
A Model-Driven Proposal to Execute
and Orchestrate Processes: PLM4BS

Julián Alberto Garcia-Garcia(&), Ayman Meidan,
Antonio Vázquez Carreño, and Manuel Mejias Risoto

Web Engineering and Early Testing (IWT2) Group,
Escuela Técnica Superior de Ingeniería Informática, Universidad de Sevilla,

Avda Reina Mercedes s/n., 41012 Seville, Spain
{julian.garcia,antonio.vazquez}@iwt2.org,

ayman.meidan@gmail.com, risoto@us.es

Abstract. Business Processes Management (BPM) is a widely consolidated
business strategy to improve and optimize the internal operation of any com-
pany. However, BPM is not usually simple to apply in software organizations
because Software Processes (SPs) involve high degree of creativity, abstraction
and rework, among other aspects. This situation provokes that these companies
usually focus on modeling their processes but later, the orchestration and exe-
cution are manually and/or unilaterally performed by each involved role. This
situation makes each SP difficult to maintain, monitor, evolve and measure. At
present, there are model-based proposals to model SPs, but most of them fail to
define the execution context of the process. This paper presents PLM4BS, a
model-driven framework to support modeling, execution and orchestration of
SPs. It has been successfully validated in different real environments, what has
returned us valuable feedback to improve PLM4BS in the near future.

Keywords: Business Processes Management � Model-Driven Engineering �
Execution and orchestration of processes

1 Introduction

It is a worldwide accepted knowledge that in the last years, Business Process Man-
agement (BPM) [1] has become a suitable strategy to increase excellence and pro-
ductivity in any kind of organization. BPM tries to strategically assess processes and 
improve their effectiveness and efficiency within the organization with the aim to 
reduce costs and improve quality, productivity and competitiveness in relation to other 
organizations of the same business area.

Model Driven Engineering (MDE), aims to raise the level of abstraction in program 
specification and increase automation in program development. The idea promoted by 
MDE is to use models at different levels of abstraction for developing systems, thereby 
raising the level of abstraction in program specification.

However, although BPM has been successfully applied to many kinds of organi-
zations, there are difficulties in software companies because of some special features of 
the software process. In [3], the authors identify and describe properties that characterize



software processes in comparison with other processes (e.g., industrial processes) such
as: (i) they are constantly evolving, as they usually incorporate new lifecycles and
technologies and they frequently comprise several iterations that produce different
software products versions; (ii) they are complex because they are strongly influenced
by many unpredictable circumstances and many work teams; and (iii) they often rely on
communication, coordination and cooperation of different frameworks and development
technologies as well as on the different roles they play.

These features frequently provoke that BPM is not properly applied to software
organizations that usually and justly focus on defining their processes, forgetting the
process execution because most of the activities cannot be easily and effectively
automated [4]. Once the process is defined, each involved role performs the process
execution [5] and orchestration [6] manually and/or unilaterally. This statement
describes a real situation that many software organizations are facing in their
day-to-day lives. In fact, our research group has obtained this useful feedback from
many partners (international and Spanish software companies) after carrying out many
R&D projects.

The situation described previously poses other collateral problems. For instance, it
may involve difficulties to manage, maintain, monitor, evolve and measure processes.

This paper aims to propose a MDE-based solution to support process execution and
orchestration. For this purpose, this paper extends another previous paper [7] in which
a process definition metamodel is presented within PLM4BS (Process Lifecycle
Management for Software-Business) framework. PLM4BS is based on a continuous
improvement lifecycle in order to manage the software process. This lifecycle defines
four phases (modeling, execution and orchestration, monitoring and continuous
improvement), although hitherto, PLM4BS only supported the modeling phase [7].

This paper uses MDE (Model-Driven Engineering) [8] to integrate the execution
and orchestration of processes within PLM4BS because: it (i) is one of the most
entrenched paradigms within software engineering area; and (ii) suitable results have
been achieved when MDE has been applied to real environments (e.g., testing [13],
healthcare environments [17] or Web engineering [16, 29], among others).

