Protective Effect of L-Arginine Against Ibuprofen-induced Gastric Injury in Rats

M. J. MARTÍN CALERO, M. D. JIMÉNEZ, C. ALARCÓN DE LA LASTRA, C. LA CASA, J. M. HERRERIAS*, L. BRUSEGHIN†, A. ESTERAS† AND V. MOTILVA

Department of Pharmacology, Faculty of Pharmacy, University of Seville, *Department of Gastroenterology, Virgen Macarena Hospital, University of Seville, and †Zambon Group, Barcelona, Spain

Abstract

This study has been designed to confirm the protective effect of different single oral doses of L-arginine in the presence of equimolar doses of ibuprofen, and to compare the results with those obtained after treatment with ibuprofen alone. Different parameters were assessed in rats: gastric damage (mm² and score), ratio of lesionated stomachs/total stomachs evaluated, and presence of haemorrhage.

Six hours after dosing, oral administration of ibuprofen (0.3, 0.6 and 1.2 mmol kg⁻¹) produced a progressive dose-dependent increase in damage to the gastric mucosa. All treatments with equimolar doses of L-arginine considerably reduced lesions (mm² and score) and the same tendency was observed with the other parameters examined. We also evaluated the gastroprotective effect of L-arginine against anti-ulcer reference drugs, ranitidine and roxatidine (two antisecretory agents) and misoprostol (a cytoprotective drug). The degree of inhibition of damage provided by L-arginine was similar to those obtained with the other drugs.

Thus, we conclude that the simultaneous administration of equimolar doses of ibuprofen and L-arginine offers significant protection compared with gastrotoxic doses of ibuprofen alone, with an important decrease in the lesionated areas and improvement of the vascular state. The extent of this protective action is comparable with that observed with anti-ulcer reference drugs.

Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most commonly used drugs in the world, but their use in the treatment of pain, fever and inflammation, and in particular, in the treatment of arthritis, is associated with significant untoward effects on the gastrointestinal tract. The bleeding and ulceration induced in the stomach by NSAIDs is the most common adverse reaction to medication and has a significant financial impact on health care. Their gastric toxicity is related to suppression of prostaglandin synthesis, through inhibition of cyclooxygenase activity, and in addition, several NSAIDs have topical irritant properties on gastric mucosa.

In the last few years, a number of different strategies for developing NSAIDs with reduced gastric toxicity have been used. These include formulating the agents with an enteric coating to prevent absorption in the stomach, the development of prodrugs, which are not active until they have undergone metabolism by the liver, and co-administration of either suppressors of acid (anti-H₂ or proton pump inhibitors) or exogenous prostaglandins.

Recently, a new strategy related to the role of nitric oxide (NO) in the gastrointestinal tract has been proposed. NO is a membrane-permeable gas that serves as a mediator of many physiological events (Moncada et al 1991). It is produced from L-arginine by a calcium-dependent NO synthase. Numerous studies have implicated NO as a critical mediator of mucosal defence, similar to prostaglandins (Whittle et al 1990). NO, or drugs that generate NO (e.g. sodium nitroprusside, glyceryl trinitrate) have been shown to reduce the severity of gastric mucosal injury in experimental models (Whittle et al 1990; Brown et al 1993) and some
authors have suggested that the gastroprotective
effect of L-arginine could be through an NO-path-
way (Kitagawa et al. 1990; Konturek et al. 1993).
Ibuprofen is a potent NSAID that recently has been
formulated with equimolar doses of L-arginine in
order to improve pharmacokinetic parameters
(higher and more rapid absorption) with quicker
and more potent analgesic effect. In a previous
report we found that administration of L-arginine
before ibuprofen treatment induced significant
inhibition of gastric lesions (Motilva et al. 1996).
Thus, we designed this study to confirm the pro-
tective effect of the ibuprofen and L-arginine for-
mulation vs ibuprofen alone, and to compare this
gastroprotection with other traditional therapies
such as misoprostol (PGE1 analogue), ranitidine (a
classic antisecretory agent) or roxatidine (a new
anti-H2 drug).

