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Abstract. Programming with assertions constitutes an effective tool
to detect and correct programming errors. The ability of executing for-
mal specifications is essential in order to test automatically a program
with respect to its assertions. However, formal specifications may de-
scribe recursive models which are difficult to identify so current asser-
tion checkers limit, in a considerable way, the expressivity of the assertion
language. In this paper, we are interested in showing how transforma-
tional synthesis can help to execute “expressive” assertions of the form
Va(r(z) < QyR(z,y)) where x is a set of variables to be instantiated
at execution time, ) is an existential or universal quantifier and R a
quantifier free formula in the language of a particular first-order theory
A we call assertion context. The class of assertion contexts is interesting
because it presents a balance between expressiveness for writing asser-
tions and existence of effective methods for executing them by means of
synthesized (definite) logic programs.
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1 Introduction

Experience has shown that writing assertions while programming is an effective
way to detect and correct programming errors. As an added benefit, assertions
serve to document programs, enhancing maintainability. Programming languages
such as Eiffel [I8], SPARK [2] and recent extensions to the Java programming
language, such as iContract [13], JML and Jass [5], allow to write assertions
into the program code in the form of pre-post conditions and invariants. Soft-
ware components called assertion checkers are then used to decide if program
assertions hold at execution time. However, and due to mechanization problems,
current checkers do not accept the occurrence of unbounded quantification in
assertions. This fact limits the expressivity of the assertion language and so the
effectiveness of testing activities by means of runtime assertion checkers.

In order to motivate the problem, we show in Ex. [l a (schematic) program
which includes an unbounded quantified sub-formula in its post-condition.
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Ezample 1. A program which returns a number different to zero if and only if
the parameter [ is a subset of the parameter s. Program types Nat and Set are
used to represent natural numbers and sets of natural numbers respectively.
subset(l: Set, s: Set) return z: Nat
pre: true

.. program code ...
post: —idnat(z,0) < VYe(member(e,l) = member(e, s))

where idnat is the identity relation for natural numbers:
idnat : Nat x Nat

idnat(0,0) < true

Va(idnat(s(z),0) < false)
Vy(idnat(0, s(y)) < false)

YV, y(idnat(s(x), s(y)) < idnat(z,y))

where member is a relation to decide if a natural number
is included or not in a set:
member : Nat x Set

Ve(member(e,|[]) < false)
Ve(member(e, [xz|y]) < (idnat(x,e) V member(e,y)))

At execution time, subset’s program code will supply values (ground terms) to
assertion variables [, s and z closing their interpretations. Thus, the correctness
of a program behavior such as subset([s(0)], [0, 5(0)]) = s(0) will depend on the
evaluation of —idnat(s(0),0) < Ve(member(e,[s(0)]) = member(e,[0,s(0)]))
(i.e. subset’s post-condition after substituting I, s and z by values [s(0)], [s(0), 0]
and s(0) respectively). Due to the form of idnat’s axioms, it is not difficult
to find a program able to evaluate ground atoms such as idnat(s(0),0), in
fact, the if-part of idnat’s axioms can be considered one of such programs (Ex.
B). However, the occurrence of unbounded quantification in sub-formulas such
as Ve(member(e, [s(0)]) = member(e, [0, s(0)])) complicates extraordinarily the
search for such programs [9]. Due to this fact, current assertion checkers [I8],
2], [5], [13], [16] does not consider the use of unbounded quantification in their
assertion languages. Such a decision limits the expressivity of the assertion lan-
guage and, therefore, the effectiveness of testing activities by means of runtime
assertion checkers.

Example 2. A logic program which is able to evaluate ground atoms for idnat.
1dnat(0,0) <
idnat(s(x), s(y)) < idnat(x,y)
Our objective can be summarized in the following questions:

1. Is it possible to extend current checkers to execute “expressive assertions”?
Firstly, we need to formalize what we call ”expressive assertions”. For us,
an expressive assertion is a (new) relation r which represents a quantified



sub-formula QyR(x,y) within a program assertion. Formally, r is defined by
means of one axiom of the form Vz(r(z) & QyR(z,y)) where x is a set of
variables to be instantiated at execution time, @ is an existential or universal
quantifier, and R a quantifier free formula in the language of a particular
first order theory A called assertion context. For instance, VI, s(r(l,s) <
Ve(member(e,l) = member(e, s))) is the definition of an expressive asser-
tion r for the quantified sub-formula Ve(member(e,l) = member(e,s)) in
subset’s post-condition (Ex. [). Therefore, to answer “yes” to the question
is equivalent to say that assertion checkers must be able to evaluate any
ground atom r(t) in A where ¢ is the set of values supplied by the program
at execution time.

. How can we do it?
Logic program synthesis constitutes an important aid in order to overcome
the problem. Our intention is:

— If Q = 3, to synthesize a (definite) logic program 75 of the form r7(x, )
< P3(x,y) from a specification of the form Vx,y(r(z,y) < R(z,v)).

— If Q =V, to synthesize a (definite) logic program r} of the form 7 (x, %)
< PY(x,y) from a specification of the Vz,y(r} (z,y) < —~R(z,y)).

In any case, synthesized programs 7‘? must be totally correct wrt goals of
the form < r? (t,y). In order to synthesize logic programs, we have studied
some of the most relevant synthesis paradigms (constructive, transforma-
tional and inductive) [7J8J9]. In particular, we are interested in transforma-
tional methods [4JT4] however, some important problems are exposed in [6lf8]:
“A transformation usually involves a sequence of unfolding steps, then some
rewriting, and finally a folding step. The eureka about when and how to de-
fine a new predicate is difficult to find automatically. It is also hard when to
stop unfolding. There is a need for loop-detection techniques to avoid infinite
synthesis through symmetric transformations”. In order to overcome these
problems, we propose to develop program synthesis within assertion contexts
[1T]. Such a decision will allow us:

— To structure the search space for new predicates.