To achieve the aforementioned goals, this paper defines: (i) a specific process
execution and orchestration1 metamodel that lets specify the executable context of
software processes after defining the process in the modeling phase; and (ii) a sys-
tematic and automatic protocol that makes it possible to generate executable code from
an execution and orchestration model. This executable code is based on two standards:
WS-BPEL (Business Process Execution Language for Web Services [9]) and
XMI BPMN 2.0 format [10]. Both standards have been chosen because they are
supported by most process engines (named BPMS or BPM Suite) according to con-
clusions obtained from different studies, such as [11]. This way, we are able to improve
applicability of PLM4BS to real environments since if an organization wants to use our
proposal, it does not need to change its BPMS.

1 The process orchestration is understood in this paper as the centralized coordination of events that
allows conditioning the evolution and execution of process flow.



This paper is organized as follows: after this introduction, Sect. 2 analyzes the
related work on model-based proposals to execute and orchestrate processes. Section 3
introduces our background and Sect. 4 describes our model-driven solution to execute
and orchestrate processes. Finally, Sect. 5 presents some discussions, conclusions and
future work.

2 Related Work

After modeling a process using a specific Process Modeling Language (PML) [18], it is
necessary to define the execution context in order to perform and orchestrate it. The
scope of this paper is framed into a model-based PML that includes mechanisms for
defining this execution context. Nowadays, there are few proposals with some degree
of executability. UML4SPM [19] is a MOF-compliant metamodel to model software
processes. Authors also propose to combine UML4SPM and BPEL in order to execute
the process.

Ferreira’s proposal [20] consists in an UML-based modeling language to design
software processes and a set of transformations rules to transform these UML process
models into executable code. This code is implemented conform to Little-JIL [21],
which is an ad-hoc, executable, programming graphical language to coordinate and run
tasks among autonomous systems.

Di Nitto et al. [22] suggest an UML1.3-based framework to model SPs. However,
they neither extend the UML metamodel or stereotypes nor introduce new concepts.
The authors define transformation rules of a small subset of UML to generate exe-
cutable workflow models. Later, these models can be deployed in an ad-hoc workflow
management system [23] developed by these authors.

Chou’s approach [24] uses activity diagrams of UML1.4 to model processes and
establish theoretical transformation rules to generate executable code from activity
diagrams. This code is implemented following an ad-hoc object-oriented programming
language. The main disadvantage of this approach is the lack of an automatic gener-
ation of code from activity diagrams, what provokes that developers have to rewrite
their software applications according to Chou’s language.

Moreover, there is a standard proposal focused on software domain: SPEM2.0 [25].
SPEM2.0 is a standard that describes an UML-based metamodel that is used to define
software development processes and software systems. However, SPEM2.0 does not
provide mechanisms to execute the process. For this reason, Bendraou et al. propose
xSPEM (eXecutable SPEM) [26], which provides a definition of an executable SPEM
based on Petri-net. xSPEM adds some features to model and store states of the process
when this one is executed.

3 Background

This section describes the context of PLM4BS and its architecture (Sect. 3.1), which is
based on MDE and a complete lifecycle. This paper focuses on supporting the second
phase of the lifecycle of PLM4BS (named “Execution and Orchestration Phase”).



However, our proposal uses defined information in the first phase (named “Modeling
Phase”). Consequently, a brief description of this first phase is also presented as
background (Sect. 3.2).

3.1 MDE-Based Architecture of PLM4BS

BPM can be considered a management strategy with a clear multidisciplinary nature
that has conditioned the appearance of different views, definitions and perspectives of
the process lifecycle and continuous improvement. However, orchestration of pro-
cesses is an aspect that has not been clearly defined [1,27,28]. This is relevant because
over the last decade, more companies used different interconnected tools to run their
processes [30]. Therefore, it is necessary and important to support this feature, in a
theoretical way, in the continuous improvement lifecycle of processes.

Considering the aforementioned arguments, the architecture of PLM4BS includes a
BP lifecycle comprising four phases: (1) modeling, (2) execution and orchestration,
(3) monitoring and (4) continuous improvement. They are integrated within PLM4BS
using the MDE paradigm in order to take advantage of the benefits this paradigm
entails [8].

