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ABSTRACT

One of the main drawbacks of the practical use of neural networks is the long time needed in
the training process. Such training process consists in an iterative change of parameters trying to
minimize a loss function. These changes are driven by a dataset, which can be seen as a set of
labeled points in an n-dimensional space. In this paper, we explore the concept of representative
dataset which is smaller than the original dataset and satisfies a nearness condition independent of
isometric transformations. The representativeness is measured using persistence diagrams due to its
computational efficiency. We also prove that the accuracy of the learning process of a neural network
on a representative dataset is comparable with the accuracy on the original dataset when the neural
network architecture is a perceptron and the loss function is the mean squared error. These theoretical
results accompanied with experimentation open a door to the size reduction of the dataset in order to
gain time in the training process of any neural network.

Keywords Computational Learning Theory · Data Reduction · Perceptron · Neural Networks · Representative
Datasets · Computational Topology.

1 Introduction

The success of the different architectures used in the framework of neural networks are doubtless [1]. Some of the
recent achievements in areas such as generation of video images [2], recognition [3] or textual analysis [4] show the
surprising potential of such architectures. In spite of such success, they still present some lacks. One of the main
drawbacks of these systems is the long time needed in the training process. Such long training time is usually associated
with two factors: first, the large amount of weights to be adjusted in the current architectures and, second, the huge
datasets used to train neural networks. In general, the training time of a complex neural network from the scratch is so
long that many current researches use pretrained neural networks as Oxford VGG models [5], Google Inception Model
[6] or Microsoft ResNet Model [7]. Another attempts to reduce the training time are for example the followings. In [8],
training time is reduced by partitioning the training task in multiple training subtasks with sub-models, which can be
performed independently and in parallel. In [9], asynchronous averaged stochastic gradient descent is used. Lastly, a
sampling-based approach to reduce data transmission is considered in [10].

Roughly speaking, such training process consists of a search of a local minimum of a loss function in an abstract space
where the states are sets of weights. Each of the batch of training samples provides an extremely small change on the
weights according to the training rules. The aim of such changes is to find the best set of weights which minimize
the loss function. If we consider a geometrical interpretation of the learning process, such changes can be seen as
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tiny steps in a multidimensional metric space of parameters that follow the direction settled by the gradient vector
of the loss function. In some sense, one can think that two close points of the dataset with the same label provide
similar information to the learning process since the gradient vector of the loss function on such points is similar. Such
viewpoint leads us to look for a representative dataset, “close" to and with a smaller number of points than the original
dataset but keeping its “information", allowing the neural network to perform the learning process taking less time
without losing accuracy.

In this paper, we reduce the training time by choosing a representative dataset of the original one. We formally prove
that the accuracy of the neural network trained with the representative dataset is comparable to the accuracy of the
neural network trained with the original dataset for the perceptron case. Besides, experimental evidence indicates the
usefulness of representative datasets for the general case. Moreover, in order to “keep the shape" of the original dataset,
the concept of representative dataset is associated with a notion of nearness independent of isometric transformations.
Finally, as a first approach, Gromov-Hausdorff distance is used to measure this representativeness. Nonetheless, as
Gromov-Hausdorff distance complexity is an open problem1, bottleneck distance between persistence diagrams [12] is
used instead as a lower bound to Gromov-Hausdorff distance since its complexity is cubic in the size of the dataset (see
[13]). The implementation of the methodology can be found in the online supplementary material documentation2.

The paper is organized as follows. In Section 2, basic definitions and results from artificial neural networks and
persistent homology are given. The notion of representative dataset is introduced in Section 3. In Section 4, the
perceptron architecture is studied to provide bounds to compare the training performances within the original and its
representative dataset. Persistent homology is used in Section 5 to measure the representativeness of a dataset. In
Section 6, experimental results are provided for the perceptron case pointing out the fact that it is equivalent to train
a perceptron with a dataset or with its representative dataset. In Section 7, we illustrate the same fact through an
experiment using a more complex neural network architecture. Finally, some conclusions and future work are provided
in Section 8.

2 Background

Next we recall some basic definitions and notations used throughout the paper.

2.1 Neural Networks

The research field of neural networks is extremely vivid and new architectures are continuously being presented (see,
e.g., CapsNets [7], or new variants of the Gated Recurrent Units [14, 15]), so the current definition of neural network is
far from the classic definition of multilayer perceptron or radial basis function networks [16]. As a general setting, a
neural network is a mapping Nw,Φ : Rn → Rm which depends on a set of weights w and a set of parameters Φ which
involves the description of the synapses between neurons, layers, activation functions and whatever consideration in its
architecture.

To train the neural network Nw,Φ, we use a dataset which is a finite set of pairs D = {(x, cx)} where, for each pair
(x, cx), point x lies in Rn and label cx lies in [[0, k]] = {0, 1, . . . , k}, for some k ∈ N.

To perform the learning process, we use: (1) a loss function which measures the difference between the output of the
network (obtained with the current weights) and the desired output; and (2) a loss-driven training method to iteratively
update the weights.

2.2 Persistent Homology

In this paper, the representativeness of a dataset will be measured using methods from the recent developed area called
Computational Topology whose main tool is persistent homology. A detailed presentation of this field can be found in
[12].

