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ABSTRACT 
 
In this paper a reliability model based on artificial neural networks and the 
generalized renewal process is developed. The model is used for failure 
prediction, and is able to dynamically adapt to changes in the operating 
and environmental conditions of assets. The model is implemented for a 
thermal solar power plant, focusing on critical elements of these plants:  
heat transfer fluid pumps.  We affirm that this type of model can be easily 
automated within the plant’s remote monitoring system. Using this model 
we can dynamically assign reference values for warnings and alarms and 
provide predictions of asset degradation. These in turn can be used to 
evaluate the associated economic risk to the system under existing 
operating conditions and to inform preventive maintenance activities. 
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1. Introduction 

The consistency of reliability predictions in the renewable energy sector is 
important because of the high impact of production losses. These predictions are 
complex to generate, due to the fact that assets’ operating conditions change 
seasonally and geographically. In this sector, the optimization of maintenance 
programs for an asset must consider operational variables (configurations, preventive 
maintenance, undue handling, etc.) as well as environmental conditions (cleanliness, 
fastening, temperature, etc.). Then, reliability estimations that take these contributing 
factors into account may be informative. Besides this, the need to update these 
estimations over time, and the proper consideration of explanatory variables or 
covariates, is critical to predict time to system failure. 

There are many techniques for survival analysis and estimation (Cox and Oakes, 
1984; Smith, 2002) that use explanatory variables. These techniques can be  
parametric when the failure distributions are known, semi-parametric in the case of 
unknown failure distribution but with defined assumptions of proportionality with 
time covariates (independent among them), or  non-parametric when the failure 
distributions are not specified (Hougaard, 2012; Lee and Wang, 2003). Flexibility 
and complexity of computational implementation increase from parametric to non-
parametric methods (Ohno-Machado, 2001). 

In the search for efficiency, artificial intelligence (AI) can be used to solve, 
computationally, these prediction problems (Cohen and Feigenbaum, 2014; 
Kalogirou, 2007), and well-accepted and recommended methods for these purposes 
are artificial neural network (ANN) models (Mellit and Benghanem, 2005; Kuo, 
2011; Caner et al., 2011; Martin et al., 2010). These networks are composed of 
multiple, connected units (neurons). The standard ANN architecture is one input 
layer, one output layer and generally, one or more hidden layers. To achieve auto-
adjustment, an often used ANN is the backpropagation neural network (BANN) 	
  
which prevents overtraining. This technique filters the noise and recognizes the most 
overt and accessible patterns, overcoming in an order of magnitude the linear 
conventional methods and the polynomial methods (Lapedes and Farber, 1987). 
Consequently, BANN provides a strong tolerance to noisy data, due to the storage of 
redundant information, and adaptation in the presence of explicit knowledge for the 
resolution of problems (Curry et al., 2000; Malcolm et al., 1999).  

In our proposed prediction model, the neural network model under consideration 
is a feed-forward single layer perceptron (Rosenblatt, 1958), which is composed of 
one input layer with P neurons, an intermediate or hidden layer with M neurons, and 
an output layer with 1 neuron, Y. The neural network output, Y, is a function based 
on a linear combination of a set of weights with the outputs from the intermediate 
layer neurons. All the weights used in the linear combination are learned by a back-
propagation algorithm (Lawrence et al., 1998), in which the sum-of-squared errors  

𝑅! = 𝑅! =!
!!! 𝑌(!) − 𝑓(𝑋(!)) !!

!!!       (1) 

is optimised, reaching a global minimum by a loop with a maximum of S steps, 
where in each s-step a couple of forward and backward actions are executed in the N-
elements training set   𝑇𝑆 = { 𝑋 ! ,𝑌 ! |𝑖 ∈ 1,… ,𝑁 }, where  
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(!)  are an input and 
output values respectively from the training set.  

This paper is fundamentally concerned with the utilization of a BANN to obtain 
predictions about failures before they occur. For this purpose, the paper is structured 
in three main parts: a first part, Section 2, which includes the development of our 
prediction model; then, a second part including Sections 3 and 4 which include a case 
study; finally a section that is dedicated to the conclusions of the paper. 

