
            Polynomial graph invariants from homomorphism numbers

                                      Delia Garijo a, Andrew Goodall b, Jaroslav Nešetřil b
                                                              a University of Seville, Spain
                                                             b Charles University, Prague, Czech Republic

Keywords:
Graph polynomial
Graph homomorphism
Graph sequence

a b s t r a c t

We give a new method of generating strongly polynomial sequences of graphs, i.e., se-
quences (Hk) indexed by a tuple k = (k1, . . . , kh) of positive integers, with the property
that, for each fixed graph G, there is a multivariate polynomial p(G; x1, . . . , xh) such that
the number of homomorphisms from G to Hk is given by the evaluation p(G; k1, . . . , kh).
A classical example is the sequence of complete graphs (Kk), for which p(G; x) is the chro-
matic polynomial ofG. Our construction is based on treemodel representations of graphs. It
produces a large family of graph polynomials which includes the Tutte polynomial,
the Averbouch–Godlin–Makowsky polynomial, and the Tittmann–Averbouch–Makowsky
polynomial. We also introduce a new graph parameter, the branching core size of a sim-
ple graph, derived from its representation under a particular tree model, and related to
howmany involutive automorphisms it has. We prove that a countable family of graphs of
bounded branching core size is always contained in the union of a finite number of strongly
polynomial sequences.

1. Introduction

Let Nh denote the set of h-tuples of positive integers (h ≥ 1), and let H be a countably infinite set of graphs possibly
with loops and/or weights on edges. Suppose H is presented as a sequence (Hk) indexed by tuples k = (k1, . . . , kh) ∈ Nh.
(We extend the usual meaning of ‘‘sequence’’, corresponding to the case h = 1, to double sequences (h = 2) and more
generally to countable sets equipped with a bijection to Nh for some finite h ∈ N. Of course, we may present such a set as
a conventional sequence by using a bijection from Nh to N, but the particular indexing of the set by tuples is important in
what follows.) Countable families of graphs are often given in the form of such a sequence, for example, the complete graphs
(Kk), or the complete bipartite graphs (Kk1,k2). In these and other concrete examples, the indices k1, . . . , kh correspond to
some natural graph parameter (such as number of vertices) or indicate how to construct the graph in that position of the
sequence (such as substituting every vertex of a base graph H by k twin copies to obtain Hk).

In this paper,we are interested in the number of homomorphisms of a graphG toHk, denoted by hom(G,Hk), as a function
of k and G. More specifically, when is this function a multivariate polynomial in k for every graph G? If this is the case for
all k, we follow [5] and say that the sequence (Hk) is strongly polynomial. A well-known example, and one which motivated
the ‘‘chromatic invariants’’ of [5], is the sequence of complete graphs (Kk), where hom(G, Kk) is the value of the chromatic
polynomial of G at k for each k ∈ N.

http://dx.doi.org/10.1016/j.disc.2015.11.022
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2015.11.022&domain=pdf
mailto:dgarijo@us.es
mailto:andrew@iuuk.mff.cuni.cz
mailto:nesetril@kam.mff.cuni.cz
http://dx.doi.org/10.1016/j.disc.2015.11.022


De la Harpe and Jaeger [5] considered the case h = 1 in our setting, i.e. sequences indexed by a single positive integer 
k. (An exception is their Example B.6, which concerns the bivariate dichromatic polynomial and an anticipation of the two-
variable generalization of the chromatic polynomial by Dohmen, Pönitz and Tittmann [6].) They obtained necessary and 
sufficient criteria that enabled them to verify, for several graph sequences (Hk) with k ∈ N, that hom(G, Hk) is strongly 
polynomial. Further, they provided a general method of generating strongly polynomial sequences of graphs (although 
by no means all such sequences). On the other hand, in our paper [8] we established precisely for which edge-weighted 
graphs H homomorphism functions from multigraphs G to H are specializations of the Tutte polynomial T (G; x, y), the Aver-
bouch–Godlin–Makowsky polynomial ξG(x, y, z) [1], and the Tittmann–Averbouch–Makowsky polynomial QG(x, y) [16]. 
The edge-weighted graphs H obtained for the three polynomials take the form of a sequence of graphs (Hk) indexed by a 
tuple k (shown by cotree representations in Fig. 5).

Here, our main contribution is to introduce a new method to generate strongly polynomial sequences of graphs (Hk), 
each of which determines a multivariate graph polynomial. These include the chromatic polynomial, the Tutte polynomial, 
recent generalizations of the chromatic polynomial such as the Dohmen–Pönitz–Tittmann polynomial [6] and the 
Averbouch–Godlin–Makowsky polynomial [1], and the Tittmann–Averbouch–Makowsky polynomial [16] (a generalization 
of the independence polynomial). We formulate our results in the general framework of rooted tree models for graphs, but 
in fact all the above-mentioned polynomials can be generated by just using the cotree representation of cographs.

1.1. Outline

In Section 2 we define homomorphism numbers and strongly polynomial sequences of graphs formally, including in 
Section 2.1 a useful lemma restating the property of being strongly polynomial in terms of induced subgraph counts rather 
than homomorphism numbers. In Section 2.2 we define coloured rooted trees and an operation on them (‘‘branching’’) that 
will produce all our strongly polynomial sequences of graphs. In Section 2.3 we abstract a definition of tree models for graphs 
(representation by coloured rooted trees) from the cases of cotrees, clique-width expression trees, embeddings of graphs 
in closures of rooted trees (used for defining tree-depth) and shrub-depth expression trees. We also isolate the relevant 
properties of these tree models required for the proof of our main theorem in Section 3.1 to go through.

Section 3 contains in Section 3.1 the statement of our three main results, and Section 3.2 contains their proofs. 
Theorem 3.1 is the fundamental result for producing strongly polynomial sequences, and Theorem 3.2 is a useful adjunct. 
Theorem 3.3 gives a sufficient condition to decompose a countable set of graphs into finitely many strongly polynomial 
(sub)sequences, and introduces a new graph parameter – the branching core size – which according to the tree model used, 
is related to clique-width, tree-depth and shrub-depth. (In rough terms, the size of the most compact representation of the 
graph by the given tree model.)