Material and Methods

Animal groups and compounds
Male Wistar rats (supplied by Animal Services,
Faculty of Medicine, Seville), 180-250 g, were
used. The animals were fed a normal laboratory
diet in a controlled room (temperature 22-24°C
and humidity at 70-75%). They were placed in
single cages with wire-net floors to prevent
coprophagy, and were deprived of food for 18 h
before the experiments but had free access to water.
Groups of 9-10 rats were treated with different
doses of ibuprofen (Sigma Chemical Co., MO),
ibuprofen and L-arginine (Zambon S.A., Barcelona,
Spain), ranitidine (Sigma Chemical Co., MO),
roxatidine (Zambon S.A., Barcelona, Spain) and
misoprostol (CECOFAR, Seville, Spain). The
drugs were suspended in distilled water and were
administered by the intragastric route, in a dose of
1 mL/100 g body weight. Control groups received
vehicle in comparable volume. Each experiment
was performed at least twice and results were
pooled.

Experimental protocol
Different groups of animals were treated with
ibuprofen (0.3, 0.6 and 1.20 mmol kg−1) and
equimolar doses of ibuprofen and L-arginine
(0.3/0.3, 0.6/0.6 and 1.20/1.20 mmol kg−1). Six
hours after treatment the animals were killed using
an overdose of ethyl ether and the stomachs were
removed and cut along the smaller curvature. The
gastric lesions were immediately evaluated and the
following parameters related to damage were
assessed. Gastric damage (score): 0, absence of
lesions; 1, haemorrhagic or necrotic mucosa; 2,
pointed lesions; 3, pointed lesions with lesions
< 3 mm; 4, mainly lesions > 3 mm. Area of gas-
tric damage (mm2): the product of ulcer length and
width was calculated. Mucosal damage (%): re-
duction of damaged area of the different groups
compared with the respective equimolar dose of
ibuprofen alone (100%). Ratio lesioned sto-
machs/total stomachs evaluated. Presence of ha-
emorrhage (score): 0, absence; 1, slight
haemorrhage; 2, marked haemorrhage.

The intermediate gastrolesive dose of ibuprofen
(0.6 mmol kg−1) noted in these experiments was
selected to examine the protective effect of mis-
oprostol, ranitidine and roxatidine. New groups of
animals received the following treatments: ibupro-
fen alone; equimolar dose of ibuprofen and L-
arginine (0.6/0.6 mmol kg−1); ibuprofen and
misoprostol (0.6/0.05 × 10−3 mmol kg−1); ibu-
profen and ranitidine (0.6/0.05 mmol kg−1); and
ibuprofen and roxatidine (0.6/0.05 mmol kg−1).
After the experimental period, the animals were
killed and the stomachs removed, opened and
assessed as in the previous experiments. The same
parameters were evaluated.

Analysis of results
Statistical analysis was performed using conven-
tional methods (arithmetic mean ± s.e.). One-way
analysis of variance was used to test for significant
differences of means of treatment groups. Multiple
comparison between means was performed using
the Mann–Whitney U-test and χ2-test at a protec-
tion level of 0.05.

Results
Six hours after dosing, ibuprofen given orally in
various doses (0.3, 0.6 and 1.20 mmol kg−1) pro-
duced a progressive dose-dependent increase of
damage to the gastric mucosa (4.12 ± 1.01,
17.88 ± 2.74 and 66.41 ± 9.17 mm2, respectively).
Oral treatment of the animals with equimolar doses
of L-arginine considerably reduced the gastric
lesions (0.6-1.20 mmol kg−1, P < 0.001
against ibuprofen alone, mm2 and score). The same
tendency was evaluated with the other parameters,
degree of haemorrhage and percentage of mucosal
damage (Table 1).