2. Proposed Prediction Model 

In this Section we assume that there are sufficient experimental data about failures. 
Due to their experimental nature, these raw data do not follow a formal parametric 
failure distribution function, and in addition these have non-linear correlations with 
the covariates that determine accelerating process in the failure appearance. In order 
to simplify, we assume these covariates are independent among them and with no -
time-dependency. In these cases, the maintenance decision making for renewal 
energy equipments, under different operating environments, can be supported by 
ANN, with the following benefits: 

• Suitable to the managed amount of failure data, the more information you 
provide the more relevant your result becomes as continuous improvement, 

• Implementable in remote monitoring systems, searching automation not only 
for prediction but also for self-adjusting based on real data, 

• 	
  Flexible to changes, either for the elimination of any covariate or for the 
incorporation of new covariates in the input layer or by combining several 
ANN hierarchically. 

Numerous papers (Ohno-Machado, 2001; Xiang et al., 2000; Faraggi and Simon, 
1995; Liestbl et al., 1994; Ravdin and Clark, 1992; Biganzoli et al., 1998) present the 
comparison between several existing methods to fit survival functions showing 
relations between the reliability and the covariates; for instance, comparing the 
widely applied semi-parametric Cox’s proportional hazard model (PHM) (Cox, 
1972) versus several ANN models. When the model complexity is low, based on a 
few covariates and with proportional relations with the reliability, there are no 
significant differences between predictions of Cox regression and ANN models. In 
the case of complex models with many covariates and with any interaction term, 
predictions of ANN models have important advantages compared to Cox regression 
models. 

In practice, depending on the way that covariates are considered, different ANN 
models can be built; for instance: 

• ANN can be used instead of the linear combination of weight coefficients in 
the Cox PHM, as in Farragi and Simon (1995). In this case it is necessary to 
solve the PHM using the Partial Maximum Likelihood Estimation (P-MLE).  

• Using an input with the survival status over disjoint time intervals where the 
covariate values are replicated. A binary variable can be used with value 0 
before the interval of the failure and 1 in the event of failure or later, as in 
Liestol et al. (1994). In this case, each time interval is an input with a survival 
status, then a vector of survival status is defined per failure; or 



• Employing the Kaplan-Meier (K-M) estimator to define the time intervals as 
two additional inputs instead of a vector; one is the sequence of the time 
intervals defined by de K-M, and the other is the survival status at each time 
of the sequence. This is the case of Ravdin and Clark (1992) or Biganzoli et 
al. (1998), models that are known as Proportional Kaplan-Meier. 

Since the aim of this research is to improve results of parametric methods, 
combining them with the self-adaptive property of ANN, the proposed survival ANN 
model is based on the ideas of Ravdin and Clark (1992).  

At the same time some mathematical modifications are introduced for 
simplification and in order to facilitate reliability surveillance (see Table 1). 
Considering these modifications the application of the proposed model is sequenced 
in two phases: 

1. In a first phase, for easy understanding of results and for applying another 
reliability analysis over time to failures. The re-utilization of parametric 
method outcomes is recommended, as a previous estimation and without the 
consideration of covariates. Because of this, we will have a parametric 
estimation of the survival curve. 
o Instead of using the Kaplan-Meier estimator, the General Renewal 

Weibull Process II (GRP-II) method is selected in order to fit the curve 
better and to reduce the negative effect of a non-monotonically 
decreasing survival curve. In our study, we also propose to combine 
ANN with the GRP-II parametric model, which evaluates survival 
probability in repairable and non-repairable systems, and models the 
repair efficiency estimation in avoiding the overall damage produced due 
to all the successive failures (Gonzalez-Prida et al., 2014). The GRP-II 
model has more accuracy than the GRP-I for complex systems, or with 
data from multiple devices of the same type (Dagpunar, 1997). GRP-II 
gives three Weibull parameters, α-scale, β-shape and q-repair efficiency. 
In the q parameter, the recurrence rate of failures is captured showing the 
effects of the repairs on the age of that system n (modelling partial 
renewal repair). Properly performed repairs (0<qn<1) may improve 
system virtual states (life), while poorly solved failures (qn>1) could 
aggravate it (always speaking in terms of reliability). Then, the virtual 
age of the system i is updated after a failure j according to the following 
equation 2 (where Tnj are the time intervals between successive failures) 
and the failure probability distribution conditioned to the survival new 
virtual age is calculate in equation 3: 
 
𝑉!!"# = 𝑞! ∙ (𝑉!!"# + 𝑇!")      (2) 

 
𝐹(𝑡|𝑉!!"#) = 𝑃 𝑇!" ≤ 𝑡|𝑇!" > 𝑉!!"# = ! ! !!(!!!"#)

!!!(!!!"#)
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o Only based on the times to failure (Tnj), GRP-II is applied over k groups 

of failures with similar covariate values, for example for each plant. 
Then, Weibull parameters α, β and q are obtained for each group, and 



without using the covariates, only based on time to failures. 
 