In Section 4 we apply the first two main results of Section 3.1 to obtain strongly polynomial sequences of graphs from 
each of the tree models related to clique-width, tree-depth and shrub-depth. Even one of the simplest specializations of 
these two main theorems – to cotree representations of cographs – produces strongly polynomial sequences that determine 
the chromatic polynomial, the Tutte polynomial, the Averbouch–Godlin–Makowsky polynomial (includes the matching 
polynomial), and the Tittmann–Averbouch–Makowsky polynomial (includes the independence polynomial). For each tree 
model we illustrate how it produces sequences in different ways by using the running example of strongly polynomial 
sequences that start with the cycle C4 as their initial term.

1.2. Remarks

We conclude this introduction with two remarks.
On the one hand, the ‘‘generalized colourings’’ of [11,12] include only colourings invariant under all permutations of 

colours, which holds for Kk-colourings (that is, proper k-colourings) and other types of graph colouring such as acyclic 
colouring that are not defined by counting graph homomorphisms, but not in general for Hk-colourings for other sequences 
of graphs (Hk). However, in a paper being prepared by A. Goodall, T. Kotek, J.A. Makowsky it will be demonstrated how the 
model-theoretic framework of [11,12], which gives a general construction of polynomial invariants of relational structures, 
does in fact include the rooted tree model construction of this paper. In [13] Makowsky also attempts a classification of 
polynomial graph invariants.

On the other hand, the generalized interpretation model of [10] includes the rooted tree model construction of this 
paper as a special case. This gives another candidate for the most general class of polynomial graph invariants that includes 
the chromatic polynomial. Establishing the exact connection between the finite model-theoretic approach of [10] and the 
countably infinite models used to define graph invariants in [11,12] is a topic of future research.

2. Definitions

2.1. Homomorphism numbers, strongly polynomial sequences of graphs

Let hom(G, H) denote the number of homomorphisms from a graph G to a simple graph H , i.e., adjacency-preserving 
maps from V (G) to V (H). This parameter can be extended to weighted graphs as follows.



LetH be aweighted graph given by its adjacencymatrix (ai,j), where ai,j is theweight of the edge ij. Then, for amultigraph
G, the homomorphism function hom(G,H) is defined by

hom(G,H) =


f :V (G)→V (H)


uv∈E(G)

af (u),f (v),

where the sum is over all functions from V (G) to V (H) and edges of G are taken with multiplicity in the product. When
ai,j ∈ {0, 1} this coincides with the number of homomorphisms from G to H as previously defined. When ai,j ∈ N, the graph
H is a multigraph and hom(G,H) counts the number of homomorphisms from G to H again, where now a homomorphism
needs to be defined rather in terms of a pair of maps f0 : V (G) → V (H), f1 : E(G) → E(H), the defining property being that
f1(uv) has endpoints f0(u) and f0(v) for every edge uv ∈ E(G).

We now introduce the principal object of study in this paper.

Definition 2.1. A sequence (Hk) of graphs indexed by k = (k1, . . . , kh) ∈ Nh is a strongly polynomial sequence in k if for
every graph G there exists a multivariate polynomial p(G; x1, . . . , xh) such that hom(G,Hk) = p(G; k1, . . . , kh) for every
k = (k1, . . . , kh) ∈ Nh.

To simplify notation, henceforth we shall write p(G; k1, . . . , kh) = p(G; k). Also, when no confusion can arise, we shall
simply say that (Hk) is a strongly polynomial sequence, it being understood that it is strongly polynomial in the given
parameter k.

Although a given choice of parametrization of a family H of graphs may fail to give a strongly polynomial sequence (Hk),
we are looking from the positive side: we seek instances H where there exists a parametrization of H by k ∈ Nh for some
h ≥ 1 which does yield a strongly polynomial sequence. Further, we will be satisfied with such parametrizations over some
proper infinite subset I ⊂ Nh rather than all tuples in Nh:

Definition 2.2. A sequence (Fk) of graphs indexed by tuples k ∈ I ⊆ Nh is a strongly polynomial subsequence in k if it is a
subsequence of a strongly polynomial sequence in k, i.e., there is a strongly polynomial sequence (Hk) with k ∈ Nh, such
that Hk = Fk when k ∈ I .

Clearly, the property of being a strongly polynomial subsequence is unaffected by removing any number of its terms.
For simple graphs G and H , ind(G,H) counts the number of embeddings of G as an induced subgraph of H , see [2]. A

useful equivalent formulation of the property of being strongly polynomial is given by the following:

Lemma 2.3. A sequence (Hk) of simple graphs indexed by a tuple k = (k1, . . . , kh) ∈ Nh is a strongly polynomial sequence in
k if and only if for every graph G there exists a polynomial q(G; x1, . . . , xh) such that ind(G,Hk) = q(G; k1, . . . , kh) for every
k = (k1, . . . , kh) ∈ Nh.

Proof. We first move from counting homomorphisms to injective homomorphisms by the identity (for this and the
following identities see for example [2])

hom(G,Hk) =


Θ

inj(G/Θ,Hk),

where the sum is over partitions Θ of V (G), and G/Θ is the graph obtained from G by identifying vertices that lie in the
same block of Θ . We then have

inj(G,Hk) =


Θ

µ(Θ) hom(G/Θ,Hk),

where

µ(Θ) =


I∈Θ

(−1)|I|−1(|I| − 1)!

is the Möbius function of the lattice of partitions of V (G). Thus, it follows that hom(G,Hk) is a polynomial in k if and only if
inj(G,Hk) is a polynomial in k.

Now, to move between counting induced substructures and counting injective homomorphisms, we use the identity

inj(G,Hk) =


G′⊇G

ind(G′,Hk),

in which inj(G,H) denotes the number of injective homomorphisms from G into H . From this identity, by inclusion–
exclusion we obtain

ind(G,Hk) =


G′⊇G

(−1)|E(G)|−|E(G′)|inj(G′,Hk).