Figure 1 shows conceptually this lifecycle of PLM4BS as well as the phases that are
completely and incompletely defined at present. The former (i.e., completely defined
phases) are represented using a continuous line (these are: (1) modeling and (2) exe-
cution and orchestration) whereas the latter are represented by means of dashed lines
(these are: (3) monitoring and (4) continuous improvement). It is important to point out
that this paper is focused on describing the second phase of our lifecycle (i.e., execution
and orchestration phase). The modeling phase (the first one) is briefly described in
Sect. 3.2 as background because it constitutes an input to the execution and orches-
tration phase. Moreover, the third and fourth phases are conceived as future work, even
though we are currently working on them. Finally, the phases of our process
improvement lifecycle are further described below:

1. Modeling Phase. At this phase, the process engineer is able to model and describe
his/her processes in a structured manner. PLM4BS proposes a simple, flexible and
highly semantic metamodel to support this phase. It is explained in Sect. 3.2 and
takes the form of a MOF-compliant metamodel.

2. Execution and Orchestration Phase. Today, this phase is critical and essential
since companies are being driven by the need to extensively automate their pro-
cesses to execute and orchestrate them with EMS (Enterprise Management Sys-
tems). At this phase, the process defined by the process engineer at the previous
phase must be executed and orchestrated in a BPMS. For this purpose, the process
engineer must specify execution parameters as well as parameters for the com-
munication and integration with external systems.

Nevertheless, most BPMSs have inflexible PMLs, that is, these tools do not allow
executing processes that have been defined following other PMLs [11]. To solve this
situation, PLM4BS provides MDE mechanisms based on three steps.

On the one hand, PLM4BS defines an execution and orchestration metamodel that
defines execution parameters to run the process into a BPMS. Any instance of this



metamodel is systematically obtained using model-to-model (M2 M) transformation
rules from the process modeling metamodel (modeling phase). Section 4 describes some
of these rules, which are formalized using QVT Query/View/Transformation [31].

On the other hand, a systematic and automatic transformation protocol has been
defined to generate executable code from the mentioned execution metamodel. This
protocol is based on model-to-text (M2T) transformation rules using MOFM2T [32].
The process engineer should be able to instance and run processes into any process
engine when the process execution context is defined.

All these mechanisms to support the execution and orchestration phase are
explained in detail in Sect. 4.

3. Monitoring Phase. Once the process is deployed into a BPMS, it is time to
evaluate its effectiveness. This evaluation provides a granular view of the overall
productivity of each process and it is based on the definition of key performance
indicators.

In this case, PLM4BS provides two types of mechanisms to back up this phase.
Firstly, the process modeling metamodel includes concepts (such as metric and indi-
cator) that help the process engineer measure processes. Indicators are defined during
the modeling phase. Secondly, and after identifying each indicator, PLM4BS will define
a monitoring metamodel that will include elements to allow the process measurement.

Fig. 1. Theoretical architecture of PLM4BS based on MDE and a continuous improvement
lifecycle of processes. This paper focuses on describing in detail how PLM4BS supports the
execution and orchestration phase (second phase).



PLM4BS plans to generate this monitoring metamodel from metamodels defined into
previous phases. For this purpose, a set of M2 M transformation rules will be defined in
PLM4BS. Finally, a set of M2T transformation rules will be also defined in order to
generate a measurement database and code scripts to manage each defined indicator. At
present, this phase is not fully supported, thus, we are researching into different
alternatives.

4. Continuous Improvement Phase. Finally, after evaluating processes performance
(through assessment indicators and metrics), an organization should start an internal
improvement process to achieve higher quality, efficiency, effectiveness and per-
formance levels during processes execution. If necessary, the organization can
iterate over our BPM lifecycle as many times as necessary in order to achieve
business goals.