Homology provides mathematical formalism to study how a space is connected, being the m-dimensional homology
group the mathematical representation for the m-dimensional holes in the space. This way, 0-dimensional homology
group counts the connected components of the space, 1-dimensional homology group its tunnels and 2-dimensional
homology group its cavities. For higher dimensions, the intuition of holes is lost.

Persistent homology is usually computed when exact homology can not be determined. An example of this casuistic
can appear when a point cloud samples a surface. Persistent homology is based on the concept of filtration, which is an

1It seems to be intractable in practice [11].
2https://github.com/Cimagroup/Experiments-Representative-datasets
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increasing sequence of simplicial complexes which change along time. The building blocks of a simplicial complex are
m-simplices.
Definition 1. The m-simplex generated by m + 1 affinely independent points v0, . . . , vm ∈ Rn (being m ≤ n),
denoted by µ =

〈
v0, . . . , vm

〉
, is defined by:

µ =

{
x ∈ Rn

∣∣∣∣∣ x =

m∑
i=0

λiv
i : λi ≥ 0,

m∑
i=0

λi = 1

}
.

A face τ of µ is a simplex generated by any subset of {v0, . . . , vm}. In such case we denote τ ≤ µ.

From the idea of m-simplex and face, the concepts of simplicial complex, subcomplex and filtration arise in a natural
way.
Definition 2. A simplicial complex K is a finite set of simplices, satisfying the following properties:

1. If µ, µ̃ ∈ K and µ ∩ µ̃ 6= ∅, then µ ∩ µ̃ ∈ K.

2. If µ ∈ K and τ ≤ µ, then τ ∈ K.

A subset K̃ of K is a subcomplex of K if K̃ is also a simplicial complex.

A filtration of a simplicial complex K is a nested sequence of subcomplexes,

∅ = K0 ⊂ K1 ⊂ · · · ⊂ Kn = K.

One example of filtration is the Vietoris-Rips filtration (see [17]). Roughly speaking, a Vietoris-Rips filtration is
obtained by creating open balls from every point of a set in an n-dimensional space. The radius of the ball gets bigger
along time and those vertices whose balls intersect are joined forming new simplices. Using this idea, the filtration
is built. We say that a hole is born when it appears during the construction of the filtration and we say that a hole
dies when it merges with another hole. The rule to decide which hole dies when they merge is the elder rule which
establishes that younger holes die. So, births and deaths of all holes are controlled along time in the filtration. One
of the common graphical representations of births vs. deaths along time is the so-called persistence diagram which
is a set of points on the Cartesian plane. A point of a persistence diagram represents a hole in a concrete dimension.
Since death happens only after births, all the points in a persistence diagram lie above the diagonal axis. Furthermore,
those points in a persistence diagram that are far from the diagonal axis are candidates to be topologically significant
since they represent holes which survive for a long time. The so-called bottleneck distance can be used to compare two
persistence diagrams.
Definition 3. The Bottleneck distance between two persistence diagrams Dgm and ˜Dgm is:

dB(Dgm, ˜Dgm) = inf
φ:Dgm→ ˜Dgm sup

α∈Dgm
||α− φ(α)||∞

where φ is any possible bijection between Dgm and ˜Dgm.

An useful result used in this paper is the following one that connects Gromov-Hausdorff distance between two metric
spaces and bottleneck distance between the persistence diagrams of their corresponding Vietoris-Rips filtrations.
Theorem 1. ([18]) For any two subsets X and Y of Rn, and for any dimension q ≤ n, bottleneck distance between
Dgmq(X) and Dgmq(Y ) is bounded by Gromov-Hausdorff distance of X and Y :

dB(Dgmq(X), Dgmq(Y )) ≤ 2dGH(X,Y ).

Let us recall that Hausdorff distance between X and Y is:

dH(X,Y ) = max{ sup
x∈X

inf
y∈Y

||x− y||, sup
y∈Y

inf
x∈X

||x− y|| },

and Gromov-Hausdorff distance between X and Y is defined as the infimum of the Hausdorff distance taken over all
possible isometric transformations. That is,

dGH(X,Y ) = inf
f,g
{ dH

(
f(X), g(Y )

)
},

where f : X → Z denotes an isometric transformation of X into some metric space Z and g : Y → Z an isometric
transformation of Y into Z.

3
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3 Representative Datasets

The key idea in this paper is the formal definition of representative datasets and the proof of their usefulness to decrease
the time needed to train a neural network without loosing accuracy. Proving such general result for all the neural
network architectures is out of the scope of this paper and, probably, it is not possible since the definition of neural
network is continuously evolving over time as we mentioned before. In spite of such difficulties, we will start in this
paper by showing the usefulness of representative datasets for the perceptron case.

In this section, we provide a definition of representative datasets which is general for all neural networks. The intuition
behind this definition is to keep the shape of the original dataset while reducing its number of points.
Definition 4. A labeled point (x̃, cx̃) ∈ Rn × [[0, k]] is ε-representative of (x, cx) ∈ Rn × [[0, k]] if cx = cx̃ and there
exists δ ∈ Rn such that x = x̃+ δ with ||δ|| ≤ ε, where ε ∈ R is the representation error. We denote x̃ ≈ε x.

The next step is to define the concept of ε-representative dataset. Notice that if a dataset can be correctly classified
by a neural network, any isometric transformation of such dataset is also correctly classified by the neural network.
Therefore, the definition of ε-representative dataset should be independent of such transformations.