Hence, inj(G,Hk) is a polynomial in k if and only if ind(G,Hk) is a polynomial in k.
Finally, putting these two conclusions together, hom(G,Hk) is a polynomial in k if and only if ind(G,Hk) is a polynomial

in k. �



Fig. 1. Branching on edge (s, t) with multiplicity given by its edge-mark k. (See Definition 2.5.)

The property of being a strongly polynomial sequence is preserved under operations such as complementation, disjoint
union, and join (as shown by De la Harpe and Jaeger [5]), taking line graphs and lexicographic and Cartesian products,
althoughwe do not prove this here as these facts are not needed in this paper. A wide-ranging description of operations that
preserve the property of being strongly polynomial is given in [10], in which the model-theoretic notion of an interpretation
scheme is applied to sequences of relational structures (not just graphs) in order to produce a large class of strongly
polynomial sequences of graphs.

2.2. Coloured rooted trees and branching

Let T be a rooted tree with vertex set V (T ), edge set E(T ), root r , and set of leaves L(T ). For s ∈ V (T ) − r , let P(s) denote
the unique path from root r to vertex s. A vertex t ≠ s is an ancestor of s if t ∈ P(s), and a descendant of s if s ∈ P(t). Let
D(T ) = {(s, t) : st ∈ E(T ), s ∈ P(t)} be the set of edges of T directed away from the root. The predecessor of s ≠ r is the
vertex adjacent to s in P(s), and is denoted by p(s); we have (p(s), s) ∈ D(T ).

The level of s ∈ V (T ) is the number of its ancestors, i.e., |P(s)| − 1. The root of T is the unique vertex at level 0, and its
height is the maximum level, i.e., height(T ) = max{|P(s)| − 1 : s ∈ V (T )}. The set {t ∈ V (T ) : s ∈ P(t)} is the vertex set of
the subtree Ts of T that is rooted at vertex s (tree Ts is the minimal subtree of T containing all descendants of s).

Definition 2.4. LetA be a set. AnA-coloured rooted tree (T , αA) is a rooted tree T togetherwith a partial functionαA : V (T ) →

A assigning an element of A to some vertices of T .
A marked A-coloured rooted tree (T , αA, β) is an A-coloured rooted tree (T , αA) together with a partial function β :

D(T ) → N assigning positive integers to some edges of T .

A vertex not in the domain of αA is called an uncoloured vertex, and an edge not in the domain of β is called unmarked.
These domains are denoted by dom(αA) and dom(β), respectively. If all the edges in (T , αA, β) are unmarked then (T , αA, β)
can be regarded simply as the A-coloured rooted tree (T , αA). Given a rooted subtree T ′ of T , we shall write (T ′, αA, β) to
refer to T ′ as an A-coloured rooted subtree of (T , αA, β), where αA and β are restricted to V (T ′) and D(T ′) respectively.

Isomorphism between (marked) A-coloured rooted trees includes preservation of colours on vertices (and integers on
edges) as well as isomorphism of the rooted tree structure.

In Section 4, containing applications, A-coloured rooted trees are used for representing graphs (for example, clique-width
expression trees). Marked A-coloured rooted trees will be used in this paper together with the branching operation defined
below to produce sequences of A-coloured rooted trees that represent strongly polynomial sequences of graphs. Section 4
contains concrete examples.

Definition 2.5. Let (T , αA, β) be a marked A-coloured rooted tree with edge (s, t) ∈ D(T ) such that β((s, t)) = k. The
branching of (T , αA, β) on (s, t) is the marked A-coloured rooted tree which
(i) coincides with (T , αA, β) on T \ Tt ,
(ii) the edge (s, t) that was marked with k is replaced by k unmarked edges (s, t1), . . . , (s, tk),
(iii) the subtree (Tt , αA, β) that was pendant from edge (s, t) is replaced by k isomorphic copies (Tti , αA, β), 1 ≤ i ≤ k, each

pendant from the corresponding edge (s, ti).

The value β((s, t)) = k is the branching multiplicity of edge (s, t).

See Fig. 1 for an illustration of Definition 2.5.
Branching consecutively on a pair of edges is independent of the order in which those edges are taken. Indeed, if

(s, t), (s′, t ′) ∈ D(T ) are such that Ts′ ∩ Tt = ∅ (i.e., t is not a descendant of s′, and vice versa) then, clearly, it makes
no difference to the resulting marked A-coloured rooted tree if we first branch on (s, t) and then branch on (s′, t ′), or if we
branch in the reverse order. When s′ ∈ P(t) or t ∈ P(s′), we require the following lemma.



Lemma 2.6. Let (T , αA, β) be a marked A-coloured rooted tree, and (s, t), (s′, t ′) ∈ D(T ) such that β((s, t)) = k, β((s′, t ′)) =

k′, and Ts′ ⊆ Tt . Then the two marked A-coloured rooted trees obtained from (T , αA, β) by, respectively,

(i) first branching on (s, t) and then branching on each of the k copies of (s′, t ′),
(ii) first branching on (s′, t ′) and then branching on (s, t),

are isomorphic.

Proof. Suppose thatwe first branch on (s, t), producing k isomorphic copies of (Tt , αA, β) each pendant from s. In particular,
as Tt ′ ⊆ Tt , this produces k copies of (Tt ′ , αA, β), each rooted by a copy of vertex t ′, and each pendant from its own copy of s′.
Branching on each copy of edge (s′, t ′) then produces k′ isomorphic copies of (Tt ′ , αA, β) pendant from each corresponding
copy of s′.

On the other hand, starting by branching on (s′, t ′) first produces k′ copies of (Tt ′ , αA, β), each of which are pendant from
s′. As Ts′ ⊆ Tt , this gives a marked A-coloured rooted tree which contains the k′ copies of (Tt ′ , αA, β) and is rooted at t;
branching on (s, t) produces k copies of this tree.