3.2 Metamodel to Support the Modeling Phase

PLM4BS proposes a flexible and highly semantic metamodel (based on UML2.5) to
support the modeling phase. This metamodel takes the form of a MOF-compliant
metamodel and follows the guidelines defined in ISO/IEC TR 24744 standard [33]. Our
Process Modeling Metamodel (PMM) will not be explained here, since it is out of the
scope of this paper and it would become too extensive (a complete description can be
found in [34]). However, a brief description of the main metaclasses of PMM is
described below (Table 1). These metaclasses are the most important metaclasses to
obtain the Process Execution and Orchestration Metamodel (PEOMM). It is also worth
highlighting that our PMM contains other metaclasses (such as «Product», «Stake-
holder» or «Indicator», among others), but they are not relevant for this paper.

Table 1. Main metaclasses of the modeling metamodel of PLM4BS.

Metaclass Meaning

Process It represents any process that is composed of a set of ordered elements
(i.e., «ProcessElements» metaclass linked themselves) to produce
products («Product» metaclass)

ProcessElements
ControlElement
Activity
HumanActivity
OrchestrationActivity
ComplexActivity

It represents any element of the process workflow and has been
specialized in two metaclasses: «ControlElement» and «Activity»
The former defines elements that allow establishing the process
structure using different kinds of control
elements: «InitialElement» or «FinalElement» (i.e., the first or last
activity); «Conditional», which enables creating disjoint branches of
the workflow; and «Fork» or «Join», which allow starting and ending
parallel branches of the workflow
The latter represents an action that should be executed to develop the
process and has been grouped into three
metaclasses: «OrchestrationActivity», which represents an
orchestration activity (i.e., an activity performed by a
machine); «ComplexActivity», which allows including a process
within another process; and «HumanActivity», which represents an
activity that someone performs



4 A Model-Driven Solution to Execute and Orchestrate
Processes

This section presents a model-driven solution to support the execution and the
orchestration of processes into PLM4BS. For this purpose, our solution is composed of:
(i) a Process Execution and Orchestration Metamodel (PEOMM); and (ii) transfor-
mation rules to generate PEOMM from the modeling phase and, later, generate exe-
cutable code. Both aspects are described in Sects. 4.1 and 4.2, respectively.

4.1 Defining a Metamodel to Support Execution and Orchestration

PEOMM has been defined with more granularity (i.e., lower level of abstraction) than
PMM, which was briefly introduced in Sect. 3. PEOMM has the form of a
MOF-compliant metamodel and incorporates required attributes normalized according
to ISO/IEC TR 24744 [33]. PEOMM aims to represent the process structure from the
point of view of its execution context.

For this purpose, it provides a complete and theoretical specification to allow
executing process models within BPMS. PEOMM (Fig. 2) also describes static and
dynamic semantics of this execution. On the one hand, static semantics refers to:
(i) static information (i.e., specific properties or attributes) of each concept defined in
PEOMM; and (ii) semantic constraints to ensure building well-formed models. On the
other hand, dynamic semantics refers to: (i) what information is generated and managed
in a dynamic manner (i.e., at runtime); and (ii) how and when each element of PEOMM
can be instantiated. This semantics enables each element to react and evolve at runtime
along its own lifecycle.

Before going further, it is worth clarifying that the syntax used is not enough to
semantically define our metamodel. Consequently, we have used OCL [2] (as rec-
ommended by OMG) to add formal constraints, which, in turn, limit possible instan-
tiations and therefore valid process models. All our OCL constraints will not be
explained here, since they are out of the scope of this paper and it would become too
extensive. Nevertheless, as an illustrative example, just a couple of OCL constraints
will be explained in detail.

The main metaclass in PEOMM is the «ExecutionNodeClass» metaclass, which
represents the executable view of any element in the process. These elements are
interrelated to build the process execution flow. Such relationships are modeled by
means of the «ExecutionFlow» metaclass.

The «ExecutionNodeClass» metaclass has two kinds of properties: static properties
(i.e., «name», «description» and «isInitial») and dynamic properties (i.e., «status»).
The «status» property establishes the lifecycle of each executable element. This life-
cycle is composed of five allowed status whose transitions are formalized using a state
machine (Fig. 3). Subsequently, each transition is triggered by one unique operation of
the «ExecutionNodeClass» metaclass. These operations (see Fig. 2) are stereotyped as:
(i) «CONTR» (CONSTructor), which defines the constructor to create a new instance
of the «ExecutionNodeClass» metaclass; or (ii) «SOP» (Status OPeration), which
identifies operations to update or query the internal status of the executable element.