Definition 5. A dataset D̃ = {(x̃, cx̃) : x̃ ∈ X̃ ⊂ Rn and cx̃ ∈ [[0, k]]} is ε-representative of D = {(x, cx) : x ∈ X ⊂
Rn and cx ∈ [[0, k]]} if there exists an isometric transformation f : X̃ → Rn, such that for any (x, cx) ∈ D there exists
(x̃, cx̃) ∈ D̃ satisfying that f(x̃) ≈ε x. We will say that ε is optimal if ε = min{ξ : D̃ is a ξ-representative dataset of
D}.
Proposition 1. Let D̃ be a ε-representative dataset (with set of points X̃) of a dataset D (with set of points X). Then
dGH(X, X̃) ≤ ε.

Proof. By definition of ε-representative dataset, there exists an isometric transformation from X̃ to Rn where for
all x ∈ X there exists x̃ ∈ X̃ such that ||x − f(x̃)|| ≤ ε. Therefore, dH(X, f(X̃)) ≤ ε. Then, by definition of
Gromov-Hausdorff distance,

dGH(X, X̃) ≤ dH(X, f(X̃)) ≤ ε.

The definition of ε-representative datasets is not useful when ε is “big". The following result provides the optimal value
for ε.
Remark 1. If ε = dGH(X, X̃) then ε is optimal.

Therefore, one way to discern if a dataset D̃ is “representative enough" of D is to compute Gromov-Hausdorff distance
toX and X̃ . If Gromov-Hausdorff distance is “big", we could say that the dataset D̃ is not representative ofD. However,
Gromov-Hausdorff distance is not useful in practice because of its high computational cost. An alternative approach to
this problem is given in Section 5.

The following concept of λ-balanced dataset will be used in Section 4 to ensure the maintenance of similar results when
training a perceptron with a representative dataset instead of the original one.

Definition 6. For λ ∈ N, a dataset D̃ is λ-balanced ε-representative of D if D̃ is ε-representative of D and for each
(x̃, cx̃) ∈ D̃, |{(x, cx) : f(x) ≈ε x̃}| = λ where f is a fixed isometric transformation.

Finally, we introduce the definition of dominating set, which will be used in the next subsection.
Definition 7. Given a graph G = (X,E), a set Y ⊂ X is a dominating set of X if for any x ∈ X , it is satisfied that
x ∈ Y or there exists y ∈ Y adjacent to x.

3.1 Proximity Graph Algorithm

In this subsection, for a given ε, we propose a variant of the Proximity Graph Algorithm [19] to compute a ε-
representative dataset D̃ of a dataset D = {(x, cx) : x ∈ X and cx ∈ [[0, k]]} . It works as follows. First, a proximity
graph is built over X , establishing adjacency relations between points of X , represented by arcs. Second, using
this graph, a dominating set X̃ ⊆ X is computed, obtaining a ε-representative dataset D̃ = {(x̃, cx̃) : x̃ ∈ X̃ and
(x̃, cx̃) ∈ D}.
Definition 8. Given X ⊂ Rn and ε ∈ R, an ε-proximity graph of X is a graph Gε(X) = (X,E) such that if x, y ∈ X
and ||x− y|| ≤ ε then (x, y) ∈ E.

4
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Figure 1: Point cloud sampling two interlaced solid torus and the proximity graph of one of them for a fixed ε.

See Fig. 1 in which the proximity graph of one of the two interlaced solid torus is drawn for a fixed ε.

The pseudo-code of the Proximity Graph Algorithm used in this paper is the following.

Algorithm 1: Proximity Graph Algorithm
Input: A dataset D = {(x, cx) : x ∈ X ⊂ Rn and cx ∈ [[0, k]]}.
Output: A dataset D̃ ⊂ D.
for c = 0 to c = k do

Xc = {x : (x, c) ∈ D
X̃c = DominatingSet(Gε(Xc))

X̃ =
⋃k
c=0 X̃c

D̃ = {(x, c) : x ∈ X̃ and (x, c) ∈ D}.

Here, DominatingSet(Gε(Xc)) refers to a dominating set obtained from the proximity graph Gε(Xc). Among the
existing algorithms in the literature to obtain a dominating set, we will use, in our experiments in Section 6, the
algorithm proposed in [20] that runs in O(|X| · |E|). Therefore, the complexity of Algorithm 1 is O(|X|2 + |X| · |E|)
because of the size of the matrix of distances between points and the obtaining of the dominating set.

Lemma 1. The output, D̃, of Algorithm 1 is a ε-representative dataset of D.

Proof. Let us prove that for any (x, cx) ∈ D there exists (x̃, cx) ∈ D̃ such that x ≈ε x̃. Two possibilities can arise:

1. If (x, cx) ∈ D̃, it is done.

2. If (x, cx) 6∈ D̃, since X̃cx ⊂ X̃ is a dominating set of Gε(Xcx), then there exists x̃ ∈ X̃cx such that x̃ is
adjacent to x in Gε(Xcx). Therefore, (x̃, cx) ∈ D̃ and x ≈ε x̃.