𝐹(𝑡|𝑉!"!"#) = 𝑒𝑥𝑝 !!!"#

!!"

!!!
− !

!!"

!!"
    (4) 

 
2. After that, in order to adapt the parametric estimation of the survival function 

according to covariates, the back-propagation ANN is utilized with the 
following criteria: 

A sigmoid (logistic) function 
)1(

)( x

x

e
e=xf
+

,    (5) 

o   over normalized variables between 0 and 1, is used for hidden layer 
neurons and a linear combination of the latter, for determining the neural 
network output. It is not recommendable to use more than two times the 
number of input neurons in the hidden layer (Lawrence et al., 1998). 

 
o Discretized times inside the intervals Tnkj over k groups of failures with 

similar covariate values Xnk are defined according to the available and 
representative information for the selected failure. In order to be 
upgradeable iteratively and with real data and for all the intervals, the 
real covariate values will be used as inputs Xnk

(i), but only up to the time 
the failure occurs, after which the average covariate value is taken  
𝑋!"
(!) = 𝑋!". In order to homogenise the selected intervals Tnkj, all of them 

are extended after the failure time in discretized times t(i) of the training 
set  up to the maximum length of the intervals (which corresponds to the 
maximum time to failure), resulting all (Ṫnkj) with the same length. 

 
  𝑇𝑆!" = { 𝑋!" ! ,𝑌!" ! |𝑖 ∈ 1,… ,𝑁 }    (6) 

 
o The additional input of the survival status, in our model, has a gradual 

increment from 0 to 1 in the failure event or after each specific time to 
failure. To do this, the Weibull Cumulative Distribution Function (CDF) 
can be used for all intervals, with the previously obtained βnk per group 
by GRP-II method, searching to maintain the shape of predictions. 
Besides, in order to obtain proportionality, the gradual increment from 0 
to 1 of the survival status, the Weibull-scale αnk in each interval is 
adapted to the specific time interval Tnkj (between successive failures) 
pondered by the Median Life. Therefore, the output layer contains a 
single output neuron corresponding to the estimated survival status 
(probability to failure) that ascends from 0 to 1 until the time to failure 
and after, see Equation 7, where for all the intervals: βGRP is obtained by 
GRP-II for each group of times to failures, and 
α  !"# = T  !"# · Ln(2)!/!  !": 

 

𝐶𝐷𝐹 𝑡 ! = 1− 1/𝑒𝑥𝑝 ! !

!!"#

!!"
=

1− 1/𝑒𝑥𝑝 ! !

!!"#∙!"(!)!/!!"

!!"
     (7) 



 
o The training of the network, which gives us the network settings, is 

carried out based on 75% of available data; and the other 25% is used for 
the network testing in order to subsequently validate the behaviour 
pattern. The learning backpropagation algorithm used is a supervised 
error correction, minimizing the penalized mean square error through the 
Quasi-Newton method in the free software R. 

 

𝑅𝑀𝑆𝐸 = !(!)!!(!(!)) !!
!!!

!
      (8) 

 
As a result, the modification of the Ravdin and Clark type of ANN is shown as an 

example in Table 1 in comparison with the normal model for two pumps (1 and 2) of 
the same group (1) of similar covariates and for two homogenized time intervals of 
failures Ṫnkj (one of each pump). In this example, discretized times t(i) are shown in 
the intervals Ṫ111 and Ṫ211  are shown jointly with the covariate values. Thus, Ravdin 
and Clark’s ANN (R&C ANN) was trained with equal covariate value for all the 
discretized times in each interval, for example 𝑋!"

(!) = 𝑋!", and it was interrupted at 
each specific time to failure Tnkj. While in the modified R&C ANN real data 
covariates are used Xnk

(i)  and the their average value Ẋnk  after the Tnkj time to failure, 
but in this case for each homogenized time to failure Ṫnkj. The original ANN uses a 
binary system 0 or 1 as survival status and the modified ANN uses estimated 
probability of failure from a Weibull according to the equation 7 (with α  !!! = 6 ·
Ln(2)!/!.! and α  !"" = 8 · Ln(2)!/!.!.  