Either way, we obtain kk′ isomorphic copies of (Tt ′ , αA, β), with k′ copies of (Tt ′ , αA, β) pendant from s′ in each of the k
copies of (Tt , αA, β) pendant from s. The remainder of the marked A-coloured rooted tree, (T , αA, β) \ (Tt , αA, β), remains
unchanged. �

Definition 2.7. The full branching of a marked A-coloured rooted tree (T , αA, β) is the A-coloured rooted tree obtained by
branching on (s, t) for each (s, t) ∈ dom(β).

By Lemma 2.6, the full branching of (T , αA, β) is a well-defined A-coloured rooted tree.

Definition 2.8. Let (T , αA) be an A-coloured rooted tree, and let k = (ks,t : (s, t) ∈ M ⊆ D(T )) be a tuple of positive
integers. The k-branching of (T , αA) is the full branching of (T , αA, β) where β : D(T ) → N is defined by β((s, t)) = ks,t for
(s, t) ∈ M . We denote this A-coloured rooted tree by (T k, αA).

In Definition 2.8 we abuse notation slightly, in that we use the same symbol αA for the A-colouring of vertices of T k as for
the A-colouring of vertices of T : the former is determined by the latter by definition of branching, copies of a vertex v ∈ V (T )
in V (T k) receiving the same colour as v.

Further, we shall (when possible) omit altogether indicating the functions αA and β in the notation for (marked)
A-coloured rooted trees. Thus, for example, we shall simply say (marked) coloured rooted tree T , branching of T , and write
T k for the k-branching of (T , αA) when the colouring αA does not need to be specified.

2.3. Tree models for graphs

Weshall use thek-branching of coloured rooted trees of Definition 2.8 in order to produce strongly polynomial sequences
of graphs (Hk). To do this we take a coloured rooted tree T that represents a graph H (such as a cotree if H is a cograph) and
form the k-branching of T , thereby producing a coloured rooted tree that represents the graph Hk. Here, we introduce the
relevant properties required by such a representation of graphs (by coloured rooted trees) for this construction to work.

Definition 2.9 (cf. [7], Def. 3.1). Let H be a class of graphs and A a finite set. A rooted tree model for graphs in H by a class of
A-coloured rooted trees T is given by a surjective function γ : T → H with the property that

(i) γ is an isomorphism invariant, i.e., γ (T ) = γ (T ′) when T and T ′ are isomorphic as coloured rooted trees,
(ii) the vertices of γ (T ) are in bijective correspondence with a subset of vertices of T containing L(T ) (the leaves of T ),
(iii) for each H ∈ H there are only finitely many coloured rooted trees T ∈ T such that γ (T ) ∼= H ,
(iv) if H ∈ H , and T ∈ T are such that γ (T ) ∼= H , then for each connected induced subgraph G of H there is an induced

subtree S of T such that S ∈ T and γ (S) ∼= G.

Examples of rooted tree models for graphs include:

(a) cotrees for cographs, and more generally clique-width expression trees for graphs [3,4] (where we bound the clique-
width so as to restrict to a finite colour set A),

(b) m-partite cotrees, used to define the shrub-depth of a graph [7],
(c) the rooted trees used to define tree-depth [14,15] (where the tree-depth must be bounded so as to have a finite colour

set A).

In Section 4 we shall see examples of strongly polynomial sequences of graphs built using the models (a)–(c).

Remark 2.10. Under condition (i) of Definition 2.9 we follow the usual convention, as for graphs, of identifying an
isomorphism class of A-coloured rooted trees with a representative of the class.



Fig. 2. Ornamentation of K2 and K 2 by graph sequences and the resulting compositions. In the diagram we write Gk instead of, more properly, (Gk), so as
to make the diagram more readable.

Condition (ii) allows us to identify V (γ (T )) with a subset of V (T ). Thus, for models (a) and (b) we have V (γ (T )) = L(T ),
and V (γ (T )) = V (T ) for model (c). The condition that L(T ) ⊆ V (γ (T )) has as a consequence that to each automorphism
of T , which can be described by its action on L(T ), there is a unique automorphism of γ (T ) defined by the corresponding
action on vertices: this fact will be used in the proof of the key result Theorem 3.1.

Condition (iii) is required for our main Theorems 3.1 and 3.3 in order to have, for given graph H , a bound on the size of
A-coloured rooted tree T in T such that γ (T ) ∼= H . This condition is satisfied by the three models (a)–(c) above.

In condition (iv) by subtree is meant not necessarily a maximal rooted subtree, just an induced subgraph of T that is a
tree and whose root is the vertex at the minimum level. Making the identification of V (H) with a subset of V (T ) allowed by
(ii), the tree S representing G is the minimal connected subtree of T that spans V (G).

3. Strongly polynomial sequences by branching

3.1. Main results

For the meaning of the notation T k (the k-branching of T ) see Definition 2.8.

Theorem 3.1. Let γ : T → H be a rooted tree model, T ∈ T , γ (T ) = H, and M ⊆ D(T ). Let k = (ks,t : (s, t) ∈ M) be a tuple
of positive integers with the property that branching T on any edge (s, t) yields another tree in T .

Then the sequence (γ (T k)) is a strongly polynomial sequence of graphs in k with initial term H.

Let S be the set of all graph sequences (indexed by finite tuples n ∈ Nh, for some h ∈ N). For two graph sequences (Gm)
and (Hn) the disjoint union is the graph sequence (Gm ⊔Hn), indexed by the tuple (m,n), and the join is the graph sequence
(Gm +Hn), also indexed by the tuple (m,n). (Ifm and n share coordinates, for example ifm = n, then the tuple (m,n) can
be reduced to correspondingly fewer coordinates.)

For a graph H , let φ : V (H) → S assign a graph sequence to each vertex of H . The ornamented graph (H, φ) is the graph
H together with the sequence φ(v) associated with each vertex v ∈ V (H). The composition of the ornamented graph (H, φ)
is the graph sequence obtained by taking the disjoint union of the sequences {φ(v) : v ∈ V (H)} and then joining sequences
φ(u) and φ(v) whenever uv ∈ E(H), and otherwise leaving the disjoint union of the sequences. When H = K2 composition
is simply the join of the two sequences ornamenting the two vertices, and when H = K 2 composition is the disjoint union.
See Fig. 2 for how graph ornamentation will be depicted later (Figs. 7–11 in Section 4).

