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Resonant activation in a simple kinetic model
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We present a very simple Markovian kinetic model displaying a stochastic resonant behavior
which is similar to the one found in the escape of a particle over a fluctuating potential barrier.
The basic mechanism that is responsible for the existence of resonance is identi6ed. This allows
the generalization of the model in different ways, leading to a variety of models where a similar
phenomenon is to be expected. It is also shown that the initial conditions play an important role in
determining whether the resonant activation actually shows up.

PACS number(s): 05.40.+j, 82.20.Mj

I. INTRODUCTION

In the past years, much attention has been devoted to
the study of resonance efFects in stochastic systems. The
most extensively considered phenomenon is the noise-
induced enhancement of a small systematic periodic sig-
nal in nonlinear systems and it is usually referred to
as stochastic resonance [1,2]. Recently, Doering and
Gadona [3] reported the existence of another resonance
efFect in the escape rate over a linear barrier whose slope
fluctuates between two values. The mean first passage
time (MFPT) as a function of the Sipping rate of the
barrier presents a minimum, which was characterized as
a resonant activation over the barrier.

In order to understand the origin of the resonant acti-
vation, it seems important to determine whether a simi-
lar phenomenon can be observed in simple kinetic mod-
els. Bier and Astumian [4] have analyzed a Markovian
kinetic model in which the reactant switches at a given
rate between two internal states. These two states have
difFerent rates of decay towards the final absorbing prod-
uct state. For small flipping rates, the model is closely
related to the escape over a linear fluctuating barrier in
the limit of large barrier and small fluctuations. Never-
theless, the behavior of both systems for large flipping
rates is quite difFerent and the model does not exhibit
resonant activation. On the other hand, Van den Broeck
[5] had previously shown that the phenomenon can be
displayed for non-Markovian variants of the same model.
More concretely, he has considered the case of nonexpo-
nential waiting time distributions for the internal states
of the reactant.

The purpose of this paper is to present a simple kinetic
model showing, under certain circumstances, a resonant
behavior that is similar to that reported in [3]. There
are several reasons that render the relevance of the study
of this model. First, it is Markovian, unlike those which
have been considered previously [5]. Besides, its techni-
cal simplicity allows us to determine in a precise way the
conditions under which the resonance efFect arises and, in
particular, the important role played by the initial condi-
tions. Finally, the xnodel clearly identifies the mechanism
which is responsible for the resonance. It is due to the
fluctuations of an intermediate state connecting the ini-

tial and final states. These fluctuations must have oppo-
site efFects on the transitions from the intermediate state
to the final and to the initial states. From this point of
view, our model is a minixnal model in the sense that it
can be generalized in many difFerent ways preserving the
resonant behavior. In particular, it allows us to explain
the behavior of the linear fluctuating barrier analyzed in

W.
The rest of this paper is organized as follows. In the

next section, we describe our model and find exact results
for the MFPT from the initial state (reactant) to the final
state (product). The conditions under which resonant,
activation appears are investigated. In Sec. III we discuss
some modified versions of the model that do not lead
to resonant behavior. Comparison of the several models
clearly shows the origin of stochastic resonance in this
kind of models. We conclude with a brief summary of
our main results.

II. MODEL

The model is described by the kinetic scheme depicted
in Fig. 1. The transformation of the reactant A into
the product | takes place through an intermediate sub-
stance B. This one, due, for instance, to the influence
of some external conditions, randomly switches at a rate
p between two states, denoted by B+ and B, respec-
tively. The substance B remains in one state for an ex-
ponentially distributed random tixne before switching to
another and p is the inverse of the average time that B
stays in one state before switching. When B is in state
B+, only transitions from B to A at rate kq are possible,
while for B being in state B the possible transitions
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FIG. 1. Sketch of the kinetic model. The state of the inter-
mediate substance B Buctuates between B+ and B at rate
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are &om A to B, at rate k2, and &om B to C, at rate
k3. Thus the state of B acts as a control variable for the
transformation of A into C.

Our aim is to find the noise-averaged evolution of the
concentrations of A and B. This is a typical problem
of the so-called dynamical disorder and a general scheme
for treating such problems has been reviewed by Zwanzig
[6]. We introduce partiaHy averaged concentrations of A
and B for a given state of B. They will be denoted by
Pg(A, t) and Py(B, t), where the signs + and —refer
to states B+ and B, respectively. Then, for instance,
P~(A, t) is the concentration of A at time t, with B+
the state of B. The actual concentration of A at time t,
P(A, t), is given by

P(A, t) = P+ (A, t) + P (A, t),

and similarly for the concentration of B, P(B, t). The
partially averaged concentrations satisfy the equations

P+(A,—t) = qP+(A—, t)+k,P+(B,t)+qP (A, t),Bt
(2a)

8 P(A, t—) = (k +p—)P (A, t) +pPg(A, t), (2b)

I

—P+ (B,t) = —(kq + p) P+ (B,t) + pP (B,t), (2c)
8

—P (B,t) = —(k, +p)P (B,t)
8
Ot

+k,P (A, t)+qP+(B, t). (2d)