4 The perceptron case

One of the simplest neural network architecture is the perceptron. Our goal in this section is to prove that training
a perceptron with a representative dataset is equivalent, in terms of accuracy, to training it with the original dataset.
Specifically, we provide results using stochastic gradient descent and the gradient descent algorithm. Notice that in the

5
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case of stochastic gradient descent, the number of updates needed to reach convergence usually increases with the size
of data (see [1, Section 5.9]). We will restrict our interest to a binary classification problem. Therefore, our input is a
dataset D = {(x, cx) : x ∈ X ⊂ Rn and cx ∈ [[0, 1]]}.
A perceptron, Nw, with weights w = (w0, w1, . . . , wn) ∈ Rn+1 is defined as:

Nw(x) =

{
1 if yw(x) ≥ 1

2 ,
0 otherwise;

being

yw : Rn → (0, 1)

x 7→ σ(wx)

where, for x = (x1, . . . , xn) ∈ Rn, wx denotes the expression:

w0 + w1x1 + · · ·+ wnxn,

and σ : R→ (0, 1), defined as

σ(z) =
1

1 + e−z
,

is the sigmoid function.

A useful property of the sigmoid function is the easy expression of its derivative.
Lemma 2. If m ∈ N and z ∈ R then

0 < (σm)′(z) = mσm(z)(1− σ(z)) ≤
(

m

m+ 1

)m+1

.

Proof. First, (σm)′(z) = mσm(z)(1− σ(z)) is greater than 0 since 0 < σ(z) < 1 for all z ∈ R. Second, let us find
the local extrema of (σm)′ by computing the roots of its derivative:

(σm)′′(z) = mσm(z)(1− σ(z))(m− (m+ 1)σ(z)).

Now, (σm)′′(z) = 0 if and only if m − (m + 1)σ(z) = 0. The last expression vanishes at z = log(m). Besides,
(σm)′′(z) > 0 if and only ifm−(m+1)σ(z) > 0 which is true for all z ∈ (−∞, log(m)). Analogously, (σm)′′(z) < 0

for all z ∈ (log(m),+∞), concluding that z = log(m) is a global maximum. Finally, (σm)′(log(m)) =
(

m
m+1

)m+1

.

In the following lemma, we prove that the difference in the output of the function ymw evaluated at a point x and at its
ε-representative point x̃ depends on the weights w and the parameter ε.
Lemma 3. Let w ∈ Rn+1 and x, x̃ ∈ Rn with x̃ ≈ε x. Then,

||ymw (x̃)− ymw (x)|| ≤ ρm||w||∗ε,
where

ρm = ρ(wx,wx̃,m) =


(σm)′(z), if log(m) < z,

(σm)′(z̃), if z̃ < log(m),

(σm)′(log(m)), otherwise.

with z = min{wx,wx̃} and z̃ = max{wx,wx̃}.

Proof. Let us assume, without loss of generality, that wx ≤ wx̃. Then, using Mean Value Theorem, there exists
β ∈ (wx,wx̃) such that

ymw (x̃)− ymw (x) = (σm)′(β)(wx̃− wx).

By Lemma 2, the maximum of (σm)′ in the interval [z, z̃] is reached at log(m) if z < log(m) < z̃, at z if log(m) ≤ z,
and at z̃ if z̃ ≤ log(m), with z = min{wx,wx̃} and z̃ = max{wx,wx̃}. Consequently,

||ymw (x)− ymw (x)|| ≤ ρ(wx,w,x̃,m)||w(x̃− x)||. (1)

Applying now Hölder’s inequality we obtain:

||w(x̃− x)|| ≤ ||w||∗||x̃− x|| ≤ ||w||∗ε.
Replacing ||w(x̃− x)|| by ||w||∗ε in Eq. (1), we obtain the desired result.

6
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The following is a direct consequence of Lemma 2 and Lemma 3.
Corollary 1. Let w ∈ Rn+1 and x, x̃ ∈ Rn with x̃ ≈ε x. Then,

||ymw (x̃)− ymw (x)|| ≤
(

m

m+ 1

)m+1

||w||∗ε.

As previously anticipated, we will use stochastic gradient descent to train the perceptron, which tries to minimize the
following error function:

E(w,X) = E(Ex(w)) =
2

|X|
∑
x∈X

Ex(w),

where, for (x, cx) ∈ D and w ∈ Rn+1,

Ex(w) =
1

2
(cx − yw(x))2

is the loss function considered in this paper.

Following stochastic gradient descent, for all j ∈ [[0, n]], the weights wi = (wi0, w
i
1, . . . , w

i
n) of the ith-state of the

perceptron is updated according to the following rule:

wi+1
j ← wij − ηi

∂Exi(wi)

∂wij
, (2)

where ηi > 0 is the learning rate. Rule (2) takes a random point of the dataset for every iteration i, being able to repeat
the same point in different iterations of the algorithm.

Let us notice that
∂Ex(w)

∂wj
= (cx − yw(x))y′w(x)xj , (3)

for j ∈ [[1, n]] and x = (x1, . . . , xn). Besides,

∂Ex(w)

∂w0
= (cx − yw(x))y′w(x).

By abuse of notation we write Eq. (3) for all j ∈ [[0, n]], assuming that x0 = 1.

Now, using Eq. (3), Rule (2) can be written as follows:

wi+1 ← wi − ηi(ci − ywi(xi))ywi(xi)(1− ywi(xi))xi (4)

for (xi, ci) ∈ D.