We now augment a treemodel γ : T → H for graphs by A-coloured rooted trees to a treemodel for ornamented graphs
by A×S-coloured rooted trees. Wemake the identification allowed by Definition 2.9(ii) and assume that L(T ) ⊆ V (γ (T )) ⊆

V (T ) for each T ∈ T .
Let (αA, φ) denote the A × S-colouring that assigns (αA(v), φ(v)) to vertex v ∈ V (T ). Then γ interprets the A × S-

coloured rooted tree (T , (αA, φ)) as the ornamented graph (γ (T ), φ). The tree model is defined formarked A × S-coloured
rooted trees (T , (αA, φ), β) by taking the full branching and then interpreting the resulting A × S-coloured rooted tree as
an ornamented graph as before.

Theorem 3.2. Let γ : T → H be a rooted tree model, T ∈ T , γ (T ) = H, and M ⊆ D(T ). Let k = (ks,t : (s, t) ∈ M) be a tuple
of positive integers with the property that branching T on any edge (s, t) yields another tree in T .

Then the sequence (γ (T k), φ) of ornamented graphs yields by composition a strongly polynomial sequence of graphs in k and
the parameters indexing the sequences {φ(v) : v ∈ V (γ (T ))}.



Our third main result gives a sufficient criterion for a family of graphs to be decomposable into finitely many strongly
polynomial subsequences.

Let H be a class of graphs given by a rooted tree model γ : T → H . For H ∈ H , we define υT (H) to be the minimum
value of |V (T )| over T ∈ T such that γ (T k) = H for some k = (ks,t : (s, t) ∈ D(T )). We call υT (H) the branching core size
of H in the rooted tree model γ : T → H .

Theorem 3.3. Let H be a class of graphs given by a rooted tree model γ : T → H . Suppose that F ⊆ H is such that
{υT (F) : F ∈ F } is bounded. Then F can be partitioned into a finite number of strongly polynomial subsequences of graphs.
Moreover, the strongly polynomial subsequences can be produced by branching a finite number of rooted trees in T .

It is easy to give examples of a family of unbounded branching core size in one tree model that is of bounded branching
core size in another: complete graphs {Kk : k ∈ N} have bounded branching core as cotrees but unbounded tree-depth
branching core size. Theorem 3.3 ensures that such a family can be finitely partitioned into strongly polynomial subse-
quences, even though of unbounded branching core size relative to some tree models.

A partial converse to Theorem 3.3 would require some strengthening of its hypothesis. For example, we believe that
although the sequence (Kk ⊔Kk+1 ⊔ · · · ⊔Kk+ℓ−1)k,ℓ∈N is strongly polynomial, the family of graphs {Kk ⊔Kk+1 ⊔ · · · ⊔Kk+ℓ−1 :

k, ℓ ∈ N} has unbounded branching core size in any tree model.

3.2. Proofs

Proof of Theorem 3.1. By Lemma 2.3 it suffices to prove that, for each connected graph G, the number ind(G, γ (Tk))
of induced copies of G in γ (T k) is a polynomial in k. Further, by Definition 2.9(ii)–(iv), there are finitely many distinct
isomorphism classes of subtrees S1, . . . , Sj of T k, where j depends only on G and not on k, and corresponding isomorphic
copies G1, . . . ,Gj of G in γ (T k), such that for each 1 ≤ i ≤ j we have γ (Si) = Gi ∼= G and L(Si) ⊆ V (Gi) ⊆ V (Si). Note that
Si � Si′ when i ≠ i′. Conversely, if S is a subtree of T k such that γ (S) ∼= G then S ∼= Si for some 1 ≤ i ≤ j. Hence,

ind(G, γ (T k)) =

j
i=1

ind(Si, T k). (1)

Thus it suffices to prove that ind(Si, T k) is a polynomial in k for each 1 ≤ i ≤ j.
For each subtree Tt rooted at t ≠ r in the coloured rooted tree T , there are kp(t),t isomorphic copies of Tt in T k produced by

branching. Consequently, Aut(T k) contains kp(t),t ! elements arising frompermutations of these kp(t),t copies of Tt in T k. LetΣ
be thewreath product of these permutation groups for each t . Then, Aut(T k) ≤ Σ×Aut(T ) and |Σ | = k! =


t∈V (T )−r kp(t),t !,

while |Aut(T )| is a constant independent of k. (An automorphism of T corresponds to T having isomorphic subtrees Ts and Tt
with p(s) = p(t). In this case there is a corresponding automorphism of T k preciselywhen kp(s),s = kp(t),t . Thus Aut(T k) ∼= Σ

when the components of k are distinct, and Aut(T k) ∼= Σ × Aut(T ) when the components of k are all the same.)
For each 1 ≤ i ≤ j, the set of isomorphic copies of Si appearing in T k is partitioned into a finite number ri of orbits

under the action of Σ . Let Si,ℓ with 1 ≤ ℓ ≤ ri be representatives from these orbits, and let pi,ℓ denote the size of the orbit
containing Si,ℓ. We next prove that each pi,ℓ is a polynomial pi,ℓ(k) in k and so ind(Si, T k) =

ri
ℓ=1 pi,ℓ(k) is a polynomial in

k for each 1 ≤ i ≤ j. Let us fix 1 ≤ i ≤ j and 1 ≤ ℓ ≤ ri.
Observe that there is aminimalm = (ms,t : (s, t) ∈ D(T )) ≤ k, depending on Si,ℓ but not on k, such that Si,ℓ is an induced

subgraph of the induced subtree Tm of T k. (The notationm ≤ k or k ≥ m indicates thatms,t ≤ ks,t for each (s, t) ∈ D(T ).)
For k ≥ m, the stabilizer of Si,ℓ under the action of Σ contains all permutations of ks,t − ms,t copies of a subtree Tt not

containing any vertices of Si,ℓ. The stabilizer of Si,ℓ therefore has size a multiple of (k−m)! =


(s,t)∈D(T )(ks,t −ms,t)! and so
pi,ℓ is a divisor of k!/(k−m)!, which is polynomial in k. On the other hand, an automorphism inΣ that stabilizes Si,ℓ cannot
move any of thems,t branches containing vertices of Si,ℓ to any of the ks,t −ms,t branches that do not contain a vertex of Si,ℓ,
but only these ms,t branches among themselves. Hence, the stabilizer of Si,ℓ has size a divisor of (k − m)!m! which implies
that pi,ℓ is a multiple of k!

