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Nonlinear stochastic resonance with subthreshold rectangular pulses
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We analyze the phenomenon of nonlinear stochastic resor&mein noisy bistable systems driven by
pulsed time periodic forces. The driving force contains, within each period, two pulses of equal constant
amplitude and duration but opposite signs. Each pulse starts every half period and its duration is varied. For
subthresholcamplitudes, we study the dependence of the output signal-to-noise ratio and the SR gain on the
noise strength and the relative duration of the pulses. We find that the SR gains can reach values larger than
unity, with maximum values showing a nonmonotonic dependence on the duration of the pulses.

DOI: 10.1103/PhysRevE.69.067101

PACS nuni®er02.50—r, 05.40:-a, 05.10.Gg

In recent work[1,2], we have carried out a detailed ana- the present paper corresponds exactly to what Gingl and co-
lytical and numerical study of the nonlinear response of aworkers term “duty cycle). In Refs.[7-9], the SNR and the
noisy bistable system subject to a subthreshold time periodiER gain for subthreshold amplitude input signals with
driving force. The force considered in those works is such<0.3 were studied. These authors find SR gains larger than
that it remains constant within the duration of each half pe-unity, and, also, that increasing thevalue lowers the SNR

riod while switching its sign every half period. We have fo-

gain. They rationalize their observations by noting that the

cused our attention on the analysis of the dependence of theput SNR increases asincreases, while the output SNR is

output signal-to-noise ratigGNR) and the corresponding sto-
chastic resonancgSR) gain on the noise strength. The ana-

less sensitive to the value of The case studied by us in
Refs.[1,2] corresponds to the largest possible value of the

lytical study was based on a two-state approximation ameparameter, namely,r=1. It seems therefore of interest to

nable to exact treatmen{l]. We showed that, for

extend our analysis to input signals with<1 in order to

subthreshold input signals of sufficiently long periods, thecompare with the predictions of Gingt al.

phenomenon of SR can be accompanied by SR gains larger Let us consider a system characterized by a single degree
than unity. This is a genuine characterization of nonlinearitypf freedomx, whose dynamicgin dimensionless unijsis

as SR gains larger than unity are strictly forbidden within agoverned by the Langevin equation

linear response descriptigB—5]. The analytical results were
corroborated by numerical simulatiof®].

The linear and nonlinear regimes of SR have been studi
experimentally in a recent paper by Mantegeiaal. [6].
These authors analyzed the response of a tunnel diode driv
by a sinusoidal signal of varying amplitude and frequency. |
the last few years, Gingl and collaborat§rs-9] have carried

out analog simulations of noisy bistable systems subject to

nonsinusoidal driving forces of the type given in K,

A 0st<t,
F(t)=9 - A: 1—_st<I+tc (1)

2 2

0: otherwise

with a Fourier expansiof(t)=2,, F,,, expimQt), where

e—i mQt

1 T
Fn= $fo dt F(t) (2

and Q) =27/T. It is convenient to introduce the parameter
=2t./T, measuring the fraction of a period during which this
driving force has a nonvanishing valgée parameter in
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X(t) == U"(x(1),1) + &), ()

e\‘ié/here &(t) is a Gaussian white noise of zero mean with
éﬁ(t)g(s)):ZDa(t—s), and -U’(x,t) represents the force

Stemming from the time-dependent, archetype bistable po-
tential

Xt X2
Ux.t) = 2 7" F()X, (4)
with F(t) given by Eq.(1). The one-time correlation function
is defined as

oot

It can be written exactly as the sum of two contributions: a
coherent parC.(7), which is periodic in7 with period T,
and an incoherent pa@;,..r(7), which decays to O for large
values ofr and reflects the correlation of the output fluctua-
tions about its averagéhe noisy part of the outputThe
coherent parC.,(7) is given by[11,12

dt (x(t + 7)X(t))e - (5

1 T
Ceotl7) = ?fo dt (X(t + 7))o(X(1))=o, (6)

and C;,con(7) is obtained from the difference of Eq®) and
(6). In the expressions above, the susbcript indicates that the
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averages are to be evaluated in the litait o,

The SNR of a random signal measures the signal strength
relative to the background noise. The output SNR that is
generally considered takes into account the response at the
fundamental harmonics. Due to the nature of our problem, it
seems convenient to extend the analysis to the overtones.
Following the procedure in Ref$10-12, we calculate the
output SNR for thenth overtoneR" (n=0,1,..), in terms
of Fourier transforms of the coherent and incoherent parts of

