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Abstract: The aims of this paper are twofold. First, it is shown, for the first time, which types of
nonsmooth functions are characterized by all vector critical points as being efficient or weakly efficient
solutions of vector optimization problems in constrained and unconstrained scenarios on Hadamard
manifolds. This implies the need to extend different concepts, such as the Karush-Kuhn-Tucker
vector critical points and generalized invexity functions, to Hadamard manifolds. The relationships
between these quantities are clarified through a great number of explanatory examples. Second,
we present an economic application proving that Nash’s critical and equilibrium points coincide
in the case of invex payoff functions. This is done on Hadamard manifolds, a particular case of
noncompact Riemannian symmetric spaces.

Keywords: generalized convexity; Hadamard manifold; efficient solution; vector critical point;
Nash equilibrium point

1. Introduction

Firstly, our area of interest is the Hadamard manifolds. This paper is concerned with the pursuit of
solutions of optimization problems defined on Hadamard manifolds through critical points, where the
objective function may be nonsmooth. Optimal conditions are obtained under weaker assumptions
than those already existing in the literature.

The idea of convex sets in a linear space is based upon the possibility of connecting any two points
of the space using line segments. In nonlinear spaces such as Hadamard manifolds, linear segments
are replaced by geodesic arcs. The idea behind this is the same as the one that inspired the 19th century
geometricians who created non-Euclidean geometry.

The use of Hadamard manifolds has the following advantages:

(a) Nonconvex constrained problems in R" are transformed into convex ones in the Hadamard
manifolds (see [1]).

(b) Moreover, for example, the set X = {(cost,sint) : t € [rr/4,37t/4]} is not convex in the usual
sense with X C R?, but X is a geodesic convex on the Poincaré upper-plane model (H?, g7), as it
is the image of a geodesic segment (see [2]).

Secondly, in this paper, we consider the concept of invexity because of the great computational
advantages it offers. The optimality conditions that invexity involves are essential in obtaining optimal
points through the search for critical points with practical numerical methods. The invexity concept,
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introduced by Hanson [3], is an extension of differentiable convexity. A scalar function is invex if and
only if every critical point is a global minimum solution.

From the mind of Ben-Israel and Mond [4] the pseudoinvex functions emerged and although
in the scalar case these functions coincide with the invex ones in the vector case they are different
(see Ruiz-Garzoén et al. ([5], Example 3.2)).

Thirdly, the nonsmooth optimization formulation is found to have several clear advantages over
its smooth counterpart, the main one being that it produces exact solutions to optimization problems
while smoothing variants only produce approximate solutions (see Li et al. [6]). The importance of
generalizing optimization methods to locally Lipschitz functions lies in their applications. For example,
in controlled thermonuclear fusion research [7], engineering [8], stereo vision processing [9],
and machine learning or computer vision [10,11]. In the field of medicine, symmetric Riemannian
manifolds have been used in the analysis of medical images of tumor growth, as shown by
Fletcher et al. [12]. The space of diffusion tensors required in these cases is a curved manifold
named as a Riemannian symmetric space. In Bejenaru and Udriste [13], the authors extended
multivariate optimal control techniques to Riemannian optimization problems in order to derive
a Hamiltonian approach.

Finally, for this paper, special mention should be made of studies on Nash-Stampacchia equilibria.
Kristdly [2,14] studied the existence and relationship of Nash’s critical and equilibrium points
using strategy sets based on geodesic convex subsets of Hadamard manifolds and convex payoff
functions, taking advantage of the geometrical features of these spaces. Equilibrium theory plays a
very important role within the game theory created by von Neumann and Morgenstern [15] in 1944
and the development of the “Prisoner’s Dilemma" by Tucker and Nash in 1950 [16].

The state of the art is as follows. The initial idea for this article came from a paper written
by Kristdly [2] in which he relates Nash’s critical points and equilibrium points under conditions
of convexity.