Significant decreases in the gastric lesion para-
meters were found with all the treatments shown in
Table 2. The most marked reduction of the lesion
(mm2 and score), as well as haemorrhagic score
and percentage of mucosal damage, was observed
with ranitidine, roxatidine and misoprostol
(P < 0.001). However, L-arginine treatment also
Table 1. The anti-ulcer protection of different doses of L-arginine in the presence of equimolar doses of ibuprofen in rats.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Haemorrhage (score)</th>
<th>Gastric damage (mm²)</th>
<th>Mucosal damage (%)</th>
<th>Lesioned stomachs/ stomachs evaluated</th>
<th>Gastric damage (score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0.00 ± 0.00</td>
<td>0.00 ± 0.00</td>
<td>0.0</td>
<td>0/20</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td>Ibuprofen (0.3 mmol kg⁻¹)</td>
<td>0.20 ± 0.06</td>
<td>4.12 ± 1.01</td>
<td>100</td>
<td>19/20</td>
<td>2.15 ± 0.20</td>
</tr>
<tr>
<td>Ibuprofen and L-arginine (0.3 mmol kg⁻¹)</td>
<td>0.08 ± 0.04</td>
<td>2.47 ± 0.68</td>
<td>59.8</td>
<td>19/20</td>
<td>1.95 ± 0.15</td>
</tr>
<tr>
<td>Ibuprofen (0.6 mmol kg⁻¹)</td>
<td>1.03 ± 0.12</td>
<td>17.88 ± 2.74</td>
<td>100</td>
<td>19/19</td>
<td>3.21 ± 0.10</td>
</tr>
<tr>
<td>Ibuprofen and L-arginine (0.6 mmol kg⁻¹)</td>
<td>0.32 ± 0.11*</td>
<td>6.29 ± 1.33*</td>
<td>35.2</td>
<td>19/19</td>
<td>2.31 ± 0.11</td>
</tr>
<tr>
<td>Ibuprofen (1.20 mmol kg⁻¹)</td>
<td>1.82 ± 0.10</td>
<td>66.41 ± 9.17</td>
<td>100</td>
<td>19/19</td>
<td>4.0 ± 0.01</td>
</tr>
<tr>
<td>Ibuprofen and L-arginine (1.20 mmol kg⁻¹)</td>
<td>0.23 ± 0.09*</td>
<td>17.97 ± 4.15*</td>
<td>27.1</td>
<td>19/20</td>
<td>2.45 ± 0.18*</td>
</tr>
</tbody>
</table>

Results are means ± s.e. (n = 19 or 20). *P < 0.001, ibuprofen and L-arginine vs ibuprofen alone (Mann-Whitney U-test).

Table 2. The effects of different treatments in the presence of ibuprofen (0.06 mmol kg⁻¹): L-arginine (0.6 mmol kg⁻¹), ranitidine (0.05 mmol kg⁻¹), roxatidine (0.05 mmol kg⁻¹) and misoprostol (0.05 μmol kg⁻¹) on parameters of gastric damage in rats.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Haemorrhage (score)</th>
<th>Gastric damage (mm²)</th>
<th>Mucosal damage (%)</th>
<th>Lesioned stomachs/ stomachs evaluated</th>
<th>Gastric damage (score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ibuprofen alone</td>
<td>1.03 ± 0.12</td>
<td>17.88 ± 2.74</td>
<td>100</td>
<td>100</td>
<td>3.21 ± 0.10</td>
</tr>
<tr>
<td>+ L-Arginine</td>
<td>0.32 ± 0.11*</td>
<td>6.29 ± 1.33*</td>
<td>35.2</td>
<td>100</td>
<td>2.31 ± 0.11*</td>
</tr>
<tr>
<td>+ Misoprostol</td>
<td>0.13 ± 0.06*</td>
<td>2.25 ± 0.76*</td>
<td>12.6</td>
<td>89.5</td>
<td>1.95 ± 0.21*</td>
</tr>
<tr>
<td>+ Ranitidine</td>
<td>0.10 ± 0.05*</td>
<td>1.43 ± 0.61*</td>
<td>8.0</td>
<td>68.4†</td>
<td>1.50 ± 0.29*</td>
</tr>
<tr>
<td>+ Roxatidine</td>
<td>0.10 ± 0.02*</td>
<td>0.08 ± 0.07</td>
<td>0.5</td>
<td>66.7†</td>
<td>1.00 ± 0.25</td>
</tr>
</tbody>
</table>

Results are means ± s.e. (n = 19 or 20). *P < 0.001, treatment groups vs ibuprofen alone, Mann-Whitney U-test; †P < 0.01, χ² test.