To assure the convergence of the training process to a local minimum, it is enough that, for each iteration i, the learning
rate ηi satisfies the following conditions (see [1, Section 8.3.1]):

∞∑
i=1

ηi =∞ and
∞∑
i=1

η2
i <∞

The following lemma determines when ε-representative points are classified under the same label as the points they
represent.

Lemma 4. Let D̃ be a ε-representative dataset of a datasetD. LetNw be a perceptron. Let (x0, c) ∈ D and (x̃0, c) ∈ D̃
with x̃0 ≈ε x0. If ε ≤ ||wx0||

||w|| then Nw(x0) = Nw(x̃0).

Proof. First, if wx = 0 then ε = 0 and therefore x0 = x̃0. Let us then suppose, without loss of generality, that wx < 0.
Then yw(x0) < 1

2 and Nw(x0) = 0 by definition of perceptron. Now, since ε < ||wx0||
||w|| then x0 and x̃0 belong to the

same semispace in which the space is divided by the hiperplane wx = 0. Therefore, wx̃0 < 0, then yw(x̃) < 1
2 and

finally Nw(x̃) = 0.

By Lemma 4, we can state that if ε is “small" enough, then D and D̃ will produce the same accuracy on the perceptron
Nw. Let us define

Iw(x) =

{
1 if cx = Nw(x),
0 otherwise,

for any (x, cx) ∈ D. The following result holds.

7
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Theorem 2. Let D̃ be a λ-balanced ε-representative dataset of a dataset D. Let Nw be a perceptron. If ε ≤
min

{
||wx||
||w|| : (x, cx) ∈ D

}
then

1

|D|
∑

(x,cx)∈D

Iw(x) =
1

|D̃|

∑
(x̃,cx̃)∈D̃

Iw(x̃).

Proof. Since D̃ is λ-balance ε-representative of D, then |D| = λ · |D̃| and we have:

1

|D|
∑

(x,cx)∈D

Iw(x)− 1

|D̃|

∑
(x̃,cx̃)∈D̃

Iw(x̃) =

=
1

|D|
∑

(x,cx)∈D

(Iw(x)− λ · Iw(x̃))

=
1

|D|
∑

(x̃,cx̃)∈D̃

∑
x≈εx̃

(Iw(x)− Iw(x̃)) .

(5)

Finally, Iw(x) = Iw(x̃) for all x ≈ε x̃ and (x̃, cx̃) ∈ D̃ by Lemma 4 since ε < ||wx||
||w|| for all (x, cx) ∈ D.

Next, we compare the two errors E(w,X) and E(w, X̃) obtained when taking a dataset D and its λ-balanced ε-
representative dataset D̃.

Lemma 5. Let X, X̃ ⊂ Rn. Let w ∈ Rn+1. Let D = {(x, cx) : x ∈ X and cx ∈ [[0, 1]]} and D̃ = {(x̃, cx̃) : x̃ ∈ X̃
and cx̃ ∈ [[0, 1]]}. Suppose D̃ is λ-balanced ε-representative of D. Then:∣∣∣∣E(w,X)− E(w, X̃)

∣∣∣∣ ≤ 1

|X|
∑
x∈X

(
2cxρ1 + ρ2

)
||w(x− x̃)||

where ρm = ρ(wx,wx̃,m) for m = 1, 2, and for each addend, x ≈ε x̃.

Proof.

E(w,X)− E(w, X̃) =
1

|X|
∑
x∈X

(cx − yw(x))2

− 1

|X̃|

∑
x̃∈X̃

(cx̃ − yw(x̃))2

=
1

|X| · |X̃|

(
|X̃|

∑
x∈X

(cx − yw(x))2

− |X|
∑
x̃∈X̃

(cx̃ − yw(x̃))2
)
.

On both addends of the last expression we have the same number of elements. Since D̃ is λ-balanced ε-representative
of D then |X| = λ |X̃|. Then,

||E(w,X)− E(w, X̃)||

=
1

|X|

∣∣∣∣∣∣ ∑
x∈X

2cx
(
yw̃(x̃)− yw(x)

)
+ y2

w(x)− y2
w̃(x̃)

)∣∣∣∣∣∣
≤ 1

|X|
∑
x∈X

2cx||yw̃(x̃)− yw(x)||+ ||y2
w(x)− y2

w̃(x̃)||,

where, for each addend, x̃ ≈ε x. Applying Lemma 3 for m = 1, 2 to the last expression, we get:

||E(w,X)− E(w, X̃)|| ≤ 1

|X|
∑
x∈X

(
2cxρ1 + ρ2

)
||w(x− x̃)||.

8
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From this last result we can infer the following. We can always find ε “small enough" so that the difference between the
errors obtained from one dataset and from another which is ε-representative of the former is “close" to zero.

Theorem 3. Let δ > 0. Let D̃ be a λ-balanced ε-representative dataset of a dataset D. Let Nw be a perceptron. If
ε ≤ 54

43||w||∗ δ, then ||E(w,X)− E(w, X̃)|| < δ.