Fig. 2. Metamodel to support the execution and orchestration of processes

Fig. 3. Lifecycle of the «ExecutionNodeClass» metaclass



Each operation is formally defined by means of an object-oriented language pro-
posed by UML to define executable semantics [15]. Table 2 shows just a couple of
operations since explaining all of them is out of the scope of this paper and it would
become too extensive. Operations shown in Table 2 are: (i) «createInstance», which
defines how an execution element is instanced; and (ii) «executeExecutableNode»,
which allows running the execution of an executable element.

The «ExecutionNodeClass» metaclass is also specialized in three metaclasses in
order to distinguish among different executable elements:

• The «ProcessExecutionClass» metaclass. It represents the highest-level execution
entity in any process that defines the execution structure of a process. In this sense,
the «ProcessExecutionClass» metaclass is composed of a set of execution nodes
(i.e., «ExecutionNodeClass»). This metaclass also includes the «complete-
ness» property, which aims to indicate the degree of completeness of the process.
This property is also used to establish when the executable process is completed,
that is to say, an executable process is completed as follows: (i) when its internal
status is «Running» (this condition is already checked in the «ProcessExecu-
tionClass» super-metaclass); and (ii) when its degree of completeness is 100%.

• The «MachineExecutionClass» metaclass. It is very important because it allows
orchestrating and defining the coordination of events among information systems
during the process execution. For this purpose, this metaclass includes one static
property («URI», which is the uniform resource identifier of the target system) and
one dynamic property («response», which stores the response code after performing
the orchestration activity). Moreover, the «MachineExecutionClass» metaclass has
been also specialized in three metaclasses in order to distinguish among different
automatic events: «ScriptExecutionClass», which allows executing script
code; «WSExecutionClass», which makes it possible to invoke Web services;
and «EMailExecutionClass», which allows defining notification via email.

• The «HumanExecutionClass» metaclass. It represents any executable element that
must be performed by human agents. These agents are modeled into PEOMM with

Table 2. Some operations of the «ExecutionNodeClass» metaclass



the «HumanRole» metaclass, which represents an actor who can be participant or
responsible, but cannot perform both roles (PEOMM shows this semantic constraint
using the «XOR» logical operator between the «isParticipant» and «isResponsi-
ble» associations). Both roles have been considered because many companies (e.g.,
software companies) have many work teams where each member cooperates in
developing activities depending on the involvement degree. The difference among
these roles is that participants can complete some aspects of the product, but they
cannot complete the activity (this action is only available for responsibles).

So far, this paper has explained how PEOMM defines the internal semantics of
each «ExecutionNodeClass» metaclass using a status machine whose transitions are
triggered by operations. Nonetheless, it is also important to establish what conditions
have to be true before executing each «ExecutionNodeClass» metaclass and after
running them. The former are named pre-conditions. They are used to capture a con-
junction of events that lead to the execution of an «ExecutionNodeClass» and allows
defining conditions such as, «a specific activity may not be executed until either the
previous activity is completed or a specific business rule is true». The latter are named
post-conditions and they allow defining conditions such as, «after executing the cur-
rent activity, the output work products must have been completed».

PEOMM models these pre- and post-conditions with the «Constraint» metaclass.
This metaclass enables comparing (with logic operators) a specific comparative value
either of business variables or the internal status of «ExecutionNodeClass». The con-
cept of business variable is key in PEOMM because it helps store values and results
used in orchestration activities. The «BusinessVar» metaclass models business vari-
ables in PEOMM.

Finally, PEOMM also takes into account the dynamic behavior of the results
(«WorkProduct» metaclass) of a software process because they may evidence the
process completion in, e.g., audits. In addition, the products evolve during the process
execution, (i.e., its version or finishing percentage, for instance).