The initial condition is that only reactant A is present,
but nothing wi11 be assumed about the initial distribution
of states B+ and B . Therefore, we take

P+ (A, 0) = a, P (A, 0) = 1 —a,

P+(B,O) = P (B,O) = 0,

with 0 & a & 1. The MFPT for the transformation of A
into C is given by [7]

(~) = dt [P(A, t) + P(B, t)]
0

and a simple calculation using, for instance, the Laplace
transformed of Eq. (2) yields

2p (kg + k2 + ks) + 2pkg (k2 + ks) + apk2ks + akim k2ks
7

'7 k2k3 + Pklk2k3
(6)

The behavior of (r) in the two limiting values of p is
easily understood. When p is very large, the above result
becomes

( ) ( )
2(kg + k2 + ks)

23
which does not depend on the value of the initial condi-
tion a. In fact, this is the expression one gets by com-
puting the MFPT for the process

and substituting the transition rates by their equilibrium
values, which are kq/2 for the transition from B to A,
k2/2 for the transition from A to B, and ks/2 for the
transition &om B to C.

On the other hand, in the static disorder limit p ~ 0,
(r) goes to infinity (except in the particular case a = 0)
because the transition from A to C is not possible when
B is in the state B+. The question now is whether the
MFPT presents a minimum between the above two limit-
ing values. From Eq. (6) it follows that such a minimum
exists if

k,
+

k,
+

k,
+

(k,k, ) &

Therefore, a resonance effect occurs when the initial
probability distribution of the Buctuating states of B,
characterized by the parameter a, and the rates kq, k2,
and ks verify the relation given in Eq. (9). The relevant
role played by the initial condition to determine whether
there is resonance must be noticed. In particular, for
given values of the transition rates, there will always be
resonance for small enough values of a. As an example,
we have plotted in Fig. 2 the MFPT as a function of p for
kq ——k2 ——ks ——1. The initial condition is a = 1/2, which
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2k& & ak2k3. (9)

Moreover, the minim»m is attained for a switching rate
5.4

0 10 20

and it is given by

kg (ak2ks) ~~2

2~~ ky —(ak2ks) ~
(10)

FIG. 2. Mean Srst passage time as a function of the switch-
ing rate for the model sketched in Fig. 1. The values of the
parameters are kq ——kq ——k3 ——1 and the initial condition is
a=1 2.
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corresponds to the steady distribution of the switching
mechanism if it were isolated. As predicted by Eq. (10),
the resonance takes place for po

——l.
The origin of the resonance shows up clearly if we

rewrite Eq. (6) as

A
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8

a 2k' p t'1 1)
(T) = —+ +2/ —+ —/.

k2k, q +k, ~k, k, y
(12)

The flipping rate appears in two summands on the right
hand side of this expression. The 6rst one is a decreasing
function of p and reduces to zero for p ~ oo or a =
0, while the second one is an increasing function of p
and tends to the asymptotic value 2k'/k2ks. Besides,
the latter does not depend on the initial condition a.
Therefore, the Bipping plays a twofold role. On the one
hand, it facilitates the decay of the initial probability
of 6nding the system in the conlguration in which the
transition to the product C is impossible. On the other
hand, it makes it that not all the transitions from A to
B proceed up to C. Some of the substance reaching B is
returned to A. The competition of these two roles leads in
some cases to resonant activation. The condition is that
the second tendency dominates for large enough Bipping
rates.

If we introduce a measure B of the resonance effect as

B
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FIG. 3. Two variants of the kinetic model discussed in Sec.

variant of the model that is sketched in Fig. 3(a). The
interpretation of the scheme is similar to the one in Fig.
1 and the only difference with the previous model is that
now the decay to the product C occurs when the inter-
mediate substance B is in state B+. Using the same
procedure as above and the initial conditions given by
Eqs. (3) and (4), the MFPT for this model is obtained
as

2p(kg + k2 + ks) + 2kgk2 + (1+a)k2ks
(

pk2ks

it is seen from Eqs. (7) and (11) that, for a given value of
a, the resonance is stronger the larger the value of kq and
the smaller the values of k2 and k3. In the limit kq m oo,

(14)

In the limit p ~ oo, this expression reduces to Eq.
(7). Thus, both models have the same behavior in the
high frequency limit. This is the expected result since the
discussion given below Eq. (7) also applies in this case.
Nevertheless, from Eq. (15) one gets

and B diverges as a consequence of the divergence of
(r) .

B(7.) 2k' + (u+ 1)ks
Op p k3

(16)

III. VARIANTS AND GENERALIZATIONS
OF THE MODEL

In order to identify the basic mechanism that is re-
sponsible for the resonance behavior, we now turn to the

I

which indicates that the MFPT is a monotonously de-
creasing function of p for all values of k~, k~, k3, and a
and therefore this model does not present the resonance
phenomenon.