Proof. First, ρ1 ≤ 1
4 and ρ2 ≤ 8

27 by Corollary 1. Second, since cx ∈ [[0, 1]], then we have:

1

|X|
∑
x∈X

(
2cxρ1 + ρ2

)
||w(x− x̃)||

≤ 1

|X|
∑
x∈X

(1

2
+

8

27

)
||w(x− x̃)||

=
43

54

1

|X|
∑
x∈X
||w(x− x̃)||.

Applying Hölder inequality to the last expression we get:

1

|X|
∑
x∈X

(
2cxρ1 + ρ2

)
||w(x− x̃)|| ≤ 43

54
||w||∗ε.

Therefore, by Lemma 5, if ε ≤ 54
43||w||∗ δ, then ||E(w,X)− E(w, X̃)|| < δ as stated.

Summing up, in the case of stochastic gradient descent we have proved that it is equivalent to train a perceptron with a
dataset D or with its λ-balanced ε-representative dataset. This fact will be highlighted in Section 6 for the perceptron
case and in Section 7 for a neural network with a more complex architecture.

5 On the Application of Persistent Homology

In this section, we recall the roll of persistent homology as a tool to infer the representativeness of a dataset.

First, from Theorem 1 in page 3, we can establish that bottleneck distance between persistence diagrams is a lower
bound of the representativeness of the dataset.

Theorem 4. Let D̃ be a ε-representative dataset (with set of points X̃) of a dataset D (with set of points X). Let
dgm(X) and dgm(X̃) be the persistence diagrams of X and X̃ , respectively. Then,

dB
(
dgm(X), dgm(X̃)

)
≤ 2ε.

Proof. Since D̃ is ε-representative of D then dGH(X , X̃) ≤ ε by Proposition 1. Now, by Theorem 1,

1

2
dB(Dgmp(X), Dgmp(Y )) ≤ dGH(X,Y ) ≤ ε.

As a direct consequence of Theorem 4 and the fact that Hausdorff distance is an upper bound of Gromov-Hausdorff
distance we have the following.

Corollary 2. Let D̃ be a ε-representative dataset of D with optimal ε. Let dgm(X) and dgm(X̃) be the persistence
diagrams of X and X̃ , respectively. Then,

1

2
dB
(
Dgmp(X), Dgmp(X̃))

)
≤ ε ≤ dH

(
X, X̃

)
.

To illustrate the usefulness of this last result, we will discuss a simple example. In Fig. 2, a binary classification
problem is given: Two classes corresponding, respectively, to the upper and the lower semicircumference together with
a subsample of the circumference are shown. In Fig. 3, we can see a subset of the original dataset given in Fig. 2
and a possible decision boundary. As we can see, these two datasets do not represent the same classification problem.
The decision boundaries are different and we should not consider the datasets to represent the same classification

9
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Dataset b0 b1 Hausdorff distance
Representative dataset 1 0.5 0.6 0.35
Representative dataset 2 0.85 0.68 0.94

Table 1: 0-dimensional and 1-dimensional Botleneck distances and Hausdorff distance between the datasets given in
Fig. 4 and Fig. 3 with the dataset given in Fig. 2.

problem. However, the subset shown in Fig. 4 is more accurate, keeping the representativeness of the original dataset.
Besides, we could say that minimizing the error function in the case of Fig. 4 is almost the same as minimizing the error
function in the case of Fig. 2. This, that is evident for the eye, can be determined using bottleneck distance between the
corresponding persistence diagrams and Hausdorff distance as follows. Compute the bottleneck distance between the
two persistence diagrams and the Hausdorff distance between the two datasets to obtain the values shown in Table 1.

Using Corollary 2, we can infer that 0.3 ≤ ε ≤ 0.35 for the dataset given in Fig. 4 and 0.425 ≤ ε ≤ 0.94 for the dataset
given in 3. Therefore, the dataset given in Fig. 4 can be considered more representative of the dataset showed in Fig. 2
than the dataset pictured in Fig. 2, as expected.

Figure 2: A binary classification problem given by a sampled circumference. In this case, the classification problem
tries to distinguish between the upper and the lower semicircumference.

Figure 3: (Representative dataset 2) A subset of the binary classification problem given in Fig. 2. As we can see, it is
not really representative of the original dataset.

6 Experimental results: The perceptron case

In this section, two experiments ((1) and (2)) are provided for the perceptron case, to support our results and illustrate
the usefulness of our method. In experiment (1), two interlaced solid torus are sampled and, in (2), the Iris dataset
is considered. In both experiments, the perceptron is initiated with the same weight and trained with three different
datasets: the original dataset, a dominating dataset (which is the output of Algorithm 1) and a random dataset of the
same size as the dominating dataset. These experiments support that a perceptron trained with representative datasets
give similar accuracy than a perceptron trained with the original dataset. Besides, we show that the training time, in
the case of the gradient descent training, is lower when using a representative dataset, and the convergence, in the
case of stochastic gradient descent, is, generally, faster. Furthermore, computed bottleneck and Hausdorff distance are,
respectively, lower and upper bounds of the Gromov-Hausdorff distance which is our estimator of representativeness.

10
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Figure 4: (Representative dataset 1) A subset of the binary classification problem given in Fig. 2. In this case, we can
say that it is representative of the original dataset.