After introducing the previous metaclasses, Table 3 describes one of the most
important OCL constraints to build well-formed execution models. This constraint is
defined at the «ProcessExecutionClass» metaclass and checks three conditions: (i) a
process cannot contain itself, in order to avoid an indefinite execution model because of
recursive definitions; (ii) each executable process can only contain one executable node
typed as initial; and (iii) each work product should have been generated by an instance
of the «HumanExecutionClass» metaclass, which should also belong to
the «ProcessExecutionClass» metaclass.

4.2 Defining a Transformation Protocol

The architecture of PLM4BS (Sect. 3.1) considers the use of MDE to obtain the
PEOMM and its executable version of the process from PMM. For this purpose,
PLM4BS defines a transformation protocol based on three steps:

1. Generating systematically the basic Process Execution and Orchestration
Model (PEOM). The basic PEOM is considered the first version of PEOM and it is
systematically obtained from the process modeling model using a comprehensive



set of M2 M transformation rules. Table 4 describes the «toHumanExecution
Class» rule using QVT (the others can be found in [34]). This rule describes
how «HumanExecutionClass» (PEOMM) is obtained from «HumanActiv-
ity» (PMM). Firstly, this rule initializes all static and dynamic properties (line 3 and
4) of the «HumanExecutionClass» metaclass and resolves all relationships
with «WorkProduct» and «HumanRole» metaclasses (lines 6–9). This QVT rule
also uses some auxiliary functions: «isInittialActivity», which checks if
the «HumanActivity» metaclass is the first metaclass in the process; «cre-
atePreConditions» and «createPosConditions», which elaborate the constraints
associated with the «HumanExecutionClass».

2. Generating manually the final PEOM. Once the previous step is carried out, the
process engineer can add his/her knowledge to the basic PEOM in order to complete
the execution context. This unsystematic and manual transformation generates the
final version of PEOM. At this point, it is important to highlight that, if the process
engineer detects deficiencies in the structure of the execution model, these changes
must be extended to the process modeling model in order to avoid inconsistency
among models. This procedure can be indefinitely repeated in order to achieve a
coherent execution and organization model.

3. Generating executable code. Finally, PLM4BS defines a comprehensive set of
M2T transformation rules to obtain executable code from the final PEOM. These
rules have been defined in MOFM2T and allow generating WS-BPEL code that can
be executed in most BMPS [11]. Table 5 describes the «defineBPELStructure» rule
using MOFM2T (the others can be found in [17]). This rule describes how the
WS-BPEL structure of the process is obtained from PEOM.

Table 3. OCL constraint of the «ProcessExecutionClass» metaclass



5 Discussion, Future Work and Conclusions

In recent years, standards and guidelines (such as PMBOK, PRINCE2, CMMI or ISO
9001, among others) recommend that organizations should formally manage their
processes in order to achieve lower costs and improve quality and productivity.

Table 4. QVT rule to obtain the «HumanExecutionClass» metaclass

Table 5. MOFM2T rule to generate WS-BPEL structure of the process



To meet these goals, companies should carry out an effective BPM of their processes to
achieve the continuous improvement of such processes.

However, in the context of software organizations, applying BPM is not a simple
task due to features of software processes. This situation provokes that software
companies usually focus on defining their processes although, later, execution and
orchestration are manually and/or unilaterally performed by each involved role. Con-
sequently, software process becomes difficult to execute, manage, maintain, monitor,
evolve and measure.

At present, there are many PMLs [18], but just a few of them include mechanisms
for supporting the execution of the process. In addition, none of them is mature enough
to comply with the commitment pursued. SPEM2.0 standard could be the solution, but
its complexity and non-executability makes it impossible. Regarding executability,
each proposal presented in Sect. 2 offers mechanisms to perform the process into ad
hoc systems, what make harder its application in real environments because companies
already use specific process engines. It is interesting to underline that none of these
proposals mention mechanisms to support the orchestration of processes.

This paper proposes a MDE-based solution to execute and orchestrate the software
process in real environments since it is oriented to be applied, in an integrated way, to
enterprise management systems (such as BPM suite [11]). In fact, some papers have
been published to report successful cases [12, 14].

Finally, the publication of this paper opens new and interesting future lines of work.
On the one hand, we plan to support monitoring and continuous improvement phases
of the architecture of PLM4BS in order to assess the execution of software processes.
On the other hand, we aim to research how simulation mechanisms can be included in
PLM4BS so as to support decision-making procedures related to resource allocation or
deadlock identification, among other aspects.

