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We analyze the phenomenon of nonlinear stochastic resonance(SR) in noisy bistable systems driven by
pulsed time periodic forces. The driving force contains, within each period, two pulses of equal constant
amplitude and duration but opposite signs. Each pulse starts every half period and its duration is varied. For
subthresholdamplitudes, we study the dependence of the output signal-to-noise ratio and the SR gain on the
noise strength and the relative duration of the pulses. We find that the SR gains can reach values larger than
unity, with maximum values showing a nonmonotonic dependence on the duration of the pulses.
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In recent work[1,2], we have carried out a detailed ana-
lytical and numerical study of the nonlinear response of a
noisy bistable system subject to a subthreshold time periodic
driving force. The force considered in those works is such
that it remains constant within the duration of each half pe-
riod while switching its sign every half period. We have fo-
cused our attention on the analysis of the dependence of the
output signal-to-noise ratio(SNR) and the corresponding sto-
chastic resonance(SR) gain on the noise strength. The ana-
lytical study was based on a two-state approximation ame-
nable to exact treatment[1]. We showed that, for
subthreshold input signals of sufficiently long periods, the
phenomenon of SR can be accompanied by SR gains larger
than unity. This is a genuine characterization of nonlinearity,
as SR gains larger than unity are strictly forbidden within a
linear response description[3–5]. The analytical results were
corroborated by numerical simulations[2].

The linear and nonlinear regimes of SR have been studied
experimentally in a recent paper by Mantegnaet al. [6].
These authors analyzed the response of a tunnel diode driven
by a sinusoidal signal of varying amplitude and frequency. In
the last few years, Gingl and collaborators[7–9] have carried
out analog simulations of noisy bistable systems subject to
nonsinusoidal driving forces of the type given in Eq.(1),
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andV=2p /T. It is convenient to introduce the parameterr
=2tc/T, measuring the fraction of a period during which this
driving force has a nonvanishing value(the parameterr in

the present paper corresponds exactly to what Gingl and co-
workers term “duty cycle”). In Refs.[7–9], the SNR and the
SR gain for subthreshold amplitude input signals withr
ø0.3 were studied. These authors find SR gains larger than
unity, and, also, that increasing ther value lowers the SNR
gain. They rationalize their observations by noting that the
input SNR increases asr increases, while the output SNR is
less sensitive to the value ofr. The case studied by us in
Refs. [1,2] corresponds to the largest possible value of the
parameterr, namely,r =1. It seems therefore of interest to
extend our analysis to input signals withr ,1 in order to
compare with the predictions of Ginglet al.

Let us consider a system characterized by a single degree
of freedomx, whose dynamics(in dimensionless units) is
governed by the Langevin equation

ẋstd = − U8„xstd,t… + jstd, s3d

where jstd is a Gaussian white noise of zero mean with
kjstdjssdl=2Ddst−sd, and −U8sx,td represents the force
stemming from the time-dependent, archetype bistable po-
tential
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with Fstd given by Eq.(1). The one-time correlation function
is defined as

Cstd =
1

T
E

0

T

dt kxst + tdxstdl`. s5d

It can be written exactly as the sum of two contributions: a
coherent partCcohstd, which is periodic int with period T,
and an incoherent partCincohstd, which decays to 0 for large
values oft and reflects the correlation of the output fluctua-
tions about its average(the noisy part of the output). The
coherent partCcohstd is given by[11,12]

Ccohstd =
1

T
E

0

T

dt kxst + tdl`kxstdl`, s6d

andCincohstd is obtained from the difference of Eqs.(5) and
(6). In the expressions above, the susbcript indicates that the
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averages are to be evaluated in the limitt→`.
The SNR of a random signal measures the signal strength

relative to the background noise. The output SNR that is
generally considered takes into account the response at the
fundamental harmonics. Due to the nature of our problem, it
seems convenient to extend the analysis to the overtones.
Following the procedure in Refs.[10–12], we calculate the
output SNR for thenth overtone,Rout

snd ,sn=0,1, . . .d, in terms
of Fourier transforms of the coherent and incoherent parts of
Cstd as