TABLE 1.  Training Set of Normal and Modified R&C ANN. 

  Normal R&C ANN Modified R&C ANN 
 t(i) X1n1 X 1n1 Survival 

Status 
X1n1 X1n1 Survival 

Status, 
CDF(t(i)) 

Pump11 

 

Ṫ111 

1 1 1 0 0.7 0.6 0.27 
2 1 1 0 0.8 0.7 0.47 
3 1 1 0 0.7 0.8 0.62 
4 1 1 0 0.9 0.8 0.72 
5 1 1 0 0.8 0.8 0.80 
6 1 1 1 0.8 0.9 0.85 
7 - - - 0.8 0.8 0.89 
8 - - - 0.8 0.8 0.92 

Pump21  

 

Ṫ211 

1 1 0 0 0.8 0.2 0.21 

2 1 0 0 0.7 0.1 0.38 
3 1 0 0 0.9 0.3 0.51 
4 1 0 0 0.6 0.1 0.62 
5 1 0 0 0.8 0 0.70 
6 1 0 0 0.7 0.1 0.76 
7 1 0 0 0.8 0 0.81 
8 1 0 1 0.9 0.2 0.85 



 

This modification, based on the combination of parametric and AI methods, aims 
to show how existing information and analysis in the plants, jointly with a 
monitoring system, may be used to improve decisions, mixing off-line statistical 
models with on-line real data from remote monitoring systems. 

As any ANN, the main weak point in this model is the necessity to adjust the 
covariate values according to their representative influence in the selected failure in 
discrete times. That is, depending on their influence in failure degradation with time, 
it avoids random and bad-acquired values but keeps the right data seasonality. 
Besides this, normalization among different geographical locations is required in 
order to replicate the analysis. However, once the analysis is accomplished, the 
developed model can be applied easily in a remote monitoring system, requiring only 
a model refining each two or three years, or maybe when operating circumstances 
change radically. A set of alarms for observed abnormal tendencies may also be 
implemented (i.e. for q-repair efficiency, warning about tendency of successive 
repairs to the system status conservation). This could also be used as a warning about 
the lack of model consistency, i.e. about the need to restart the analysis with new Tnkj 
intervals to capture new repair-stages.  

In the sequel, the proposed model will now be built and tested in a case study. The 
idea is also to implement it in a remote monitoring system. 

 
3. Case Study. A Thermal Solar Plant. 

Thermal Solar plants have been in production for more than 25 years. Current 
decrease in government incentives for renewable energy sources has forced 
companies to study useful life extension possibilities. Due to this, potential plant re-
investments must also be re-evaluated; incorporating future operating and 
environmental conditions within equipment reliability analysis.  

In these plants the combination of mechanical and thermal stresses makes 
reliability analysis important. This is not only because the direct costs of failures, but 
also due to their significant indirect loss of profit, as well as the associated 
environmental and safety risks (Ennis, 2009). By developing a model for failure 
prediction we can avoid these risks. This model will be applicable to each critical 
failure mode, because symptoms and causes may be dissimilar among them and the 
effect of equipment conditions may apply in a different manner. Understanding the 
previous point is important; efforts in failure mode analysis will be intense but 
worthwhile. For instance, defining suitable covariates per failure mode, could add 
enormous value to protecting our assets and their contribution to the business. 

This type of thermal solar plant is usually built modularly; therefore the 
possibility to replicate the same model for different modules and regions is also 
considered of great interest. With that in mind, we have tried to develop our ANN 
model, which is easy to reproduce, and to update it with the most common 
parameters found in this type of plant.  

The solar thermal power plant under consideration has a nominal power of 49.9 
MW with an annual production of 180 million KWh and occupies an extension of 



2,700,000 square meters. It is located in the southern part of Spain and it will supply 
energy to more than 100,000 dwellings for an operational time of 25 years. Even in 
the absence of enough solar radiation, its storage subsystem is able to provide energy 
for 7.5 hours. All the energy produced (180 million KWh /year) is provided by the 
distributor for 51 million €/year of production (at an initial price of 0.2849 €/KWh, 
and subsequently reduced due to a legal requirement). The main subsystems of this 
kind of power plant are, see Figure 1: 

 

Fig.1. Thermal solar plant and functional description. 