— To define a relation of similarity on formulas for deciding when to define
new predicates and, from here, a particular folding rule to define new
predicates without human intervention.

— To define an incremental compilation method where no symmetric trans-
formations are possible.

. How can assertion checkers evaluate ground atoms r(t) from goals < r?(t, Y)
in a refutation system such as Prolog?
— The execution of < r7(t,y) in a Prolog system will compute a set of
substitutions {61, ...,6;} for y, thus:
If {61,...,0;} = 0, by total correctness of r7, A —r(t) else A r(t).
— The execution of < ry(t,y) in a Prolog system will compute a set of
substitutions {61, ...,6;} for y, thus:
If {01, ...,0;} = 0, by total correctness of r{, At r(t) else At —r(t).



Our work is explained in the following manner. In Sect(s). 2 and Bl we intro-
duce a set of preliminary definitions and a brief background on transformational
synthesis respectively. Section [ formalizes assertion contexts as a class of par-
ticular first-order theories to write expressive assertions. Then, Sect. Bl defines a
compilation method for expressive assertions. Section [(] explains how to execute
expressive assertions from compilation results. Finally, we conclude in Sect. [7]

2 Preliminary Definitions

This section introduces a set of preliminary definitions in order to clarify the
vocabulary we will use in the rest of the paper.

Definition 1 (Term, Formula). A term of type T is defined inductively as
follows: (a) a variable of type T is a term of type T, (b) a constant of type T is
a term of type T, and (c) if [ is an n-ary function symbol of type T1,...,Tn — T
and t; is a term of type 1; (i = 1..n), then f(t1,..., frn) is a term of type T.

A formula is defined inductively as follows: (a) if r is a relation symbol of
type T1, ..., T and t; is a term of type 7; (i = 1..n), then r(t1,...,t,) is a typed
atomic formula (or simply an atom), (b) if F' and G are typed formulas, then so
are °F, FANG, FVG, F= G and F & G and (¢) if F is a typed formula and
x is a variable of type T, then Va2 F and 3,2 F are typed formulas (for legibility
reasons we will omit subscripts in quantifiers). A typed literal is a typed atom or
the negation of a typed atom.

A ground term (or value) is a term not containing variables. Similarly, a
ground formula is a formula not containing variables.

A closed formula is a formula whose variables are quantified. A quantifier-free
formula is a formula without quantifiers.

Definition 2 (Herbrand base). The Herbrand universe of a first order lan-
guage L is the set of all ground terms, which can be formed out of the constants
and function symbols appearing in L. The Herbrand base for L is the set of all
ground atoms which can be formed by using relation symbols from L with ground
terms from the Herbrand universe of L.

Definition 3 (Patterns). A term pattern tp is obtained from a term t by
replacing each variable occurrence in t by the symbol _. An atom pattern r(t)p
is obtained from an atom r(t) by replacing every term occurrence in r(t) by
its respective term pattern. We say that lp is a literal pattern for r(t) if either
lp=r(t)p orlp = —r(t)p. A formula pattern Fp is obtained from a quantifier-
free formula F by replacing every literal in F' by its respective literal pattern.

We say that tip > top if either tip = _ and tap = f(to1p, - t2np)
ortip = f(ti1ps - tinp) and tap = f(t21p, -, t2.np) and there exvists a non-
empty subset S C {1..n} such thatty iy, > toip for everyi € S andty j, =tap
for every j € ({1.n} = 5).

Let r(t1,1,....t1,n)p and r(ta1,....,tan)p be two atom patterns, we say that
r(t11, - tin)p > T(t21, ..., to.n)p if there exists a non-empty set S C {1..n} such
that t1ip > ta,ip for everyi € S and ty jp, = t2 jp, for every j € ({1.n} — 5).



Definition 4 (Definite Logic Program, Definite Goal). A definite logic
clause is a universally closed formula of the form A < By, ..., B, where A, By,
..., By are atoms. A definite logic program is a finite set of definite program
clauses (Ex. [A shows a definite logic program). A definite goal is a clause of the
form < By, ..., B,.

3 Background on Transformational Synthesis

In transformational synthesis, a sequence of meaning preserving transformation
rules is applied to a specification until a program is obtained [§]. This kind of
stepwise forward reasoning is feasible with axiomatic specifications of the form
Va(r(x) < R(x)). There are atomic transformation rules such as unfolding (re-
placing an atom by its definition), folding (replacing a sub-formula by an atom)
and rewrite and simplification rules. The objective of applying transformations is
to filter out a new version of the specification where recursion may be introduced
by a folding step. This usually involves a sequence of unfolding steps, then some
rewriting, and finally a folding step. These atomic transformation rules consti-
tute a correct and complete set for exploring the search space, however they lead
to very tedious synthesis due to the no existence of a guiding plan, except for the
objective of introducing recursion. The “eureka” about when and how to define
a new predicate is difficult to find automatically. It is hard to decide when to
stop unfolding and also there is a need for detecting symmetric transformations
to avoid infinite synthesis.

