam(N�), which depends on the distances between
vertices, can be done in polynomial time [3]. By Lemma 9 of [1], the set of
diametral pairs of points is at most quadratic, and the sets of vertices and
edges are linear. Thus, the set of values needed to obtain our arrangements is
polynomial, and they can also be computed in polynomial time [5]. �
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