• Solar field. It is composed of 8,064 parabolic trough solar collectors with 
225,792 mirrors. It heats the high-temperature oil circulated in the HTF loop. 

• HTF loop, which conveys high-temperature fluid to the heat exchanger in the 
steam generator.  

• Water loop, where steam flow is condensed and cooled and recirculated as a 
water flow to the steam generator. 

• Steam generator, which transforms water into steam to activate the turbine. 
• Turbine, which transforms the mechanical energy of the steam flow into 

electrical power. 

In our case study, we have selected a common system to illustrate the model 
implementation over real data and in a remote monitoring system: electrical pumps 
in HTF loops. They consist of several large pumps in charge of making the thermal 
oil (Dowtherm A) to flow throughout the plant. Usually, the tendency is to view HTF 
pumps in a Thermal Solar Plant as a low potentially hazardous process despite being 
a heat transfer and under pressure systems that could produce fire and explosion 
hazards, where leaks can produce a potentially flammable mist or contamination 
(Ennis, 2009). Moreover, their operation is critical in order to keep the desired 
availability of the power plant, so all the production is supported by a 2+1 HTF 
pumps configuration (2 of them working in parallel and the other is a spare one). 
Both active pumps jointly contribute 50% of HTF recirculation oil and a pump 
failure could reach up to 50% of daily production. Therefore, HTF pumps need 
surveillance to ensure their efficiency and to control their deterioration. In order to 
optimize plant efficiency, the remote monitoring system would set the HTF pump 
speed through changes in the variable frequency drives, according to different 
temperatures, the direct beam irradiance, pressures, and also the potential fluid 
density. For example, a bigger difference between inlet-outlet HTF temperatures 
requires less impelled flow.   

	
  



For the purpose of this paper, we have selected the failure mode: “damaged 
mechanical seal”, causing significant production losses. This failure mode emerges 
due to many factors, such as: high seal operating temperature, excessive pump 
vibration by cavitation, parts misalignment, etc. This problem increases during the 
summer period when pumps run at full load, at which time production losses are the 
highest. 

Potential mechanical seal failures are predicted using our developed back-
propagation neural network, equipped with the last three years pumps’ historical 
data. We focus our attention on failures resulting as a consequence of equipment 
deterioration due to operational and geographical (environmental) features that could 
have a great impact on equipment conditions. For instance, we know that extreme 
fluctuant cycles of inlet-outlet pressure and high temperatures can degrade the oil, 
producing contamination and corrosion; contraction-expansion may also result in 
misalignments.  

For this case, predicting the problem in real-time, using process-control variables 
and with transfer function (thermodynamic approach) was found to be impossible. 
So, all representative contributions to pump degradation are compound in a single 
(survival) function which reflects the probability of the failure mode. In this 
document we show the aptitudes of an ANN to replicate self-adaptive reality by 
fitting a survival function. This is done in complex and noisy operating conditions. 

Our prediction models have innovative features compared to previous works in 
the literature. The ANN models not only use parametric estimations about the failure 
times, but also environment variables, such as external humidity, and also assets’ 
condition variables, such as working temperature and different operating times and 
cycles. In addition, parametric methods are combined with ANN in order to develop 
a stable model which will be easily and quickly implementable in a remote 
monitoring system. Through this, an early detection of degradation will be possible 
before failures affect production, people or the environment, and a quantitative 
measure of risk can be computed as a percentage. 

 

4. Developing and implementing the ANN model 

In order to approach the problem of real time condition estimation that could lead 
to early warnings for the failure mode, the modified ANN architecture is developed 
based on selected variables from those whose detection is periodically and 
automatically feasible with our remote monitoring system and they are the most 
representative showing their effects in the damaged seal of HTF pumps. 

Specific information about the developed process is as follows: 

• We selected two plants with 8 failures each one. 
• The remote monitoring variables for the input layer were: 

o Flow on HTF (l/s).  
o Working Temperature on HTF (ºC).  
o Ambient humidity (%). 
o The operation time of the pumps (days). 



o The modelled survival status. 
o The threshold neuron. 

• Periods for comparison were selected, to detect the existence of the failure 
mode and the most representative variables.  