<x(t)>
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out’
C(7) as

(2n+1)Q+e€ -
lim Eﬁo+f doC(w)
(2n+1)Q-e

ROU=—= (7)
Cincor{(zn + 1)9]
where ﬂ(w) denotes the Fourier cosine transform tfr),

ie., ﬁ(w):(le)fg dr H(7)codw7). The periodicity of the

<X(t)>
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FIG. 1. Time behavior ofx(t))... The input signal has a sub-
threshold amplitudeA=0.35, a fundamental frequendy=27/T
=0.0024, and =0.1 (upper pang| r=1 (lower panel (all quantities
in dimensionless unijs

coherent part gives rise to delta peaks in the spectrum. Ac-
tually, the coherent part can be expressed in terms of the (n)

Fourier components of the average output as

0

Ceon(®) = 22, 8w = (2n+ 1)Q)|Mpneql?, (8)
n=0
where
1 (T )
Manea = f dt (x(t)),.e 0t 9)
0

Only the odd harmonics contribute due to symmetry consi

erations. The only contribution to the numerator in [EQ.

stems from the coherent part of the correlation function

Thus we write

(n)
m _ Qu
t— 1
u Ql(n)

(10
where
2 T
Q= T f d7 Ceor(1)C0g (20 + 1) Q7] = 2|Mpeq|?
0
(11)

and
| 0 dr Cincoh(T)COS{(zn + 1)“7']- (12)

For an input signaF(t) + &(t) we have

(2—A)2[1 - cog2n+ 1) 7]
Ri(n) — 2|F2n+1|2 — (2n + 1)77 i
n 2 2
—D —D
a a

(13)

The SR gains at the different overton&™, are defined

ut
G = Ri(r?) . (14)

G© values larger than 1 have been obtained in driven non-
dynamical system$7], in stochastic resonators with static
nonlinearities driven by square puls¢$3], or in noisy
bistable systems driven by superthreshold input sinusoidal
frequencies[14]. The existence of SR gains with values
larger than 1 indicates a truly nonlinear SR effect.

Although the two-state approximation introduced in Ref.

gl1] can, in principle, be extended to analyze systems driven

by input signals withr <1, the analytical expressions ob-
tained are too cumbersome to be of practical value. Thus, in
the present work, we rely on the numerical treatment of the
Langevin equation, Eq23), following the procedure detailed

in Ref. [3].

The distortion of the output with respect to an input sinu-
soidal signal in a nonlinear regime has been discussed in Ref.
[4], and in Refs.[2,15,1 for multifrequency inputs. The
behavior of(x(t)).. for an input signal of the type given in
Eqg. (1) with subthreshold amplitud&=0.35 andQ=2#/T
=0.0024 is depicted in Fig. 1 far=0.1 (short pulsesand
r=1 (rectangular signajsand two representative noise val-
ues,D=0.02 andD=0.1. It is clear that for short driving
pulses, the shape of the average output is distorted with re-
spect to that of the input for low values of the noise strength,
while the degree of distortion is minor & is sufficiently
large. On the other hand, for a rectangular signall), the
shape of the output is similar to that of the input in the range
of D considered but with a much larger amplitude. As no-
ticed in Ref.[2], a rectangular signal can also be distorted at
sufficiently low values oD. Below we will see that SR gains
larger than 1 are possible for very strong and very weak
distortion.

In Fig. 2, we depict the behavior of the SNR at the fun-
damental frequencRifL)t with the noise strength for input
signals of the type given in Eql), with subthreshold am-
plitude A=0.35, fundamental frequenc§2=0.0024, andr

as the ratio of the SNR of the output at a given overtone ovet0.1,0.4,0.7,0.95,0.98, 1. For all valuesrpthe nonmono-

that of the input at the same overtone; namely,

tonic behavior of the SNR witD, typical of SR, is obtained.
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FIG. 2. The output signal-to-noise ra‘tifﬁ}t vs the noise

strengthD for r=0.1 (circles, r=0.4 (squarey r=0.7 (triangley,

pane) and G (lower panel vs D, for an input signal withA
=0.35,0=0.0024,r=0.1. The solid line in the lower panel is a
guide to the eye to indicate the valugdll quantities in dimension-

r=0.95 (filled circles, r=0.98 (filled squaregy andr=1.0 (filled
triangleg. The input signal has a subthreshold amplit#te0.35
and a fundamental frequendy=27/T=0.0024 (all quantities in
dimensionless unijs

less units.