Acknowledgments. This research has been supported by the POLOLAS project
(TIN2016-76956-C3-2-R) and by the SoftPLM Network (TIN2015-71938-REDT) of the Spanish
the Ministry of Economy and Competitiveness.

References

1. Van-der-Aalst, W.M.P.: Business process management: a personal view. Bus. Process
Manage. J. 10(2), 5 (2004)

2. ISO/IEC. ISO/IEC 19507:2012 Information technology, Object Constraint Language (OCL).
International Organization for Standardization, formal/2012-05-09 (2012)

3. Ruiz-González, F., Canfora, G.: Software process: characteristics, technology and environ-
ments. SPT Softw. Process Technol. 5, 5–10 (2004)

4. Piattini-Velthuis, M., Ruiz-González, F., Canfora, G.: Software process: characteristics,
technology and environments. SPT Softw. Process Technol. 5, 5–10 (2004)

5. Papazoglou, M., Ribbers, P.: E-Business: Organizational and Technical Foundations. Wiley,
New York (2006). ISBN-13: 978-0470843765

6. Pedraza, G., Estublier, J.: Distributed orchestration versus choreography: the FOCAS
approach. In: Wang, Q., Garousi, V., Madachy, R., Pfahl, D. (eds.) ICSP 2009. LNCS,
vol. 5543, pp. 75–86. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01680-6_9

http://dx.doi.org/10.1007/978-3-642-01680-6_9


7. García-García, J.A., Alba, M., Escalona, M.J.: Software Process Management: A
Model-Based Approach. Information Systems Development: Building Sustainable Informa-
tion Systems, pp. 167–178. ISBN: 978-1-4614-7539-2 (2013)

8. Schmidt, D.C.: Model-driven engineering. IEEE Comput. 39(2), 25–31 (2006). IEEE
Computer Society

9. OASIS. Web Services Business Process Execution Language. Organization for the
Advancement of Structured Information Standards (2007). http://docs.oasis-open.org/
wsbpel/2.0/OS/wsbpel-v2.0-OS.html

10. OMG. XMI BPMN, Business Process Modeling Notation (2011). http://www.omg.org/spec/
BPMN/2.0/

11. Meidan, A., García-García, J.A., Escalona, M.J., Ramos, I.: A survey on business processes
management suites. Comput. Stand. Interfaces (2017). doi:10.1016/j.csi.2016.06.003

12. Garcia-Garcia, J.A., Enriquez, J.G., Garcia-Borgoñon, L., Arevalo, C., Morillo, E.: A
MDE-based framework to improve the process management: the EMPOWER project. In:
IEEE 15th International Conference of Industrial Informatics (2017)

13. Salido, A., García-García, J.A., Ponce, J., Gutiérrez, J.: Tests management in CALIPSOneo:
a MDE solution. J. Softw. Eng. Appl. (2014). doi:10.4236/jsea.2014.76047

14. García García, J.A., Escalona, M.J., Martínez-García, A., Parra, C., Wojdyński, T.: Clinical
process management: a model-driven & tool-based proposal. In: Information Systems
Development: Transforming Healthcare through Information Systems. ISBN:
978-962-442-393-8 (2015)

15. OMG. Semantics of a Foundational Subset for Executable UML Models v1.1. Object
Management Group (2013). http://www.omg.org/spec/FUML/1.1/

16. García-García, J.A., Escalona, M.J., Domínguez-Mayo, F.J., Salido, A.: Methodological tool
solution in the model-driven engineering paradigm. J. Softw. Eng. Appl. (2014). doi:10.
4236/jsea.2014.74022

17. Martínez-García, A., García-García, J.A., Escalona, M.J., Parra, C.L.: Working with the HL7
metamodel in a Model Driven Engineering context. J. Biomed. Inf. (2015). doi:10.1016/j.jbi.
2015.09.001