Rout
snd =

lime→0+E
s2n+1dV−e

s2n+1dV+e

dvC̃svd

C̃incohfs2n + 1dVg
, s7d

where H̃svd denotes the Fourier cosine transform ofHstd,
i.e., H̃svd=s2/pde0

` dt Hstdcossvtd. The periodicity of the
coherent part gives rise to delta peaks in the spectrum. Ac-
tually, the coherent part can be expressed in terms of the
Fourier components of the average output as

C̃cohsvd = 2o
n=0
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Only the odd harmonics contribute due to symmetry consid-
erations. The only contribution to the numerator in Eq.(7)
stems from the coherent part of the correlation function.
Thus we write

Rout
snd =
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where
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For an input signalFstd+jstd we have
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The SR gains at the different overtones,Gsnd, are defined
as the ratio of the SNR of the output at a given overtone over
that of the input at the same overtone; namely,

Gsnd =
Rout

snd

Rin
snd . s14d

Gs0d values larger than 1 have been obtained in driven non-
dynamical systems[7], in stochastic resonators with static
nonlinearities driven by square pulses[13], or in noisy
bistable systems driven by superthreshold input sinusoidal
frequencies[14]. The existence of SR gains with values
larger than 1 indicates a truly nonlinear SR effect.

Although the two-state approximation introduced in Ref.
[1] can, in principle, be extended to analyze systems driven
by input signals withr ,1, the analytical expressions ob-
tained are too cumbersome to be of practical value. Thus, in
the present work, we rely on the numerical treatment of the
Langevin equation, Eq.(3), following the procedure detailed
in Ref. [3].

The distortion of the output with respect to an input sinu-
soidal signal in a nonlinear regime has been discussed in Ref.
[4], and in Refs.[2,15,16] for multifrequency inputs. The
behavior ofkxstdl` for an input signal of the type given in
Eq. (1) with subthreshold amplitudeA=0.35 andV=2p /T
=0.0024 is depicted in Fig. 1 forr =0.1 (short pulses) and
r =1 (rectangular signals) and two representative noise val-
ues, D=0.02 andD=0.1. It is clear that for short driving
pulses, the shape of the average output is distorted with re-
spect to that of the input for low values of the noise strength,
while the degree of distortion is minor asD is sufficiently
large. On the other hand, for a rectangular signalsr =1d, the
shape of the output is similar to that of the input in the range
of D considered but with a much larger amplitude. As no-
ticed in Ref.[2], a rectangular signal can also be distorted at
sufficiently low values ofD. Below we will see that SR gains
larger than 1 are possible for very strong and very weak
distortion.

In Fig. 2, we depict the behavior of the SNR at the fun-
damental frequencyRout

s0d with the noise strengthD for input
signals of the type given in Eq.(1), with subthreshold am-
plitude A=0.35, fundamental frequencyV=0.0024, andr
=0.1,0.4,0.7,0.95,0.98,1. For all values ofr, the nonmono-
tonic behavior of the SNR withD, typical of SR, is obtained.

FIG. 1. Time behavior ofkxstdl`. The input signal has a sub-
threshold amplitudeA=0.35, a fundamental frequencyV=2p /T
=0.0024, andr =0.1 (upper panel), r =1 (lower panel) (all quantities
in dimensionless units).
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As r increases, the maximum value ofRout
s0d increases.

Namely, the longer the potential remains asymmetric during
each half cycle, the larger the maximum height in the SNR
is. ThereforeRout

s0d is quite sensitive to the duration of the
pulses within each half cycle.

In Fig. 3 the behavior ofGs0d with the noise strengthD is
depicted for the same values ofr as in Fig. 2. For all the
cases, there exists a range of noise values such thatGs0d is
larger than unity. The peak value ofGs0d has a nonmonotonic
behavior withr. At the lowest value ofr considered, the SR
gain has a rather large peak value. Then, asr is increased, the
peak of the SR gain decreases, in agreement with the obser-
vations in Ref.[8,9]. As the duration of the pulses gets larger
so thatr is closer to 1, the tendency of the SR gain maximum
reverses and a considerable increase in the maximum is ob-
served.

The features above can be rationalized by noting that the
SR gain depends onRout

s0d and onRin
s0d. As pointed out in Ref.