4 Assertion Contexts

As we said in Sect. [[l an expressive assertion is written in the language of a
particular first order theory called assertion context. In Ex.[3 we show assertion
context A from which subset’s post-condition in Ex. [0 has been written. The
Herbrand universe of A is formed out of the constants 0, [] and function symbols
s and [|]. Every assertion in A (idnat and member) is formalized by means of a
relation symbol, a signature and a finite set of first order axioms. The Herbrand
base of A is the set of all ground atoms which can be formed by using relation
symbols idnat and member with ground terms from the Herbrand universe of

A.
Ezample 38 (Assertion context from the specifier’s point of view).

Assertion Context A
Nat generated by 0 :— Nat,s: Nat — Nat
Set generated by []:— Set,[|]: Nat x Set — Set

Assertion idnat: Nat x Nat
idnat(0,0) < true Va(idnat(s(z),0) < false)
Yy(idnat(0, s(y)) < false) Vax,y(idnat(s(x),s(y)) < idnat(x,y))



Assertion member : Nat x Set
Ve(member(e,[]) < false)
Ve, x,y(member(e, [z]y]) < (idnat(x,e) V member(e,y)))

It is important to remark that assertion contexts must be processed by means
of assertion checkers (i.e. software components) so reasonable restrictions have
to be imposed on the form of axioms in order to make feasible their automatic
processing. Example M shows A from the assertion checker’s point of view where
some redundant information (i.e. layers and patterns) are explicitly shown.

Ezample 4 (Assertion context from the assertion checker’s point of view).

Assertion Context A
Nat generated by 0 :— Nat,s: Nat - Nat
Set generated by [] :— Set,[|]: Nat x Set — Set

Assertion idnat : Nat x Nat
idnat(0,0) < true Va(idnat(s(z),0) < false)
Yy(idnat(0,s(y)) < false)  Va,y(idnat(s(x), s(y)) < idnat(z,y))

Assertion member : Nat x Set
Ve(member(e,[]) < false)
Ve, z, y(member(e, [z|y]) < (idnat(x,e) V member(e,y)))

Layers.

layer 0: idnat layer 1: member

Patterns.

I-patterns: idnat(0,0), idnat(0,s()), idnat(s(),0), idnat(s(),s())
member(_,[]), member(, [|-])

i-patterns: idnat(_,0), idnat(.,s()), idnat(0,-), idnat(s(),-)

u-patterns: idnat(_,-), member(_,-)

For the purpose of writing consistent contexts, the following restrictions have
been imposed on assertions:

1. BEwvery axiom is of the form V(a(z) < B(z)) with z C x where a(x) is an
atom called the left-hand side (lhs) of the aziom and B(z) is a quantifier-
free formula composed of literals and binary logical connectives called the
right-hand side (rhs) of the aziom.

2. Every element in the Herbrand base of A unifies with the lhs of a unique
aziom.

3. Every assertion is encapsulated in a layer. If a is located at layer i, a is a
symbol of level i. Every positive atom occurring in B(z) is defined on the
symbol a or on a symbol of level i — 1 (if possible). Every negative atom
occurring in B(z) is defined on a symbol of level i — 1.

4. Every recursive specification is well-founded wrt a set of parameters.



Theorem 1 (Ground Decidability). For every a(t) in the Herbrand base of
A either AF a(t) or AF —a(t). (A proof of this theorem can be found in [12]).

From Theorem [I] we formalize the semantics of assertion contexts. Our pro-
posal is borrowed from previous results in the field of deductive synthesis [3],

14, [15].

Definition 5 (Consistency). A model for A is defined in the following terms:
AEa(t) iff AFa(t) and A= —a(t) iff AF —a(t)
for every a(t) in the Herbrand base of A.

For the purpose of structuring the search space for new predicates [], asser-
tion contexts are enriched by means of a set of atom patterns. We classify atom
patterns into three categories: lower patterns (I-patterns), intermediate pattern
(i-patterns) and upper patterns (u-patterns). A lower pattern is calculated from
the atom on the lhs of an axiom and a upper pattern is calculated from an atom
on the rhs of an axiom. The rest of atom patterns (i.e. intermediate patterns)
are calculated from upper and lower patterns via > (Sect. 2 DefB): every in-
termediate pattern is lesser than any upper pattern and greater than any lower
pattern.

5. Every atom occurring on the rhs of an axiom presents an intermediate atom
pattern or a upper atom pattern.

For the purpose of legibility, we display atom patterns by means of directed
graphs where atom patterns are nodes and directed links are instances of the
relation >. For instance, Fig. [l shows the set of atom patterns in A (Ex. H).

idnat(_,_) member(_,_)
(u-pattern) (u-pattem)

idnat(_,0) idnat(0,_) idnat(s( memberL[]) memberL[ ()]
(i-pattem) (i-pattem) (i panem) (I-pattemn) (I-pattem)

idnat(_,s(_))
(i-pattem)
idnat(0,0) idnat(s),0) onat0,50) rTERYE)
{ (I-pattem) J { (I-pattem) } { (-pattem) } { (-pattem) J

Fig. 1. Graph-based description of the set of atom patterns in A.

Once we have formalized the notion of assertion context, we can formalize
the notion of expressive assertion. Roughly speaking, an expressive assertion is
a (new) relation r intended to represent a quantified sub-formula of the form
QyR(x,y) within a program assertion.



Definition 6 (Expressive Assertion). We say that r is an expressive asser-
tion in A if and only if r is a new symbol not occurring A which is defined by
means of a unique axiom of the form Vx(r(x) < QyR(x,y)) where x is a set of
variables to be instantiated at execution time, Q is a (ewistential or universal)
quantifier and R is a quantifier-free formula in the language of A where every
atom presents an intermediate atom pattern or an upper atom pattern in A.

Ezample 5 (Expressive assertion for Ye(member(e,l) < member(e,s)) in sub-
set’s post-condition (Ez.[D)).