• The data was reorganized, eliminating abnormal data that could distort the 
results. Values were normalized and with the same scale for all the input 
values to simplify calculations and analysis. Later the normalized values have 
to be de-normalized before comparison. 

• A single hidden layer with nine neurons is used (less than two times the 
number of the input neurons). 

 

In summary, the implementation of our proposed model is based on the two 
phases: 

1. The estimation, in a first step, of the survival function with a parametric 
GRP-II Weibull over two groups of the produced time to failures where the 
covariates are the same, one over the 8 failures of plant 1 and the other over 
the 8 failures of plant 2. Then, we obtain a characteristic α, β and q for each 
plant, only based on time to failures (no covariates are used at this level) as 
shown in Table 2. We take the Weibull Cumulative Distribution Function 
(CDF), maintaining the βnk in each time interval in each plant (for each 
group), and taking the α  !"# = T  !"# · Ln(2)!/!  !". As a result for each 
specific failure, the probabilities to failure ascend from 0 up to 1, next to the 
maximum failure time. In Table 2, the 16 failures with their time to failure 
(Tnkj) and the modified αnkj with the ponderation are shown for each plant. 

 
TABLE 2. GRP Weibull parameters and reorganization for parametric estimation of 

survival funciton. 
 

Plant 1 Plant 2 
j Tnkj αnkj j Tnkj αnkj 
1 299.53 271.28 1 181.78 167.38 
2 277.76 251.56 2 170.53 157.02 
3 163.78 148.33 3 288.00 265.18 
4 176.22 159.60 4 128.03 117.89 
5 149.21 135.14 5 277.89 255.87 
6 214.71 194.46 6 256.00 235.72 
7 136.59 123.71 7 194.00 178.63 
8 170.90 154.78 8 300.00 276.23 
αn1 220.00  αn2 247.00  
βn1 3.70  βn2 4.44  

 
2. The modelling, in a second step, of the survival function for each specific 

failure with adaptation of the parametric estimation according to covariates. 
For this purpose we have based it on the modified R&C ANN. The 
discretized time t(i) inside the intervals is selected according to the covariates 
influence in the degradation of the failure mode. Therefore all the inputs 



(covariates and CDF) are redefined with this period (notice that this requires 
the replication of covariates after each specific time to failure with their 
average value). In our example, for a population of six pumps (three per 
plant), and sixteen registered failures in three years, after filtering and 
reorganization, 914 discretized times are trained in the Survival ANN model. 
Consequently, the data to train and test the GRP-ANN are reorganized (see 
equation 9) as in Table 3 for plant 1 and failure number 3 (αnkj = 148.33, βnk= 
3.7). 

 

𝐼𝑓
0 ≤ 𝑡 ! ≤ 𝑇!"#

                                →

X!" i = real  value  of  vector  X!"𝑖𝑛  𝑒𝑎𝑐ℎ  𝑡 !

𝐶𝐷𝐹 𝑡 ! = 1− 1/𝑒𝑥𝑝 ! !

!!"#∙!" !
!
!!"

!!"

𝐼𝑓
[𝑇!"# ≤ 𝑡 ! ≤ max[𝑇!"#]

→
X!" i = 𝑋!"𝑜𝑓  𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠  𝑡 !   𝑡𝑜  𝑇!"#

𝐶𝐷𝐹 𝑡 ! = 1− 1/𝑒𝑥𝑝 ! !

!!"#∙!"(!)!/!!"

!!"

      

(9) 

TABLE 3. Reorganized Survival Data of failure 3 in plant 1 to train and test the 
ANN. 

 