(k−m)!m!
.

Thus, when k ≥ m, pi,ℓ = pi,ℓ(k) is a polynomial in k that is a multiple of k!

(k−m)!m!
and divisor of k!

(k−m)!
. In particular,

we have pi,ℓ(k) = 0 when ks,t < ms,t for some (s, t) ∈ D(T ). By definition of m, if ks,t < ms,t for some (s, t) ∈ D(T ) then
Si,ℓ does not occur as a subgraph of T k. So the polynomial pi,ℓ(k) counts the number of occurrences of Si,ℓ in T k not only for
k ≥ m but also for k ≤ m, when it is equal to zero. In other words, pi,ℓ = pi,ℓ(k) for all k, not just for k ≥ m.

We therefore conclude that ind(Si, T k) =


1≤ℓ≤ri
pi,ℓ(k) is a polynomial in k for each 1 ≤ i ≤ j. By Eq. (1) and Lemma 2.3

we have that the sequence (γ (T k)) is strongly polynomial in k. �

Proof of Theorem 3.2. For a fixed connected graph G, a copy of G in the composition (γ (T k), φ) falls into a finite number
of types, each of which can be described by a subtree S of T k and, for each s ∈ V (S), an isomorphism type Gs of induced
subgraph of φ(s), such that the composition of γ (S) ornamented by Gs on vertex s ∈ V (S) is isomorphic to G. By assumption,
the number of copies of Gs in φ(s) is a polynomial in the parameters indexing the sequence φ(s). This polynomial multiplied
by the number of copies of S in T k, which is a polynomial in k by the argument given in the proof of Theorem 3.1, is a



polynomial in the parameters indexing the sequence φ(s) and k. Summing over the finitely many choices of S and induced
subgraph isomorphism types of G that occur in φ(v) we obtain the desired conclusion. �

Proof of Theorem 3.3. By the assumption that F is of bounded branching core size, there is a bound B such that for each
F ∈ F we have γ (T k) = F for some asymmetric A-coloured rooted tree T with |V (T )| = υT (F) ≤ B and some k ∈ ND(T ).

The set of A-coloured asymmetric rooted trees T (no colour-preserving automorphisms) of bounded size (|V (T )| ≤ B)
is finite, as A is finite [15]. Hence there is a finite list of asymmetric A-coloured rooted trees T1, . . . , Tℓ such that for each
F ∈ F there is 1 ≤ i ≤ ℓ and k ∈ ND(Ti) such that F = γ (T k

i ).
Hence the terms of the strongly polynomial sequences (T k

i )k∈ND(Ti) , 1 ≤ i ≤ ℓ, together cover all of F . �

Proof that (Kk ⊔ Kk+1 ⊔ · · · ⊔ Kk+ℓ−1) is strongly polynomial. The number of homomorphisms from a graphG to the graph
Kk ⊔ Kk+1 ⊔ · · · ⊔ Kk+ℓ−1 is given by

V1⊔V2⊔···⊔Vℓ=V (G)


1≤i≤ℓ

P(G[Vi]; k + i − 1) (2)

where P(G[Vi]) is the chromatic polynomial of the subgraph of G induced on Vi, and


P(G[Vi]; k+ i− 1) is a polynomial in
k + i − 1 of degree |Vi|.

The expression (2) is therefore a symmetric polynomial in variables k, k+ 1, . . . , k+ ℓ− 1 of degree bounded by |V (G)|,
and so is a linear combination of elementary symmetric polynomials in k, k+1, . . . , k+ℓ−1 (at most up to degree |V (G)|).
These elementary symmetric polynomials are coefficients of the falling factorial (x − k)ℓ (up to degree |V (G)|), which are
polynomials in k and ℓ (for example, the first elementary symmetric function is ℓk+


ℓ

2


) andwhich can be given explicitly in

terms of Stirling numbers of the second kind. Hence expression (2) defines a polynomial in just the two variables k and ℓ. �

4. Examples

We present three examples of rooted tree models for graphs: in Section 4.1 clique-width expression trees (including
cotrees for cographs), in Section 4.2 tree-depth embeddings of graphs in the closure of rooted trees, and in Section 4.3 m-
partite cotrees (related to shrub-depth). For each we specify the set of A-coloured rooted trees T , the class of graphs H that
they encode (by specifying a rooted tree T together with a colouring αA : V (T ) → A such that (T , αA) encodes H), and the
edges of a rooted tree in T on which branching can be applied while staying in the class T . We then illustrate the diversity
of strongly polynomial sequences that Theorems 3.1 and 3.2 provide.

We also give representations of the cycle C4 for each of the three rooted tree models, and apply Theorem 3.1 to obtain a
strongly polynomial sequence of graphs to which C4 belongs as a term.

We begin with cotrees, as a special case of clique-width expression trees, for it is by this tree model for cographs
that the strongly polynomial sequences determining the chromatic polynomial, the Tutte polynomial, the Averbouch–
Godlin–Makowsky polynomial, and the Tittmann–Averbouch–Makowsky polynomial are most simply described.

4.1. Cotrees and clique-width expression trees

4.1.1. Cotrees and cographs
Let H be the set of cographs (graphs with no induced path on 4 vertices) and T the set of A-coloured rooted trees in

which A = {0, 1} and each T ∈ T has a colour from A on each non-leaf vertex, while L(T ) is uncoloured. The leaf set L(T ) is
the vertex set of the graph encoded by the coloured rooted tree T .