Assertion 1 : Set x Set
Vi, s(r(l, s) & Ve(member(e,l) = member(e, s)))

5 Compilation Method

This section explains how transformational synthesis can help to compile an
expressive assertion Vz(r(z) < QyR(z,y)). As we said in Sect. [I] our intentions
are: If Q = 3, to synthesize a totally correct (definite) logic program r7 of
the form r(x,y) < P3(z,y) from an auxiliary specification Vz, y(r(z,y) <
R(z,y)) and if Q =V, to synthesize a totally correct (definite) logic program ry
of the form r} (z,y) < P(z,y) from an auxiliary specification Vz, y(r{ (z,y) <

~R(z,y)).

Ezample 6 (Auziliary specification for r (Ex.[3)). In order to normalize the form
of formulas (Def. [), an equivalent formula V(77 (e,l, e, s) <—(member(e,l) =
member (e, s))) is considered for V(7 (e, [, e, s )< (member(e, 1) A—member(e, s))).

Assertion 77 : Nat x Set x Nat x Set
Ve,l,s(ry (e, 1, e,5) < (member(e,l) A =member(e, s)))

A compilation is done by means of a finite sequence of meaning-preserving
transformation steps. Each transformation step is composed of an expansion
phase followed by a reduction phase. An expansion phase is intended to decom-
pose a formula into a set of formulas and a reduction phase is intended to replace
sub-formulas by new predicates. As we will show later, the set of new predicates
(“recursive predicates”) is computable.

5.1 Expansion Phase

Expansion phase decomposes a formula F' into a set of formulas by means of in-
stantiations and unfolding steps. Our intention is to decomposed F' in a guided
manner by using a particular rule called instantiation. To implement instantia-
tions, we will use atom patterns in the following terms: if r(y) is a selected atom
to be instantiated in F and r(y)p is a pattern which dominates a subgraph in
the graph-based description of atom patterns for r then lower patterns in such
a subgraph will induce a set of substitutions for variables in r(y). Such sets of



member(e,l) member(e,l) dominates a subgra;ET

Set of substitutions:

[member(e,[]) } [ member(e,[x]y]) } (L

(lower pattem) (lower pattem) {0,IxIyD) }

Fig. 2. Set of substitutions for member(e,1).

substitutions will be the basis to construct instantiations. In Fig. [2 we show an
example of a set of substitutions for an atom.

In Def(s). [0l we consider that F' is a formula of the form V(r;(z) < R(x))
with R(z) as a quantifier-free formula written in (the language of an assertion
context) A.

Definition 7 (i-Instantiation). We say that inst(F,i,a(y)) = {V(ri(z)0; <
R(x)61),...,Y(ri(x)0; < R(x)0;)} is the i-instantiation of an atom a(y) in F if
and only if
1. a(y) is an atom in R(x) of level i where a(y)p
patterns with lower patterns {a(y1)p, ....,a(y;)p}-
2. {01,...,0;} is the set of substitutions such that (a(y)0k)p = alyx)p (k =1..7).
3. Every atom in R(x)0y presents an atom pattern in A.

dominates a subgraph of

Ezample 7 (Instantiation of member(e,l) in the aziom of r¥ in Ex. [G).
Y (ry (e, [], e,5) & (member(e,[]) A ~member(e, s))) 0, =1}
Y (ry (e, [z|y], e, 5) & (member(e, [z]y]) A ~member (e, s))) 02 = {(I, [z|y])}

Definition 8 (Unfolding Step). Let Az = V(a(z) & B(z)) be an axiom in
an assertion context A and a(y) an atom occurring in F with a(z)0 = a(y). We
say that unf(F,a(y), Az) is the unfolding step of a(y) in F wrt Az if and only
if a(y) is replaced in F by B(2)6.

Definition 9 (Normalization Rules). To avoid negations in front of formu-
las, we normalize them by using the following set of rewrite rules where G and
H are quantifier-free formulas.

(1) =false — true, (2) —true — false

(3) -G — G, (4) ~(G=H)—= (GAN-H)
(5) "(GANH) = (-G Vv —H) (6) -(GVH)— (-GAN—-H)
(M ~(G& H)— (-(G=H)V-(H=G))

Definition 10 (i-Expansion). We say that the set of formulas exp(F,i) is
the i-expansion of F if and only if every formula in exp(F,i) is constructed by
applying all i-instantiations (at least one) to F and then all unfolding steps (at
least one) to each resulting formula. After unfolding steps, it can appear negative
sub-formulas (i.e. presence of negation in front of unfolded sub-formulas). To
avoid negations in front of such sub-formulas, we normalize them.



Ezxample 8 (Expansion of the aziom forry in Ex. 6).

O
VG o) & (False A frae))
(2) ¥ (r{(e,[], e, [v|w]) < (false A (midnat(v,e) A ~member(e,w))))
(3) YV (ry (e, [z|y], e, []) & ((idnat(x,e) V member(e,y)) A true))
(4) ¥ (7Y (e, [z]y], e, [v|w]) & ((idnat(x,e) V member(e,y))
N
(—idnat(v, e) A —=member(e,w))))

5.2 Structuring the Search Space

Once an expressive assertion has been “decomposed” into a set of formulas (ex-
pansion), we are interested in finding recursive compositions. This can be done
by identifying sub-formulas and replacing them by new predicates (reduction).
Our intention is to anticipate and organize the search space for sub-formulas
and new predicates in order to manage reductions automatically. Thus, after
expanding an expressive assertion, we must be able for predicting the set of all
possible resulting formulas.