Failure t(i) X1nk
(i), 

Operating 
Hours 

X2nk
(i), 

Ambient 
Humidity 

X3nk
(i), 

Working 
Temp 

X4nk
(i), 

Flow 
Normal 
Ravdin 
ANN 

X5nk
(i), 

Modified 
ANN, 

CDF(t(i)) 
3 10 10,385 97 291.00 324.42 0 0.00 
3 20 10,395 99 301.75 330.27 0 0.00 
3 30 10,405 94 322.50 341.57 0 0.00 
3 40 10,415 98 301.50 330.14 0 0.01 
3 50 10,425 100 306.25 332.72 0 0.02 
3 60 10,435 84 307.50 333.40 0 0.03 
3 70 10,445 65 299.25 328.91 0 0.06 
3 80 10,455 70 318.75 339.53 0 0.10 
3 90 10,465 91 307.75 333.54 0 0.15 
3 100 10,475 80 321.00 340.75 0 0.21 
3 110 10,485 65 327.75 344.43 0 0.28 
3 120 10,495 77 330.00 345.65 0 0.37 
3 130 10,505 99 304.00 331.50 0 0.46 
3 140 10,515 86 326.12 343.54 0 0.55 
3 150 10,525 87 324.13 342.46 0 0.65 
3 160 10,535 72 326.40 343.69 0 0.73 
3 170 10,545 85 313.48 336.66 1 0.81 
3 180 10,555 85 313.48 336.66 1 0.87 
3 190 10,565 85 313.48 336.66 1 0.92 
3 200 10,575 85 313.48 336.66 1 0.95 

 

The result, the output of the ANN model is the probability of failure estimation, 
developed from the GRP-II model, and with covariates affection as roughly 
proportional to Weibull Survival probability. The ANN analysis done, going through 
the processes of training, predictions and test, produced the results in Table 4. 

TABLE 4.  Data Set of variables. 

Variables of Vector Xnk Max. Ref. Min. Unit 
X1nk, Operating hours  20,000 15,000 0 h 
X2nk, Flow 600 300 55 Kg/s 
X3nk, Ambient humidity  100 75 25 % 
X4nk, Temperature 400 300 290 ºC 
X5nk, Survival Function 1 0.5 0  

 

The learning algorithm parameters were as follows: a) maximum number of 
cycles = 1000, b) maximum validation failures = 40, c) min_grad = 1.0e-10, d) goal 
= 0, e) µ = 0.005, f) µ _dec = 0.1, g) µ _inc = 10, h) λ = 0, i) min Error = 0.00001833. 
The results obtained in this case guarantee a good optimization model, as shown in 
Table 5. MSE (Mean Square Error), in the training and testing, validates the ANN 
signifying the average distance between the prediction obtained and the real 



production. Besides that, Table 5 shows the results of the model training process.  

TABLE 5. Results of Training in developed model. 

Results Value 
MSE training 90.02918 

MSE test 335.9361 
R2 training 0.948243 

R2 test 0.8262953 
 

Whereas, if we had used the Ravdin and Clark model directly, the results would 
have been with less accuracy (as Table 6 shows). 

TABLE 6. Results of Training with Ravdin and Clark. 

Results Value 
MSE training 352.2306 

MSE test 492.8387 
R2 training 0.8590198 

R2 test 0.7971156 
 

In this developed model, R2 is consistent with this result, explaining 94.8% of the 
predicted model. Figures 2 and 3 are a representation of deduced predictions. Figure 
2 show the training of both Ravdin and Clark ANN and Survival ANN with a dashed 
line. 2a) in the case of normal R&C ANN, and 2b) in the case of modified R&C 
ANN. Figure 3 has a straight line to indicate the best approximation for error 
minimization. For validation purposes, the 25% of historical data is used to estimate 
the generalization error.  

  
Fig.2. a) Normal R&C ANN training, b) Modified R&C ANN training. In both 

graphs straight lines are the modelled CDF and dashed lines are the predicted CDF 
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by the ANNs. 
 

 
Fig.3. Modified R&C ANN CDF - Y’(i) predictions versus Modelled CDF - Y(i). 

 
This case study has generated a good prediction of a real failure based on three 

year of data of it.  Using less than three years of data is possible, but to deduce 
covariate relationships with degradation may be difficult and the seasonal behaviour 
of some of them would degenerate future predictions. Our recommendation is to 
employ more than 2 years in the case of environmental influence. However, the 
number of discretized times in other applications may be less if the covariates are 
more stable over time. 

Returning now to the preventive maintenance, our mathematical tool allows one 
to implement an intelligent preventive maintenance strategy. The strategy is self-
adaptive to observed imperfection in repairs and the influence of selected covariates 
on potential failures. Finally the strategy can to trigger a preventive maintenance 
action according to two possible business rules: 

1. A rule based on a determined level of confidence or failure probability as 
general reference, Proportion of CDF(t(i)). In our case study, the level of 
estimated CDF(t(i)) which triggers preventive maintenance is 0.6. 