[9], for fixed values of the noise strengthand amplitude;,
the inputRi(r?) always increases with [see Eq.(13)]. Also,
for given values ofA andr, Ri(r?) decreases monotonically
ith D. On the other hand, the results depicted in Fig. 2
ndicate that there are two main effects on the location of the
maximum ofRffL)t asr increases. First, as noted before, the
maximum height increases as increases. Second, the
maxima appear at increasingly larger valueoés the du-
depicted for the same values pfas in Fig. 2. For all the ration of the pulses increases. This second effect manifests
cases, there exists a range of noise values suchGffats  itself clearly for pulses of sufficiently long duration, namely
larger than unity. The peak value 6f” has a nonmonotonic for r larger than=0.9, while it is almost unnoticeable for
behavior withr. At the lowest value of considered, the SR smaller values of. For low values ofr (let us sayr=0.1),
gain has a rather large peak value. Therr, iasncreased, the even though the peak ﬁfﬁft is the smallest one appearing in
peak of the SR gain decreases, in agreement with the obse¥ig. 2, the corresponding value Bfr?) is so smalldue to the
vations in Ref[8,9]. As the duration of the pulses gets larger smallness ofr) that the SR gain reaches the large values
so thatr is closer to 1, the tendency of the SR gain maximumdepicted in Fig. 3. As increases, the height of tHégﬂt
reverses and a considerable increase in the maximum is obhaximum also increases, appearing at an approximately con-
served. o , stant value of the noise strength. Thus the increasRi(r?}f
The features abO\(oe) can be r?(;[;onahzeq by noting that thith r counterbalances the increaseRy}, in such a way that
SR gain depends oR,, and onR;". As pointed out in Ref.  the SR gain decreases. Finally, for long duration pulses, the
shift to the right of thd?ffgt maximum and the large increase
in its height are the cause of the increase in the maximum
gain observed in Fig. 3.

As r increases, the maximum value cRg(L)t increases.
Namely, the longer the potential remains asymmetric durin
each half cycle, the larger the maximum height in the SN
is. ThereforeRffgt is quite sensitive to the duration of the
pulses within each half cycle.

In Fig. 3 the behavior 06© with the noise strengtB is
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FIG. 3. The SR gairG? vs the noise strength for the same D

parameter values as in Fig. 2. The solid line connecttivalues
for r=0.7 as a guide to depict the nonmonotonic behavio&8t
with D, which is otherwise obscured by the filled symbaésl
quantities in dimensionless units

FIG. 5. SNR evaluated at the first few overton u)t (upper
pane) and G (lower panel vs D, for an input signal withA
=0.35,0=0.0024,r=1 (all quantities in dimensionless units
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Next, we evaluate the SNR and the gain at higher hara/(2n+1)2 Q" is quite independent af. The values should
monics. In Fig. 4 we present the results Rﬁ)ﬂ (upper panél  then decrease as @h+1)? as observed. On the other hand,
and G (lower panel for the first few harmonics and  the behavior o™ (lower pane) with D is quite similar for
=0.1. The SNR and the gain evaluated at the different overall the different harmonics considered, as the behaviﬁf)'&f
tones show peaks of decreasing heights arddr@.01. The  with D is compensated by a similar behavioerf).
gain associated to the first three harmonics is larger than In conclusion, our study indicates that strong nonlinear
unity for some region oD values, indicating a nonlinear SR effects show up in noisy bistable systems driven by sub-
behavior. Notice that fob=0.02, the average output is quite threshold multifrequency periodic signals. This is manifested
distorted with respect to the input shajzee Fig. J(upper N the SNR and the gain associated to several overtones of

pane)]. On the other hand, fdd=0.1, when the distortion of the signal, not only for small values of but also for rect-
the output signal is minoR™ andG™ are very small. angular inputgr = 1). Large SR gains are observed indepen-

“out ; ; ;
In the next figure, Fig. 5, we evaluate the same quantitie§ently of the degree of distortion of the input.

as in Fig. 4, but for an input signal wittr 1. The nonmono- We acknowledge the support of the Direccién General de

tonic behavior of the differerﬁggt with D is clear. The shape Ensefianza Superior of SpaiBFM2002-03822 and the

of the output implies thale,”) [see Eq.(11)] scales as Junta de Andalucia.
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