Definition 11 (Search Space). Let Va(r(z) < QyR(x,y)) be an expressive
assertion in an assertion context A and Vx,y(r®(x,y) < R(z,y)) the auziliary
specification from which a logic program has to be synthesized for r. We say that
the set of formula patterns £2(r) is the search space for r if and only if it includes
the set of all formula pattern combinations which results of replacing all literals
in R by atom patterns in A and by negative forms of atoms patterns in A.

Every element Ep in £2(r) encodes a sort of formulas. Such a codification
depends on the sequence of relation symbols in Ep. Our method considers that
every formula pattern Ep is equivalent to a fresh atom pattern whose relation
symbol, say rg,, represents such a codification. In order to establish a precise
codification, a bijection is proposed between term patterns in Fp and parame-
ter positions in rg,. We say that (2e,(r) is the extended search space for r if
and only if £2.,.(r) is formed from 2(r) by including an element of the form
rE, < Ep for each element Ep € £2(r). Thus, an extended search space repre-
sents a repository of new predicates (i.e. g, ) and sub-formulas (i.e. Ep) to be
considered at reduction time.

Experimentally, it is important to note that no complete extended search
spaces are needed when compiling expressive assertions. For instance, from a
theoretical point of view, |£2..¢(7)| = 196 but only 9 of these patterns have
been needed when compiling 7} (Table 1). A practical result is proposed in [10]
where we show that search spaces can be constructed on demand using tabulation
techniques.

5.3 Similarity. A Criterion for Identifying New Predicates

In order to automate reductions, we propose a method to decide when a formula
is similar to an element in a search space. We supply “operational” definitions
to justify the mechanization of our proposal.



Table 1. Q..:(r]) (partial).

(1) 71\17,(—17-27-37-4) < (member(,,-,) A ~-member(_,,-,))
(2) 73 1y-0) & (false A —member(_,,-,))

(3) Tg(—u-z) & (member(,,-,) A false)

4 ry(C,,-,) < (true A —=member(,,-,))

(5) 12 (Cysmp) & (member(,,—,) Atrue)

(6) 7§ < (false A true)

(7) r7 < (false A false)

(8) r§ < (true A false)

(9) rg < (true A true)

By tree(Rp) we denote the parse tree of a formula pattern Rp where each
leaf node contains a literal pattern and each internal node contains a binary
logical connective. We say that a node in tree(Rp) is preterminal if it has, at
least, one leaf node.

We say that Rp is similar wrt connectives to Ep if and only if every bi-
nary logical connective in tree(Ep) is located at the same place in tree(Rp).
In Fig. Bl we show that Rp is similar wrt connectives to Ep (but Ep is not
similar wrt connectives to Rp). Similarity wrt connectives induces a mapping f
from preterminal nodes in tree(Ep) to subtrees in tree(Rp) (for instance, f in

Fig. B).

Definition 12 (Similar Pattern). We say that a formula pattern Rp is sim-
tlar to a formula pattern Ep if and only if

1. Rp is similar wrt connectives to Ep via mapping f,

2. a) For each preterminal node n € tree(Ep) with two leaf nodes, ejcfip and
€rightp, there exist two leaf nodes, liefip on the left subtree of f(n) and
lrightp on the right subtree of f(n), where eieftp = licytp and erighip
= lm’ght'p and

b) For each preterminal node n € tree(Ep) with one leaf node, eicfip/
€rightp, there exists a leaf node lleftp/l”-ghtp on the left/right subtree of
f(n)7 where eleftp/eright'p = lleft'p/lright'p-

Figure [3] shows an example of similarity.

At this point, two interesting results are presented. The first one (Theorem [2))
establishes that expansions preserve semantics and the second one (Theorem [l),
which is needed to ensure termination, establishes that every formula resulting
from an expansion can be reduced to a new predicate in the (extended) search
space.

Theorem 2 (Expansion Preserves Correctness). Let {V(r;(x1) <R (z1)),
e Y(ri(g) & R (x;))} be the set of resulting formulas in the i-expansion of
a formula ¥(r;(x) < R(x)). For every ground atom r;(x)¢ there exists a ground
atom r;(xy)0 with k € {1..7} such that

Al R(x)p < R (x)d
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Fig. 3. Rp is similar to Ep.

(A proof of this theorem can be found in [12]).

Theorem 3 (Expansion is an Internal Operation in (2.,;). Let {V(r;(x1)-
SR (21)),0, V(ri(2) &R (2))} be the i-expansion of a formula V(ri(z) <

R(z)). If R(x)p is similar to the ths of some pattern in ez (r;) then Ry™ (xy)p
is also similar to the rhs of some pattern in 2ey(r;) (k= 1..5). (A proof of this
theorem can be found in [I2]).

5.4 Reduction Phase

Reduction phase is intended to replace sub-formulas by atoms. To identify and
replace sub-formulas by equivalent atoms are two key activities in a transforma-
tion step. Once a formula is similar to an element in a search space then it is
rewritten (rewriting step), preserving its semantics, in order to facilitate an au-
tomatic replacement of sub-formulas by new predicates (folding step). In Def(s).
[[4] M8 and 0G, we consider that F is a formula of the form V(r;(x) < R(x)) with
R(z) a quantifier-free formula written in (the language of an assertion context)
A and r a symbol not defined in A.

Definition 13 (Simplification Rules). In order to simplify formulas in pres-
ence of propositions true and false, we consider the following set of rewrite rules
where H is a formula.

1
4

) trueV H — true

) false NH — false
) false & H— —-H
2) true < H - H

—true — false —false — true

falsevVH — H true N\H — H

) (2) 3
) () 6
) false = H — true (8) true=H — H (9
0 (11 1
3 (1

e e

) H = true — true ) H = false = -H

(
(
E
(13) V(true) — true 4)Y(false) — false

7
1
1

In the following definition, we use R(a1, ..., Gp, ..., a,) to refer to R(z) where
{a1,...;ap, ..., an} is the set of all the atoms occurring in R(z).