2. Another rule based on risk-cost-benefit Analysis. In this case, we can 
consider not only the failure probability, but also the cost of the possibility to 

reach its minimum expected value 𝐶 𝑡 ! = !"# ! !

! ! ∙ 𝐶𝑜𝑠𝑡!"##$!%&'$ +
!!!"# ! !

! ! ∙ 𝐶𝑜𝑠𝑡!"#$#!"#$%. That is, considered the risk of being preventive 
several steps ahead, and the risk of waiting for the failure (due to corrective 
unavailability).  

For the second business rule, the last step of the methodology is to obtain an on-
line economic estimation of risk, as in Figure 4. The idea is to determine the optimal 
interval between preventive actions (t(i)) (Campbell and Jardine, 2001) to minimize 
the total expected cost of the equipment maintenance per unit time. In order to do so, 
the criteria governing the PM action release is determined by comparing the 
economic value of risk (for a specific period to be selected) of the following two 
maintenance strategies: 

• Strategy 1: Doing preventive ASAP, This would restore the equipment to a 
certain condition minimizing the risk of a failure for certain period (in this 
case study this condition is reached by updating only covariate values to 
normal equipment operating condition values), but would cost the price of the 
corresponding preventive maintenance activity (in our case Costpreventive(t(i)) = 
14,500 €). This calculation is computed on-line and compared to the risk of: 
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• Strategy 2: Doing nothing.  The economic value of this strategy would be 
calculated by only computing the on-line risk of doing only corrective 
maintenance when failure takes place (in this case with a higher probability 
than if we follow strategy 1), 𝐶𝑜𝑠𝑡!"##$!%&'$(𝑡 ! ) = 8,000€+ !,!""€

!
∙

8ℎ = 90,440€ (where the average corrective cost of a corrective is 
considered to be about 8,000 € and the indirect cost 82,440 €, estimated as 
loss of profit 5,822 €/h with a MTTR = 8h).  

 

 

Fig.4. Risk-cost analysis based on expected costs and searching the right time to 
trigger preventive action. a) straight line is the the minimum expected cost, b) dashed 
line is the expected preventive cost, and c) dotted line is the expected corrective cost. 

 

When the on-line risk of doing nothing (Strategy 2) exceeds the risk of the PM 
activity (Strategy 1) to a certain extent, then PM maintenance is automatically 
released and accomplished. This risk exceeding extent is understood here as a 
company policy. Figure 4 shows this concept. For instance, between t(i) = 120 and 
140 days would be a moment in time where Strategy 2 risk increases more than the 
PM Strategy 1 risk, PM would then be scheduled and released. Note how decisions 
are therefore taken based on strategy probability risk numbers and on-line. 

Finally, the repercussions of the chosen prediction model have to be evaluated 
with a cost-benefit analysis, prior to their implementation and communication to the 
entire organization.  

The most vulnerable (and / or sensitive) points of these pumps are mechanical 
seals. They are responsible for preventing fluid leakage (dangerous fluid at high 
temperature and pressure). Thanks to this research, the associated risk to “damaged 
seals” failure mode could be reduced by 247,319 €/plant a year, with an estimated 
potential impact on the life cycle of the plant (25 years) of 7.24 M€. 

 

5. Conclusions 

Thermal Solar Plant managers want to ensure longer profitability periods with 
more reliable plants. To ensure profitability during the life cycle of the plant we must 
ensure critical equipment reliability and maximum extension of their life cycle, 
otherwise failure costs will penalize the expected profit.  
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Throughout this document, we suggest applying an ANN model per failure mode 
and we foster a practical implementation in SCADA systems for different plants. 
This methodology may ease and may improve decision-making and risk modelling, 
enabling reductions in corrective maintenance direct and indirect costs or allowing 
the display of residual life until total equipment failure. 

In cases when enough data for significant training is available, a better 
implementation of our methodology will help to reduce the costs and will improve 
the knowledge of the life cycle of the plant when suffering non-homogeneous 
operational and environmental conditions.  

ANN capacity for self-learning among sources of data (sometimes noised or 
deprived of communication) thanks to reiterative memory is important. In our case 
study, we had a vast quantity of data, although sometimes this data was affected by 
problems of sensor readings or communications. Back-propagation perceptron ANN 
is recommend for automation developments with real-time utilization. Furthermore, 
advanced ANN models could be applied when supporting additional variables. 
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