The least common ancestor s∧t of two vertices s and t in a rooted tree T is the vertex at themaximum level in the common
subpath P(s)∩ P(t). The encoding γ : T → H sets V (γ (T )) = L(T ) and joins s and t by an edge if and only if αA(s∧ t) = 1.

Some simple examples of marked cotrees are given in Fig. 3. For each of them, we indicate the strongly polynomial
sequence of cographs obtained by Theorem 3.1 (arbitrarily branching the corresponding cotree; marks indicating branching
multiplicities). We write K k for the complement of the complete graph Kk.

In Fig. 4 we display a cotree for the cycle C4, its condensed representation as a marked cotree (again, marks indicating
branchingmultiplicities), and finally the strongly polynomial sequence of cographs obtained by γ (arbitrarily branching this
condensed cotree). Here, we use the notation Kk[K l] to indicate the composition of the ornamented graph (Kk, φ) where φ
assigns the graph K l to every vertex of Kk. This composition gives a complete multipartite graph with variable number and
size of parts.

Fig. 5 shows the sequences of cographs (defined by branching cotrees ornamented with loops) from which one can
obtain, by Theorems 3.1 and 3.2, the chromatic polynomial, the Tutte polynomial, the Averbouch–Godlin–Makowsky
polynomial, and the Tittmann–Averbouch–Makowsky polynomial (see [16,8,16] for the homomorphisms functions that are
specializations of these polynomials). We use K l

k to denote the complete graph Kk with a loop of multiplicity l attached
at each vertex. The graph K1,k[K 1

1 (centre); K
1
j (leaves)] is the composition of the ornamented graph (K1,k, φ) where K1,k

is the star on k + 1 vertices, and φ assigns the indicated graphs to the centre and the leaves of K1,k. For example, the
Tittmann–Averbouch–Makowsky polynomial is obtained as follows.



Fig. 3. Examples of strongly polynomial sequences produced by branching of cotrees according to multiplicities given by edge marks. (Unmarked edges
in the diagram have mark set equal to 1.) The root is the lowest vertex. The operation of disjoint union is represented by a white circle labelled 0, that of
join by a white node labelled 1. Vertices of the graph represented by the cotree are the black circles (taken with multiplicity given by branching).

Fig. 4. Cotree for C4 as a marked cotree, and the result of arbitrary branching on each edge. The right-most marked cotree represents the multipartite
graph Kk,...,k with l parts.

First, branch the correspondingmarked cotree in Fig. 5 obtaining an A-coloured rooted tree T (j,k) with kj+1 leaves, which
are the vertices of γ (T (j,k)). The encoding γ : T → H connects two of those vertices if their least common ancestor in T (j,k)

is labelled 1. Thus, the resulting graph γ (T (j,k)) can be viewed as a star on k+1 vertices in which the centre is replaced by K 1
1

and each leaf is replaced by K 1
j . By Theorem 10 in [16], hom(G, γ (T (j,k))) is the Tittmann–Averbouch–Makowsky polynomial

Q (G; x, y) evaluated at the point (j, k).
We can clearly see in Fig. 5 how the chromatic polynomial is a specialization of the Tutte polynomial, and the Tutte

polynomial a specialization of the Averbouch–Godlin–Makowsky polynomial.

4.1.2. Clique-width expression trees
Let H be the class of all simple graphs of clique-width at most k and T the set of A-coloured rooted trees in which

A = [k] ∪ {ηi,j : i, j ∈ [k], i < j} ∪ {ρi→j : i, j ∈ [k], i ≠ j} ∪ {⊕} and a tree in T has leaves coloured by N, non-leaves by
either ⊕ (disjoint union), ηi,j (join vertices labelled i and j) or ρi→j (relabel vertices iwith label j). Further, a vertex coloured
ηi,j has only one child, which is coloured ⊕, and ρi→j has also only one child. Therefore in branching we only mark edges
whose vertex nearest the root is coloured ⊕.

For k = 2 clique-width expression trees can be transformed into cotrees as defined above. Indeed, cographs are precisely
the graphs of clique-width at most 2.

Fig. 4 can be redrawn as a clique-width 2 expression tree, but we omit this here and proceed in Figs. 6–8 to other
representations of C4 by clique-width expression trees and the associated families of graphs obtained by general branching
on edges of the expression tree.

4.2. Tree depth model

The closure of a rooted tree T is the graph clos(T ) on vertex set V (T ) where st is an edge if s ∈ P(t) or t ∈ P(s), and s ≠ t .
A simple connected graph H has tree-depth d, denoted by td(H) = d, if H is a subgraph of clos(T ) for some rooted tree T of
height d−1, and it is not a subgraph of the closure of a rooted tree of smaller height. For example, the path Pk has tree-depth
⌈log2(k + 1)⌉ and the complete graph Kk has tree-depth k. See [14].

Let H be the class of all simple graphs of tree depth at most d and T the set of all A-coloured rooted trees in which the
colour set A is the set of all finite subsets of {0, 1, . . . , d − 1} and in which a vertex at level ℓ in a tree T ∈ T , 1 ≤ ℓ ≤ d,



Fig. 5. Strongly polynomial sequences of cographs determining known graph polynomials. A loop attached to a vertex of a cotree remains attached in its
branched copies, and is attached with multiplicity l when marked by l.

Fig. 6. Simplest clique-width expression tree for C4 , which with general branching situates this graph among complete bipartite graphs Kk,l .

Fig. 7. C4 encoded by a different clique-width 2 expression tree to that of Fig. 6, and the same tree with general branching multiplicities, giving the
composition of the ornamented graph illustrated rightmost. The latter generalizes the graph obtained by general branching of the first tree-depth encoding
of C4 illustrated in Fig. 9.



Fig. 8. C4 encoded by a clique-width 3 expression tree and the same tree with general branching multiplicities, giving the composition of C4 ornamented
by cocliques, illustrated on the right as an ornamented graph.

receives a colour that is a subset of {0, 1, . . . , ℓ − 1}, and the root always receives the emptyset as colour. For a graph
contained in the closure of some rooted tree T of height≤ d, the colour set A is thus restricted to subsets of {0, 1, . . . , d−1}.