Definition 14 (Rewriting Step). Let Pp be a pattern in Qeu(r;) such that
R(z)p is similar to Ep = rhs(Pp) with f as the induced mapping for deciding
similarity wrt connectives and {a1, a2, ...,a,} as the set of atoms in R(a,...,-
Ap, ..., Gn) which have not been used for deciding similarity (for instance, re-
maining atoms in Fig.[3). We say that rew(F, Pp) is the rewriting step of F wrt
Pp if and only if

(Step 1) We calculate the set of all the possible evaluations for a1, as, ..., a,
in R(x) in the following schematic manner:

rew(F, Pp) =V(ri(z) &
(R(true,true, ..., true, api1, ..., an) ANar Aas A...A\ap)
R(false,true,...,true,api1,....,an) A —-a3 Aas A...Na
P+ P
(R(true, false,...,true, apt1,...,an) ANar A -ag A ... A ap)

<< <L

(R(false, false..., false, api1, ..., an) A 2a1 A DGz A ... A —ayp))

where each R(c1,C2..., Cpy Apt1, ..., Gp) denotes the replacement in R(x) of the set
of atoms {a1,az,...,ap} by the combination {c1,ca,...,c,} of propositions true
and false.

(Step 2) We simplify each R(c1, Ca,..., Cp, Gpt1, ..., Gp) in the following form:

1. For each preterminal node n € tree(Ep) with two leaf nodes, we simplify
(Def. [13) sub-formulas in R(c1,Ca,..., Cp, Gpi1, .., Gn) which correspond to
left and right subtrees of f(n) in R(c1,C2,..y Cp,y Qpt1y ey Gn)p-

2. For each preterminal node n € tree(Ep) with one left/right leaf node, we
simplify (Def.[I3) the sub-formula in R(ci,ca,..., Cp, Qpi1, ..., Gn) Which cor-
responds to the left/right subtree of f(n) in R(c1,¢2, s Cpy Qptis .oy Gn)p-

This selective simplification is intended to preserve similarily wrt connectives
between R(c1,C2, ..., Cp, Apt1, ..., Gn)p and Ep.
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Fig. 4. Rewriting step. Sub-formulas to be simplified.



Ezxample 9 (Rewriting Step). Let F be the formula (4) in Ex.[8] Pp the pattern
(1) in 2u44(ry) and Ep = rhs(Pp). From Fig. [J we can verify that {a; =
idnat(x,e),as = idnat(v,e)} is the set of atoms which has not been used for
deciding similarity (i.e. remaining atoms). After rewriting (step 1) we obtain the
following formula:

rew(F, PP) = v(7‘1 (6, [‘r'y]a €, [v|w]) A
(true V. member(e,y)) A (false AN =member(e,w)) A idnat(z,e) A idnat(v,e) V
(false Vv member(e,y)) A (false AN =member(e,w)) A —idnat(x,e) A idnat(v,e) V
((true V member(e,y)) A (true A =member(e,w)) A idnat(x,e) A —idnat(v,e) V
(false V member(e,y)) A (true A =member(e,w)) A —idnat(z,e) A —idnat(v,e)

For preterminal node A in tree(Ep), we simplify sub-formulas in R(cy,ca, ...,
Cpy Qpt1 -5 Qy) Which correspond to left and right subtrees of f(A) in R(c1, co,
ces Cpy Api 1, -, Ay )p. In Fig. @l we have highlighted such subtrees. After rewriting
(step 2), we obtain the formula:

rew( F, Pp) =Y(r{(e, [z[y], e, [v|w]) =

true A\ false A tdnat(z,e) A idnat(v,e) V
member(e,y) A false A —idnat(x,e) A idnat(v,e) V
true A =member(e, w) A tdnat(z,e) A —idnat(v,e) V

member (e, y) A ~member(e,w) A —idnat(z,e) A —idnat(v,e)

In order to apply automatic folding to formulas, we need to instantiate pat-
terns in extended search spaces. We say that a quantifier-free formula pi(Pp, B)
is the pattern instantiation of Pp € Qey(r;) wrt B if and only if Bp = rhs(Pp)
and pi(Pp, B) is obtained from Pp by replacing every term pattern in Pp by its
respective term in B.

Ezample 10 (Pattern instantiation in 2eme(rY)).

P’P = TY(*1 7*27*3%4) A (member(*lvfz) A _'member(*37*4))
B = member(e,y) A ~member(e, w)
pi(Pp, B) =1 (e,y, e,w) < (member(e,y) A ~member(e,w))

Definition 15 (Folding Step). Let F be a formula in A of the form ¥ (r;(z) <
R(z)) and B a sub-formula in R(z) with Bp = rhs(Pp) and Pp € Qeyt(r;). We
say that fold(F, Pp) is the folding step of F wrt Pp if and only if it is obtained
by replacing B by lhs(pi(Pp, B)) in R(x).

Although search spaces are finite, to identify sub-formulas to be folded con-
stitutes a highly non-deterministic task. In order to guide an automatic identi-
fication of such sub-formulas we introduce the notion of encapsulation and then
explain how rewriting and folding rules contribute to automate reductions.

We say that a formula/formula pattern R/Rp is completely encapsulated in
layer; of A if and only if every atom/atom pattern occurring in R/Rp is defined
on a relation symbol of level i. We say that a formula/formula pattern R/Rp is
partially encapsulated in layer; if and only if some atom/atom patterns occurring
in R/Rp is defined on a relation symbol of level i and the remaining atom/atom
patterns are defined on relation symbols of lower level.