Let us stil1 consider another variant, namely, that de-
scribed by Fig. 3(b). The expression of the MFPT for it
reads

(~) = 2p (kq + k2 + ks) + p(2k' k2 + (2 —a) kqks + ak2ks) + akqk2ks

p ks(kg + k2) + pkgk2ks

Taking into account that 0 & a & 1, it is easily seen
that we again have a monotonous decay. Let us point
out that the high frequency limit for this model is

2(k, + k, + k&)

ks(kg + k2)

which is diferent from the result obtained in the same
limit for the two previous models, Eq. (?).

What is the conc1usion emerging from the compari-

l

son of the three models we have analyzed'? Consider the
general model with a Buctuating intermediate state rep-
resented in Fig. 4. For kq, k2, and k3 diferent &om zero,
the MFPT is a continuous function of all the transition
rates. Therefore, our results suggest that the possibil-
ity of getting a resonant behavior requires that k~ & k2,
k2 ) k», and k3 & k4. The Buctuations of Bmust be such
that when the transition rate from B to C increases, the
transition rate from A to B also increases, while that as-
sociated with the transformation froxn B to A becomes
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FIG. 4. Sketch of the general kinetic model with an inter-
mediate 6uctuating state.

0—P+ (1,t) = —(1 —A+ + p)Pi (1, t)

+(1+A+)P+(2, t) + pP (l, t), (19a)

—P (l, t) = —(1 —A +q)P (l, t)

+(1+A )P (2, t) + pP+(l, t), (19b)

8—P+(»t) = —(2+ 7)P+(»t)
+(1 —A+)P+(l, t) + pP (2, t), (19c)

19—P (2, t) = —(2+q)P (2, t)

+(1 —A )P (l, t) +pP+(2, t), (19d)

where we have introduced a reBecting boundary at n = 0
and an absorbing one at n = 2. Since the model verifies
the conditions formulated above, it is expected to present
resonant activation in some region of its space of param-
eters. As for the other models, it is straightforward to
obtain the MFPT using the initial conditions P+(1,0) =
a, P (1,0) = 1 —a, and P+(2, 0) = P (2, 0) = 0. Never-
theless, the expression is very large and will be omitted
here. In the limit p m oo, it reduces to

smaller.
As an example, let us assume that the process of going

&om A to C corresponds to the diffusion of a particle on
a one dimensional lattice &om the site n = 0 to the site
n = 2, in the presence of an external potential field. The
probability of jumping per unit of time is u(1 —A) for
jumps to the right and (d(1 + A) for jumps to the left,
with 0 ( A & 1. The parameter A is proportional to
the slope of the external potential [8] and (a is a natural
&equency of the lattice, which will be used to fix the time
scale and therefore it will be taken equal to unity in the
following.

Now, suppose that A Buctuates, with a Bipping rate p,
between two values A+ and A as a consequence of the
Buctuation of the slope of the external potential. The
partially averaged probabilities of finding the particle at
site n, for a given value of A, obey the master equation

The existence of resonance can be analyzed by study-
ing the first order correction in p

i to (r) . When this
correction is negative, (r) must present a minimum for
some finite value of p. For a = 1j2, the system always
exhibits resonant activation, independent of the values of
A+ and A . Nevertheless, this is not true for other values
of a. For instance, for a = 0.8, A+ ——0.2, and A = 0.1,
(r) decays monotonously to (r)

If the number of intermediate states B is increased,
the transition probabilities are scaled with the density
of sites, and the continuous limit is taken, the system
reduces [8] to the Brownian motion in a Huctuating lin-
ear barrier studied by Doering and Gadona [3]. Let us
remark that their calculations correspond to the initial
condition a = 1/2 and therefore it is not surprising that
they found resonance for all pairs of values of the slope
of the barrier. In view of the analysis presented here,
we speculate that the result could be different for other
initial conditions.

IV. SUMMARY AND CONCLUSIONS

In this paper we have shown that the resonance phe-
nomenon referred to as resonant activation can be un-
derstood in terms of a simple kinetic model. The main
feature of the model is the presence of an intermediate
Buctuating state. The technical simplicity of the mas-
ter equation governing the time evolution of the system
allows us to obtain an explicit exact expression for the
mean first-passage time in terms of the parameters defin-
ing the model and the initial conditions. In this way, a
detailed analysis of the conditions required for the dis-
play of resonant behavior has been possible. A necessary
condition seems to be that the Buctuations of the in-
termediate state have different qualitative effects on the
transition rates corresponding to processes pointing in
the direction of the final state and on those associated
with processes in the opposite direction.

An interesting feature shown here is the effect of the
initial conditions on the resonance. They are not only
inBuencing the amplitude of the phenomenon, but actu-
ally determining whether it will take place or not. This is
something to be taken into account upon designing exper-
iments looking for resonant activation. In this context,
although we have not tried to relate our model to any real
system, it is clear from its structure that it can be useful
for the description of some chemical transitions. Besides,
generalizations of the model, like the one described in
Sec. III, can be applied to a variety of physicaI problems.
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