Let H ∈ H be contained in the closure of a rooted tree T as a spanning subgraph. For given H there are many choices for
T , such as a depth-first search tree for H , or a tree T of minimal height td(H) − 1 whose closure contains H as a subgraph.

The subgraph H of clos(T ), where T has height d ≥ td(H) − 1, is encoded by assigning to the vertices of T subsets of
{0, 1, 2, . . . , d − 1}. The colour of vertex s indicates which of the vertices on the chain P(s) vertex s is adjacent to in H .
Specifically, a non-root vertex s ∈ V (T ) is assigned the set α(s) ⊆ {0, 1, . . . , |P(s)| − 2} when in the subgraph H the vertex
s is joined to its ancestors (other vertices in the chain P(s)) precisely at levels i ∈ α(s). (The root, the only vertex at level 0,
is always assigned the empty set.) In other words,

α(s) = {|P(s)| − 1 − d(s, t) : t ∈ P(s), st ∈ E(H)},

where d(s, t) is the distance between s and t in T . For example, s receives the empty set if it is joined to none of its ancestors,
and the set {0, 1 . . . , |P(s)| − 2} when it is joined to all its ancestors.

In Fig. 9 we display two strongly polynomial sequences produced by branching different representations of C4 embedded
in the closure of a rooted tree.

4.3. Shrub depth model

The notions of shrub depth and m-partite cographs were introduced in [7]. We just make the definitions of required in
order to describe the relevant coloured rooted tree encoding of graphs asm-partite cotrees.

Let H be the set ofm-partite cographs and T the set of A-coloured rooted trees in which A is the set of
m+1

2


unordered

pairs of elements in [m], and each T ∈ T has a colour set equal to a subset of A on each non-leaf vertex, while each L(T ) is
coloured with an element of [m]. The leaf set L(T ) is the vertex set of the graph encoded by the coloured tree T .

As for cotrees, in am-partite cotree adjacencies between leaf vertices s, t ∈ L(T ) are determined by the colour of the least
common ancestor s ∧ t . The encoding γ : T → H sets V (γ (T )) = L(T ) and joins s and t by an edge if and only if the pair
of colours αA(s), αA(t) belongs to αA(s ∧ t). Branching can be performed on any edge of shrub-depth tree representation so
as to represent another graph.

The clique-width expression trees of Figs. 7 and 8 have direct translations as 2-partite cotrees. Another pair of 2-partite
cotrees representing C4 is displayed in Fig. 10. By representing C4 by a 4-partite cotree with 6 edges we see in Fig. 11 a
strongly polynomial sequence indexed by 6 parameters k, l,m, n, p, q that contains C4 as an initial term.

5. Concluding remarks

Theorems 3.1 and 3.2 allow the construction of a large family of strongly polynomial sequences, which in-
cludes those determining the chromatic polynomial, the Tutte polynomial, the Averbouch–Godlin–Makowsky, and the



Fig. 9. Two embeddings of C4 in a rooted tree, and the result of branching more generally. In the rightmost graphs, the lines represent graph joins of the
ornament graphs on the vertices. The top-right graph can be obtained as a composition of an ornamented graph (the star K1,k with each edge replaced
by a path of length two, ornamented with K l on some vertices). The bottom right graph requires composition of an ornamentation of a more complicated
underlying graph.

Fig. 10. C4 encoded in two ways by a 2-partite cotree and the same trees with general branching multiplicities. The top one gives the composition of
the complete bipartite graph Km,m ornamented by cocliques, while the bottom one consists of cliques Kkm and Klm together with edges joining each of m
subcliques of size k to m subcliques of size l, as shown.



Fig. 11. C4 encoded by a 4-partite cotree and the same tree with general branching multiplicities along with the graph it represents, illustrated as a graph
ornamented by cocliques.

Tittmann–Averbouch–Makowsky polynomial. (See the cotree representations in Fig. 5.) However, not all strongly polyno-
mial sequences are covered by them.

The generalized Johnson graph (Jk,ℓ,D), 1 ≤ ℓ ≤ k ∈ N, ∅ ⊂ D ⊆ {0, 1, . . . , ℓ}, is the graph whose vertices are subsets
of {1, 2, . . . , k} of size ℓ, two vertices being adjacent if and only if their intersection has size belonging to D. In particular,
when D = {0} the graph Jk,ℓ,{0} is the Kneser graph KGk,ℓ.

For fixed ℓ,D, the sequence (Jk,ℓ,D) is shown in [5, Prop. 3] to have the property that hom(G, Jk,ℓ,D) is a fixed polynomial
in k for sufficiently large k. It is not difficult to develop the proof of this result to show that in fact (Jk,ℓ,D) is a strongly
polynomial sequence. However, we cannot find a rooted tree model that can produce this sequence by branching, except
when ℓ = 1, where Jk,1,{0} = Kk, Jk,1,{1} is K k with a loop on each vertex, and Jk,1,{0,1} is Kk with a loop on each vertex. Away to
build up the sequence of generalized Johnson graphs (Jk,ℓ,D) frommore basic strongly polynomial sequences has been found
in [10]. Using a model-theoretic approach, our branching of coloured rooted trees becomes a special case of interpretation
of graphs in another relational structure: the generalized Johnson graphs find their interpretation in transitive tournaments
rather than in coloured rooted trees.

A previous version of this paper [9] contains some extra material that has not been included here. In this earlier work we
reviewed and extended some constructions given in [5] for generating newpolynomial sequences fromold by using different
types of operations such as lexicographic product and composition. However, the main contribution of both versions is
the same: to introduce a new method of generating strongly polynomial graph sequences. In this regard, in this paper we
improve upon [9] since we formulate our results in the general framework of rooted tree models for graphs rather than the
special case of the tree depth model (treated in Section 4.2) that is the focus of [9].

The problem of formulating and proving a partial converse to Theorem 3.3, mentioned just after the statement of that
theorem in Section 3.1, has not yet been resolved.
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