Definition 16 (i-Reduction). Let Fy, € exp(F, i) be a formula of level i. The i-
reduction of Fy, wrt Qeei(r;), red(Fi, i, QLert(11)), is implemented in the following
steps:

1. (Searching). To search for patterns Pp € (2eyi(r;) with rhs(Pp) as a com-
pletely encapsulated pattern of level i. Literal patterns in rhs(Fyp) can be
used to accelerate this search. If this search fails then to continue by search-
ing for partially encapsulated patterns of level i. If this search fails then to
continue in a similar way by searching for patterns of level i — 1 and so on.

2. (Rewriting, Step 1). Let rhs(Fyp) be similar to rhs(Pp). We fiz in rhs(Fyp)
those atom patterns which are responsible of similarity and then a set A of
remaining atoms in rhs(Fy) is then selected to be evaluated.

3. (Rewriting, Step 2). After evaluating wrt A, we simplify by preserving the
structure of logical connectives in Pp.

4. (Folding) To identify sub-formula B to be folded (i.e. Bp = rhs(Pp)), to
construct a new predicate (i.e. lhs(pi(Pp,B))) and then to replace B in
rew(Fy,rhs(Pp)) by the new predicate.

Ezample 11 (i-Reduction). Let Fj, be the formula (4) in Ex.
(Searching) We search for patterns Pp € §2..¢(r}) such that rhs(Pp) is a
completely encapsulated pattern of level 1:

Pp = TY('17'2"3"4) < (member(_,,-,) A ﬁTn‘mnber(-sﬂ-ﬂ)

(Rewriting, Step 1) If rhs(Fyp) is similar to (the rhs of) several patterns
then a non-deterministic choice must be done. In our example, the choice is
deterministic (i.e. Pp is the unique candidate). We fix in rhs(Fjp) those atom
patterns which are responsible of similarity.

rhs(Frp) = (idnat(_,-) V. member(_,-)) A (midnat(_,-) A =member(_,-))

The set of remaining atoms A = {a; = idnat(x,e),as = idnat(v,e)} is then
selected to be evaluated.
(Rewriting, Step 2) After evaluating and simplifying:

rew( Fi, Pp) = V(r{ (e, [z[y], e, [v]w])

true A false A idnat(z,e) A idnat(v,e) V
member(e,y) A false A —idnat(z, e) A idnat(v,e)) V
true A ~member (e, w) Addnat(z,e) A —idnat(v,e) V

member(e,y) A ~member(e,w) N —idnat(x,e) A —idnat(v, e)

(Folding) At this point, it is easy to identify B as a sub-formula in rew(Fy,
Pp) whose pattern is equal to the rhs(Pp).

rew( Fy, Pp) =Y(r{(e, [z|y], e, [v]w]) <

true A false Aidnat(z,e) A idnat(v,e) V
member(e,y) A false A —idnat(z, e) A idnat(v,e)) V
true A —member(e, w) Aidnat(z,e) A —idnat(v,e) V

member(e,y) A ~member(e,w) A —idnat(x,e) A ~idnat(v,e)

B




A new predicate is obtained by pattern instantiation (Ex. [IQ):
hs(pi(Pp, B)) = r{ (e, y, e, w)]

Finally, the replacement of B by the new predicate produces the formula:

V(Tl (6, [$|y]7 ¢, [’U"U}]) A
true A false A idnat(z,e) A idnat(v,e) V
member(e,y) A false A —idnat(z,e) A idnat(v,e)) V
true A —member (e, w) A idnat(x,e) A —idnat(v,e) V
Y (e, y, e, w) A —idnat(z, e) A —idnat(v, e)
—_———

lhs(pi(Pp,B))

We say that an i-reduction red(Fy, i, 2e.¢(r;)) is complete when all possible
folding steps have been applied to rew(F, Pp). We say that a reduction phase
has been completed for I if and only if a complete i-reduction has been applied
to every formula in exp(F,1).

Theorem 4 (Reduction Preserves Correctness). Let V(r;(z) < R™%(z))
be the i-reduction of an expanded formula ¥(r;(x) < RP(x)) wrt 2eqt(r;). For
every ground atom r;(x),

A R @)oo B(x)s
(A proof of this theorem can be found in [12]).

5.5 Compilation as an Incremental and Terminating Process

The compilation of an axiom is completed by a finite sequence of meaning-
preserving transformation steps. Each transformation step is composed of an
expansion phase followed by a (complete) reduction phase. Table 2 shows r}

(Ex. @) after a transformation step.

Theorem 5 (Forms of Compiled Axioms). After a transformation step,
every resulting formula presents one of the following forms. (A proof of this
theorem can be found in [12]):

1. V(ri(z) & rj(z)) wherer;(z)p is equal to the lhs of some element in ey (r;).

2. V(ri(xz) & Vrj(@) NGj(x)) where rj(x)p is equal to the lhs of some element
in $2e0(r;) and Gj(z) a conjunctive formula of literals defined on atoms
whose patterns are included in A.

Each transformation step represents an increment in the overall compilation
process. Due to Theorem [Bl each successive increment compiles either an axiom
for r; (e.g. V(rY(e,y) & (member(e,y) A false))) or an axiom for a new assertion
from a literal in G;(z) (e.g. V(riy(z,e) & —idnat(z,e))).

Theorem 6 (Termination). The compilation of an expressive assertion is
completed in a finite amount of increments. (A proof of this theorem can be

found in [12]).

For instance, the compilation of r{ (Ex.[H]) has been completed by means of 11
increments (77 ,...,77; ).