Hosseini and Pouryayevali [17] presented a subdifferential calculus for locally Lipschitz functions
to prove Lebourg’s mean value theorem in Riemannian manifolds. Later, the same authors [18] obtained
necessary optimality conditions for an optimization problem on complete Riemannian manifolds,
but they did not obtain characterizations. Kiligman and Saleh [19] presented a Karush—-Kuhn-Tucker
sufficient optimality condition as well as a new Hermite-Hadamard-type integral inequality using
differentiable sub-b-s-preinvex functions.

Other authors, such as Papa Quiroz and Oliveira [20], have used the concept of subdifferentials
on Hadamard manifolds to prove the global convergence of their method of solving optimization
problems to the critical point of a function.

Bento and Cruz [21] developed a subgradient-type method for solving non-smooth vectorial
optimization problems. Their method converges to a Pareto optimal point through a vector critical
point on a manifold with nonnegative sectional curvature.

In 2012, Colao et al. [1] proved the existence of a Nash equilibrium point on Hadamard manifolds
under the condition of convexity of the payoff functions.

Chen et al. [22] discussed how to obtain efficient solutions involving generalized invex functions
and Karush-Kuhn-Tucker (KKT) sufficient conditions on Riemannian manifolds.

In 2014, Boumal et al. [23] authored a Matlab toolbox for optimization on manifolds
(www.manopt.org). An extension of optimization methods for solving minimization problems
on Hadamard manifolds when the objective function is Lipschitz was proposed by Grohs and
Hosseini [24].

In 2016, Gutiérrez et al. [25] provided a characterization of pseudoinvexity through the vector
critical point and found efficient solutions to multiobjective optimization problems using Lipschitz
functions on linear spaces. Two years later, Ruiz-Garzoén et al. [26] extended these properties on
Riemannian manifolds in the smooth case. In 2019, Ruiz-Garzon et al. [27] showed the existence
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of KKT optimality conditions for weakly efficient Pareto solutions for vector equilibrium problems,
with particular focus on the Nash equilibrium problem, but only in the differential case.

Contributions. The aim of our work is to characterize the types of nonsmooth functions for which
the critical points are solutions to constrained and unconstrained optimization problems on Hadamard
manifolds and to extend the results obtained by Gutiérrez et al. [25] and Ruiz-Garzén et al. [26] on
linear spaces.

For this aim, in Section 2, we introduce a number of different generalized invexity concepts
(pseudoinvexity and strong pseudoinvexity, respectively) and consider the so-called generalized
Jacobian, a natural subdifferential associated with a locally Lipschitz function. We illustrate these new
definitions of functions with examples on Hadamard manifolds.

In Section 3, the concept of pseudoinvexity allows us to determine efficient and weakly efficient
Pareto solutions of an unconstrained vector optimization problem through an adequate nonsmooth
vector critical point concept. As a particular case, we show that, in the scalar case and on Hadamard
manifolds, the invexity and pseudoinvexity concepts coincide.

In Section 4, the vector critical point and pseudoinvexity concepts are extended from
unconstrained to constrained vector optimization problems. We analyze the necessary characteristics
of the objective and constraint functions of a vector optimization problem so that the KKT vector critical
point is an efficient and weakly efficient solution on Hadamard manifolds in the nonsmooth case.

In Section 5, we prove the equivalence between Nash critical and equilibrium points with invex
payoff functions. Finally, Section 6 presents the conclusions to this study.

2. Preliminaries

Let M be a Riemannian manifold endowed with a Riemannian metric g on a tangent space Ty M.
The corresponding norm is denoted by ||.||x and the length of a piecewise C! curve a : [a,b] — M is
defined by

L@ = [ I (1)l

Let d be the distance that induces the original topology on M, defined as
d(x,y) = inf{L(«)| ais a piecewise C! curve joining x and y, Vx,y € M}

It is known that any path « joining x and y in M such that L(«) = d(x,y) is a geodesic, and is
called a minimal geodesic. If M is complete, then any points in M can be joined by a minimal geodesic.