Discussion

There is overwhelming evidence that NO is one of the most important mediators of mucosal defence, affecting factors such as mucus secretion, mucosal blood flow, ulcer repair and the activity of a variety of mucosal immunocytes. Endogenous NO has the capacity to down-regulate inflammatory responses in the gastrointestinal tract (Kubes & Wallace 1995), and it has been shown to be involved in certain types of gastroprotection such as that induced by capsaicin, papaverine (Brzozowski et al 1993), sucralfate and mild irritants (Konturek et al 1994). In this way, the ability of NO to reduce the severity of damage induced by NSAIDs has recently been exploited in an attempt to produce drugs which are not ulcerogenic. By attaching an NO-releasing moiety to standard NSAIDs (by incorporation of a nitroxybutyl moiety (e.g. flurbiprofen, ketoprofen and diclofenac nitroxy-butyl-ester), the gastrointestinal toxic effects of these compounds was greatly reduced but did not interfere with their ability to suppress inflammatory processes, inhibit prostaglandin synthesis or inhibit platelet aggregation (Wallace & Cirino 1994). Other recent strategies such as prophylactic therapy with the PGE₁ analogue misoprostol have been shown to reduce the incidence of NSAID-induced ulcers significantly, but the use of this drug is limited by its adverse effects in a considerable number of patients.

However, the effect of L-arginine, the precursor of NO, on the gastric mucosal integrity has not induced very marked decreases in all parameters evaluated (P < 0.001).
been much studied. Our data show that simultaneous treatment with L-arginine significantly decreases ibuprofen-induced gastric damage in a dose-dependent way. This result is in agreement with Kitagawa et al. (1990) who reported that L-arginine given intravenously prevented gastric lesions caused by 0.6 M HCl or water-immersion stress. Similar results were obtained by Takeuchi et al. (1993) who found that oral treatment with L-arginine exhibits gastric cytoprotection against 0.6 M HCl-induced lesions in a dose-dependent manner. This effect was mimicked by the antagonist D-arginine and was not affected by previous administration of \textit{N}^G\textit{-nitro-L-arginine methyl ester (L-NAME)}, a potent inhibitor of NO biosynthesis. Thus they suggested that the mucosal protective action of L-arginine (p.o.) is unrelated to the NO pathway, and its mechanism may appear through adaptive cytoprotection mediated by endogenous prostaglandins. In contrast, in a previous study, we did not observe any protective effect against diclofenac-induced gastric injury after D-arginine treatment. However, the protection induced by L-arginine was maintained after administration of L-NAME suggesting, at least in part, the involvement of NO in the protective mechanism of oral L-arginine (Motilva et al. 1997).

Ferraz et al. (1994) found that intra-arterial administration of L-arginine before the application of 20% ethanol produced a dose-dependent increase in the extent of damage. L-Arginine significantly reduced gastric blood flow relative to controls, and the authors suggested that the increase of gastric injury was partly NO dependent and partly NO independent. They suggested a paradoxical effect of L-arginine on gastric mucosal integrity. While small amounts of NO produced constitutively by endothelial cells appear to be critical for maintenance of mucosal perfusion, large amounts of NO can exacerbate mucosal injury, probably as a consequence of the cytotoxic properties of the NO radical or the peroxynitrite radical formed through the interaction of NO with superoxide.

We conclude that, under our experimental conditions, intragastric administration of L-arginine protects the gastric mucosa against ibuprofen-induced injury, and that this protective effect is comparable with those of antisecretory agents or misoprostol. However the mechanism involved in this beneficial action have not been studied. It is possible that L-arginine achieves direct cytoprotective effect on mucosal tissue and that this property could be related to the NO-pathway, but these suppositions require further exploration.

References