Datasets Size Hausdorff distance Bottleneck distance
Original 4000

Dominating 267 0.69 0.41Interlaced torus
Random 267 1.03 0.44
Original 100

Dominating 20 0.56 0.31Iris
Random 20 0.9 0.81
Original 1797

Dominating 195 0.59 0.17Digits
Random 195 0.71 0.17

Table 2: Hausdorff distance and 0-dimensional bottleneck distance between the original dataset and the dominating
or random dataset. For every problem (interlaced torus, iris and digits) we have three different datasets: original,
dominating and random.

6.1 Two interlaced solid torus dataset

This experiment consists in a binary classification problem where each torus corresponds to a class. Algorithm 1 was
applied to obtain a representative dataset call dominating dataset smaller than the original one. A random dataset with
the same number of points as the dominating dataset was also computed. In Fig. 7, Fig. 8 and Fig. 9, the three datasets
are shown: the original dataset, the dominating dataset and the random dataset. In Fig. 19, Fig. 20 and Fig. 21, the
persistence diagrams of these datasets are shown and, in Table 2, Hausdorff distances and 0-dimensional bottleneck
distances are provided. We can observe that the bottleneck distance and the Hausdorff distance are higher for the
random dataset than for the dominating dataset when comparing them with the original dataset.

Perceptrons, initiated with same weights, were trained with stochastic gradient descent using the different datasets.
They were trained along 100 iterations. Table 3 illustrates that the training time improves when using smaller datasets.

Fig. 5 shows the accuracy of the perceptron, trained with the different datasets using stochastic gradient descent,
measured on the original dataset, illustrating that the training process were successful for all of them. Nevertheless, in
Fig. 6, we can see the accuracy of the trained perceptrons measured on the original dataset. All of them converge to
similar accuracy. We conjecture that the original dataset considered is too uniform to get different accuracy. However,
we can see that the dominating dataset has a faster convergence than the other two datasets.

In Table 4, the means of the error differences obtained after the different training processes are shown. The maximum
and minimum error value were 0.38 and 0.18, respectively, for the random dataset, and 0.19 and 0.18 for the original
and the dominating dataset. Therefore, we can assert that the dominating dataset generalizes better the original dataset
than the random one.

6.2 Iris dataset

In this experiment we used the Iris Dataset3 which corresponds to a classification problem with three classes. It is
composed by 150 4-dimensional instances. We limited our experiment to two of the three classes, keeping a balanced
dataset of 100 points. Algorithm 1 was applied to obtain an ε-representative dataset of 20 points with ε ≤ 0.5 (called

3https://archive.ics.uci.edu/ml/datasets/iris
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Figure 5: (Two interlaced solid torus dataset) Accuracy of the perceptron, trained with the different datasets using
stochastic gradient descent, measured on the datasets that were used for its training process. It shows that all the training
processes were successful. X-axis corresponds to the number of epochs and Y-axis to the accuracy.

Figure 6: (Two interlaced solid torus dataset) Accuracy of the perceptron, trained with the different datasets using
stochastic gradient descent, measured on the original dataset. X-axis corresponds to the number of epochs and Y-axis to
the accuracy.

dominating dataset). A random dataset extracted from the original one with the same number of points than the
dominating dataset was also computed for testing. These datasets can be seen in a three-dimensional representation in
Fig. 10, Fig. 11 and Fig. 12, respectively. Besides, the associated persistence diagrams are shown in Fig. 22, 23 and 24.
Hausdorff distance and 0-dimensional bottleneck distance between the original dataset and the dominating and random
datasets are given in Table 2.

In Fig. 16 a training sample is shown. We can observe that the training process was successful for both the original and
the dominating dataset. However, the random dataset got stagnant. Besides, Fig. 17 shows that the convergence was
faster for the dominating dataset than for the other datasets and that the random dataset can not reach an accuracy over
the original dataset comparable to the other two. We trained the perceptron with different initial weights and observed
that the perceptron trained with the dominating dataset converges to an error similar to that of the perceptron trained
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Figure 7: Toroids dataset Figure 8: Dominating dataset toroids Figure 9: Random dataset toroid

Figure 10: Iris dataset Figure 11: Dominating dataset Iris Figure 12: Random dataset Iris

Figure 13: T-SNE embedding digits Figure 14: T-SNE embedding domi-
nating dataset digits

Figure 15: T-SNE embedding random
dataset digits

with the original dataset. However, the random dataset seems to present a different error surface and the perceptron
trained with such dataset can not achieve an error similar to that of the perceptron trained with the original dataset.
This can be appreciated in Table 4, where the error differences and the bounds of Lemma 5 for the random and the
dominating dataset are shown. The maximum and minimum error value were 0.71 and 0.004, respectively, for the
random dataset, 0.45 and 0.004 for the dominating dataset and 0.5 and 0.003 for the original dataset. The previously
given values and the values given in Table 4 were obtained after training the perceptron 100 times using different
weights. Therefore, we can assert that the dominating dataset generalizes better the original dataset than the random
one.