Table 2. Compilation results after one transformation step for r{ in Ex. [

(1) V(TY(@, [ }7 €, [ D A T5)

(2) V(Y (e, [, e, v|w]) & (1§ A idnat(v,e)  V
3 (e, w) A —idnat(v, e)))

(3)V (rY (e, [z]y], e, []) < (r§ A idnat(xz,e) V
3 (e, ) A —idnat(z,e)))

(4) Y (r (e, [z]y], e, [v|w]) & (¥ Addnat(xz,e)  Addnat(v,e) V
3 (e, ) A —idnat(z,e) A idnat(v,e) V
3 (e, w) Aidnat(z,e) A —idnat(v,e) V
Y (e,y,e,w) A —idnat(z,e) A —idnat(v,e)))

6 Executing Expressive Assertions from Synthesized
Logic Programs

Once a compilation process has been completed, a finite set of new assertions
have been produced (Theorem[d). The form of their axioms (i.e. universal closure,
mutually-exclusive disjunctions of conjunctions, absence of negated atoms and
stratification [17]) allow to define a simple translation method from compiled
assertions to definite logic programs.

Definition 17 (Translation Method). For every resulting axiom Az from a
compilation:

1. If Az is of the form ¥(r < P) where P is a propositional formula formed
out from constants true and false, two situations are possible:
a) If the evaluation of P is equal to false then Ax is translated to an empty
clause.
b) If the evaluation of P is equal to true then Ax is translated to a clause
of the form r <
2. If Ax is of the form ¥(r(z) <\ (ri(x) A ... Arp(x)) then it is translated to
a set of k clauses of the form r(x) < ri(x),...,rn(x). Bvery clause, which
includes an atom occurrence v with aziom of the form ¥(r < P) and P equal
to false, is deleted.

Ezample 12 (Synthesized logic program for ry (Ex.[@)).

V(e’ [ ]’ €, [Ulw]) ~ r2v(67 w)v TYO(”? e)
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For the purpose of verifying that synthesized logic programs are totally cor-
rect wrt goals < r?(t, y), a set of execution modes can be calculated for each
synthesized predicate. An execution mode is formed by replacing each parame-
ter in a signature by a mark | to refer to ‘a ground term as input parameter’
or T to refer to ‘an existentially quantified variable as output parameter’. For
instance, a logic program such as the one shown in Ex.[Zis a totally correct pro-
gram for idnat (Ex.[J) wrt goals < idnat} (t,y) (i.e. idnat({,1)), < idnat} (z,1)
(i.e. idnat(t,])) and <= idnaty (t1,ts) (i.e. idnat({,])) where t,t1,t5 are ground
Nat-terms. Static analysis techniques can be used to calculate and/or verify
sets of execution modes for a logic program [I], [6]. Table 3 shows the set of
execution modes calculated for the synthesized program in Ex. [[2} Thus, if a
synthesized logic program Vz, y(r?(x, y) < P(x,y)) for an expressive assertion
Va(r(z) < QyR(z,y)) presents r2(],1) as one of its execution modes then %
can be used to execute ground instances of r. For instance, such a condition
holds for r] (Table 3), hence, the synthesized logic program in Ex. can be
used to execute ground instances of r in Ex.

Table 3. Execution modes for the synthesized program in Ex.

r11({54) (1, 4) ri{1)
T\ljo(i»i) Tlo(T7 i) TlO(Ja T)
sy s )

iy i)

sy ()

3y i)

b8 ()

How can assertion checkers evaluate ground atoms r(t) from goals < r?(t, Y)
in a refutation system such as Prolog?

The execution of < rlQ (t,y) in a Prolog system will compute a set of substi-
tutions {64, ...,0;} for y, thus:



— For Q =3

1. If {61,...,0;} = 0 then A —Jy(ri(t,y)) (by logical consequence), A
-3y(R(t,y)) (by total correctness of 77), A —=r(t) (by equivalence)
2. If {61,...,0;} # 0 then, by a similar reasoning, A + Jy(ri(t,y)), A
Fy(R(,y)), At r(l).
— For Q =V:

1. If {61,...,0;} = 0 then A + —=3y(r{(t,y)) (by logical consequence),
AF —3y(=R(t,y)) (by total correctness of 7} ), A - Vy(R(t,y)) (by equiv-
alence), A+ r(t) (by equivalence).

2. If {6y,...,0;} # 0 then, by a similar reasoning, A = 3y(ry(t,v)), A

Ey(_'R(tay )v F =V (R( 'Y ))’ A —\7”( )

7 Conclusions and Future Work

In this paper, we have formalized a class of assertions we call expressive as-
sertions in the sense that they describe recursive models which are no directly
translatable into executable forms. Due to this fact, current assertion checkers
are not able to execute expressive assertions. The existence of mature studies in
the field of transformational synthesis constitutes an important aid to overcome
the problem. Recurrent problems in transformational synthesis have been revis-
ited, for instance, the “eureka problem” (i.e. non-automatic steps about when
and how to define recursive predicates). In order to overcome the problem, we
restrict our attention to a particular class of first-order theories we call asser-
tion contexts. This sort of theories is interesting because it presents a balance
between expressiveness for writing assertions and existence of effective methods
for compiling and executing them via synthesized (definite) logic programs.

Finally, we consider that our work can also be used to construct assertion
contexts in an incremental manner. In fact, assertions contexts can be extended
with expressive assertions in a conservative way without losing execution ca-
pabilities. For instance, A U7 U} is more expressive than A while preserving
consistency and execution capabilities (i.e. 7] can be used to execute ground
atoms of r). This issue is essential from a practical view point in order to reach
expressive assertion languages. We plan to study it as future work.
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