[9], for fixed values of the noise strengthD and amplitudeA,
the inputRin

s0d always increases withr [see Eq.(13)]. Also,
for given values ofA and r, Rin

s0d decreases monotonically
with D. On the other hand, the results depicted in Fig. 2
indicate that there are two main effects on the location of the
maximum ofRout

s0d as r increases. First, as noted before, the
maximum height increases asr increases. Second, the
maxima appear at increasingly larger values ofD as the du-
ration of the pulses increases. This second effect manifests
itself clearly for pulses of sufficiently long duration, namely
for r larger than<0.9, while it is almost unnoticeable for
smaller values ofr. For low values ofr (let us sayr =0.1),
even though the peak ofRout

s0d is the smallest one appearing in
Fig. 2, the corresponding value ofRin

s0d is so small(due to the
smallness ofr) that the SR gain reaches the large values
depicted in Fig. 3. Asr increases, the height of theRout

s0d

maximum also increases, appearing at an approximately con-
stant value of the noise strength. Thus the increase ofRin

s0d

with r counterbalances the increase ofRout
s0d in such a way that

the SR gain decreases. Finally, for long duration pulses, the
shift to the right of theRout

s0d maximum and the large increase
in its height are the cause of the increase in the maximum
gain observed in Fig. 3.

FIG. 2. The output signal-to-noise ratioRout
s0d vs the noise

strengthD for r =0.1 (circles), r =0.4 (squares), r =0.7 (triangles),
r =0.95 (filled circles), r =0.98 (filled squares), and r =1.0 (filled
triangles). The input signal has a subthreshold amplitudeA=0.35
and a fundamental frequencyV=2p /T=0.0024 (all quantities in
dimensionless units).

FIG. 3. The SR gainGs0d vs the noise strengthD for the same
parameter values as in Fig. 2. The solid line connects theG values
for r =0.7 as a guide to depict the nonmonotonic behavior ofGs0d

with D, which is otherwise obscured by the filled symbols(all
quantities in dimensionless units).

FIG. 4. SNR evaluated at the first few overtones,Rout
snd (upper

panel) and Gsnd (lower panel) vs D, for an input signal withA
=0.35, V=0.0024,r =0.1. The solid line in the lower panel is a
guide to the eye to indicate the value 1(all quantities in dimension-
less units).

FIG. 5. SNR evaluated at the first few overtones,Rout
snd (upper

panel) and Gsnd (lower panel) vs D, for an input signal withA
=0.35,V=0.0024,r =1 (all quantities in dimensionless units).
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Next, we evaluate the SNR and the gain at higher har-
monics. In Fig. 4 we present the results forRout

snd (upper panel)
and Gsnd (lower panel) for the first few harmonics andr
=0.1. The SNR and the gain evaluated at the different over-
tones show peaks of decreasing heights aroundD=0.01. The
gain associated to the first three harmonics is larger than
unity for some region ofD values, indicating a nonlinear
behavior. Notice that forD=0.02, the average output is quite
distorted with respect to the input shape[see Fig. 1(upper
panel)]. On the other hand, forD=0.1, when the distortion of
the output signal is minor,Rout

snd andGsnd are very small.
In the next figure, Fig. 5, we evaluate the same quantities

as in Fig. 4, but for an input signal withr =1. The nonmono-
tonic behavior of the differentRout

snd with D is clear. The shape
of the output implies thatQu

snd [see Eq. (11)] scales as

1/s2n+1d2. Ql
snd is quite independent ofn. The values should

then decrease as 1/s2n+1d2 as observed. On the other hand,
the behavior ofGsnd (lower panel) with D is quite similar for
all the different harmonics considered, as the behavior ofRout

snd

with D is compensated by a similar behavior ofRin
snd.

In conclusion, our study indicates that strong nonlinear
SR effects show up in noisy bistable systems driven by sub-
threshold multifrequency periodic signals. This is manifested
in the SNR and the gain associated to several overtones of
the signal, not only for small values ofr, but also for rect-
angular inputssr <1d. Large SR gains are observed indepen-
dently of the degree of distortion of the input.
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