7 Experimental results: Digits dataset

The following experiment is quite different from the above. The dataset4 we will use consists of images of digits
classified in 10 different classes. This way, the neural network to train should classify images of digits into its
corresponding digit from 0 to 9. An example of an image of each class can be seen in Fig. 18. The dataset is composed
by 1797 64-dimensional instances. Algorithm 1 was applied to obtain a dominating dataset of size 195. In Fig. 13,
Fig.14 and Fig.15 a two-dimensional projection of these datasets obtained using T-SNE (see [21]) are shown. Besides,
the corresponding persistence diagrams can be seen in Fig. 25, fig. 26 and27. Hausdorff and bottleneck distances are

4https://scikit-learn.org/stable/auto_examples/datasets/plot_digits_last_image.html
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Datasets Time (s)
Alg. 1 Training

Interlaced torus Original 39.21
Dominating 1.43 5.84

Iris Original 4.08
Dominating 0.07 1.28

Digits Original 1147.32
Dominating 0.78 358.51

Table 3: Time in seconds for computing the dominating dataset (Algorithm 1) and for the training process over the
different datasets we are dealing with in the paper. The training method consists in the gradient descent algorithm. In
the case of the Digits dataset, 100000 epochs were needed to reach high accuracy since the architecture used was quite
simple.

Figure 16: (Iris dataset) Accuracy of the perceptron, trained with the different datasets using stochastic gradient
descent, measured on the datasets that were used for its training process. It shows that all the training processes were
successful. X-axis corresponds to the number of epochs and Y-axis to the accuracy.

Figure 17: (Iris dataset) Accuracy of the perceptron, trained with the different datasets using stochastic gradient
descent, measured on the original dataset. The line of the random dataset diverge from the rest. It shows that the
dominating dataset generalizes better the original dataset than the random one. X-axis corresponds to the number of
epochs and Y-axis to the accuracy.
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Datasets ||E(w,X)− E(w, X̃)|| Bound

Interlaced torus Dominating 0.008 0.35
Random 0.13 0.48

Iris Dominating 0.05 0.14
Random 0.4 0.52

Table 4: Comparison of the exact error differences and the bound given in Lemma 5 computed over the random and the
dominating dataset, respectively, for the interlaced tours and the iris classification problem. The values correspond to
the mean of the exact error differences and the bound obtained using 100 different random weights. As the datasets
were not λ-balanced, an approximation of the bound is given, letting us to increase the multiplicity of some points in
the computation.

shown in Table 2. In this case we used a neural network with 64× 32× 10 neurons with sigmoid activation function in
the hidden layer and softmax activation function in the output layer. The neural network was trained using stochastic
gradient descent and categorical cross entropy as loss function. It was launched 100 times for the dominating dataset
and a random dataset of the same size. The accuracy measured on the dominating dataset reached after training the
neural network using the dominating dataset was 0.82. Similarly, the accuracy measured on the original dataset was
0.89. Therefore, it seems that the dominating dataset generalizes well the original dataset. The accuracy measured on
the random dataset reached after training the neural network using the random dataset was 0.92. Similarly, the accuracy
measured on the original dataset was 0.87. It seems that the model had overfitting with the random dataset and the
performance over the original dataset is lower than over itself. Besides, the accuracy over the original dataset is higher
for the dominating dataset. Then, the dominating dataset outperforms the random dataset.

Figure 18: (Digits dataset) Example of an image of each class of the digits dataset. They are 32× 32 arrays in gray
scale.

8 Conclusions and future work

The success of practical applications and the availability of new hardware (e.g., GPUs [22] and TPUs [23]) have led to
focus the neural networks research on the development of new architectures rather than on theoretical issues. Such
new architectures are one of the pillars of the future research in neural networks, but a deeper understanding of the
data structure is also necessary in order to the development of the field, as, for example, new discoveries on adversarial
examples [24] have shown, or the one given in [25], where it is empirically shown the redundancy of several datasets.

In this paper, we propose the use of representative datasets as a new approach to reduce the learning time in neural
networks based on the topological structure of the dataset. We have defined representative datasets using a notion of
nearness that has Gromov-Hausdorff distance as lower bound. Nevertheles, bottleneck distance of persistence diagrams
(which is a lower bound of Gromov-Hausdorff distance) is used to measure representativeness since it is computationally
less expensive. Furthermore, the agreement between the provided theoretical results and the experiments supports that
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Figure 19: (Two interlaced solid
torus dataset) Persistence diagram of
the dataset given in Fig. 7

Figure 20: (Two interlaced solid
torus dataset) Persistence diagram of
the dominating dataset given in Fig 8.

Figure 21: (Two interlaced solid
torus dataset) Persistence diagram of
the random dataset given in Fig. 9.

Figure 22: (Iris dataset) Persistence
diagram of the dataset given in Fig.
10.

Figure 23: (Iris dataset) Persistence
diagram of the dataset given in Fig.
11.

Figure 24: (Iris dataset) Persistence
diagram of the random dataset given
in Fig. 12.

Figure 25: (Digits dataset) Persis-
tence diagram of the dataset given in
Fig. 13.

Figure 26: (Digits dataset) Persis-
tence diagram of the dominating
dataset given in Fig. 14.

Figure 27: (Digits dataset) Persis-
tence diagram of the random dataset
given in Fig. 15.

representative datasets can be a good approach to reach an efficient summarization of a dataset to train a neural network.
First, in the case of gradient descent, the training process is significantly faster and, second, in the case of stochastic
gradient descent the convergence is usually faster, when using a representative dataset.

Planned future work is to provide more experiments using high dimensional real data and different reduction algorithms.
Furthermore, we plan to formally prove that the proposed approach could be extended to different neural network
architectures and training algorithms.
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