18. García-Borgoñón, L., Barcelona, M.A., García-García, J.A., Alba, M., Escalona, M.J.:
Software process modeling languages: a systematic literature review. Inf. Softw. Technol.
56, 103–116 (2014)

19. Bendraou, R., Sadovykh, A., Gervais, M.P., Blanc, X.: Software process modeling and
execution: the UML4SPM to WS-BPEL approach. In: 33rd Conference on Software
Engineering and Advanced Applications, pp. 314–321. ISBN: 0-7695-2977-1 (2007)

20. Ferreira, A.L., et al.: An approach software process design and implementation using
transition rules. In: Software Engineering and Advanced Applications Conference (2011)

21. Wise, A.: Little-JIL 1.5 Language Report. Department of Computer Science, University of
Massachusetts, Amherst, MA, UM-CS-2006-51 (2006)

22. Di Nitto, E., Lavazza, L., Schiavoni, M., Tracanella, E., Trombetta, M.: Deriving executable
process descriptions from UML. In: Proceedings of the 24th International Conference on
Software Engineering ICSE, pp. 155–165 (2002)

23. Cugola, G., Di Nitto, E., Fuggetta, A.: JEDI event based infrastructure and its application to
development of OPSS WFMS. Trans. Softw. Eng. 27(9), 827–850 (2001)

24. Chou, S.C.: A process modeling language consisting high level UML-based diagrams and
low level process language. J. Object Technol. 1(4), 137–163 (2002)

25. OMG. SPEM, Software & Systems Process Engineering Metamodel specification. Object
Management Group (2008). http://www.omg.org/spec/SPEM/

26. Bendraou, R., Combemale, B., Cregut, X.: Definition of an executable SPEM 2.0. In: 14th
Asia-Pacific Software Engineering Conference, APSEC 2007. IEEE, pp. 390–397 (2007)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
http://dx.doi.org/10.1016/j.csi.2016.06.003
http://dx.doi.org/10.4236/jsea.2014.76047
http://www.omg.org/spec/FUML/1.1/
http://dx.doi.org/10.4236/jsea.2014.74022
http://dx.doi.org/10.4236/jsea.2014.74022
http://dx.doi.org/10.1016/j.jbi.2015.09.001
http://dx.doi.org/10.1016/j.jbi.2015.09.001
http://www.omg.org/spec/SPEM/


27. Havey, M.: Essential Business Process Modelling. ISBN-13: 978-0596008437 (2005)
28. Hill, J.B., et al.: Gartner’s Position on Business Process Management. Business Issues.

Gartner, Stamford (2006)
29. Escalona, M.J., Gutierrez, J., et al.: Practical experiences in web engineering. In: Advances

in Information Systems. Advances in Information Systems Development (2007)
30. Bosch, J.: From Software Product Lines to Software Ecosystems, pp. 111–119 (2009)
31. OMG. Query/View/Transformation (2017). http://www.omg.org/spec/QVT/1.0/
32. OMG.MOF Model to Text Transformation Language (MOFM2T) (2017). http://www.omg.

org/spec/MOFM2T/1.0/
33. ISO/IEC. ISO/IEC TR 24744:2007 Software and systems engineering Lifecycle manage-

ment Guidelines for process description (2007)
34. García-García, J.A.: A proposal for the use of the model-driven paradigm (MDE) for the

definition and execution of business processes. Ph.D. thesis (2015). https://documat.unirioja.
es/servlet/autor?codigo=3722430

http://www.omg.org/spec/QVT/1.0/
http://www.omg.org/spec/MOFM2T/1.0/
http://www.omg.org/spec/MOFM2T/1.0/
https://documat.unirioja.es/servlet/autor?codigo=3722430
https://documat.unirioja.es/servlet/autor?codigo=3722430

	A Model-Driven Proposal to Execute and Orchestrate Processes: PLM4BS
	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 MDE-Based Architecture of PLM4BS
	3.2 Metamodel to Support the Modeling Phase

	4 A Model-Driven Solution to Execute and Orchestrate Processes
	4.1 Defining a Metamodel to Support Execution and Orchestration
	4.2 Defining a Transformation Protocol

	5 Discussion, Future Work and Conclusions
	Acknowledgments
	References