The derivatives of the curves at a point x on the manifold lie in a vector space T, M. We denote by
Ty M the n-dimensional tangent space of M at x, and denote by TM = |J,cp; TxM the tangent bundle
of M. Let TM be an open neighborhood of M such thatexp : TM — M is defined as exp, (v) = ay(1, x)
for every v € TM, where «, is the geodesic starting at x with velocity v (i.e., 2(0) = x, a/(0) = v) [22].
It is easy to see that exp, (tv) = ay(t, x).

Let# : M x M — TM be a map defined on the product manifold such that

n(x,y) € T,(M), Vx,y € M.
Of all the classes of Riemannian manifolds, this work is dedicated to the Hadamard manifolds.

Definition 1. Recall that a simply connected complete Riemannian manifold of nonpositive sectional curvature
is called a Hadamard manifold.

Let M be a Hadamard manifold. Then, exp, : TxM — M is a diffeomorphism, and for any two
points x,y € M, there exists a unique minimal geodesic &y, = exp, (t exp; 'y) forall t € [0,1] joining
xtoy.

We now define a generalization of the concept of convex sets and convex functions in R":
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Definition 2. [28] A subset X of M is said to be a geodesic convex if, for any two points x,y € X, the geodesic
« of M has endpoints x and y belonging to X; that is, if « : [0,1] — M such that «(0) = x and «(1) =y,
then a(t) € X forall t € [0,1]. Furthermore, on a Hadamard manifold, X is a geodesic convex if and only if
expy(ifexp;1 x) € X.

Definition 3. [28] Let M be a Hadamard manifold and X C M be a geodesic convex. A function 6 : X — Riis
said to be convex if, for every x,y € X,

Oaxy(t)) < tf(x) + (1= 1)f(y), vie[01]
where a(t) = expy(t expy_1 x) for every t € [0,1].
Let us now recall the following concepts in the nonsmooth case.

Definition 4. A real-valued function 0 defined on a Hadamard manifold M is said to satisfy a Lipschitz
condition of rank k on a given subset X of M if |6(x) — 0(y)| < kd(x,y) for every x,y € X.

A function 6 is said to be Lipschitz near x € M if it satisfies the Lipschitz condition of some rank on an
open neighborhood of x.

A function 6 is said to be locally Lipschitz on M if 8 is Lipschitz near x for every x € M.

Example 1. The space of symmetric n x n positive-definite matrices S(n,R) endowed with the Frobenius
metric defined by < U,V >= tr(U, V) is an example of Hadamard manifold. If A4, ..., A, denote the n real
eigenvalues of A € S(n,R) then A : S(n,R) — R is a locally Lipschitz function.

With Lipschitz functions, generalized gradients or subdifferentials replace the classical derivative.

Definition 5. [24] Suppose 6 : M — R is a locally Lipschitz function on a Hadamard manifold M. Given
another point y € M, consider a,(t) = exp~!(tw) to be a geodesic passing through y with derivative w.
Then, the Clarke generalized directional derivative of 6 at x € M in the direction v € TxM, denoted by GO(x, v),
is defined as

0(ay,(t)) —6(y)

t

0°(x,v) = limsup
y—x,tl0

Definition 6. We define the subdifferential of 0 at x, denoted by 06(x), as the subset of T M with the support
function given by 0°(x;.), i.e., for every v € TyM,

0°(x,v) = sup{< A,v>: A € 38(x)}
It can be proved that the generalized Jacobian is

96(x) = conv{lim gradf(x;) : {x;} C X, x; — x}
1—00

where X is a dense subset of M on which 6 is differentiable and conv(-) denotes the convex hull.
We briefly examine some particular cases.

(@) When 0 is a locally Lipschitz convex function, we have 6°(x;v) = 6/(x;v) for all x € M. For a
convex function 6 : M — R, the directional derivative of 6 at the point x € M in the direction
v € TyM is defined by

0'(x,0) = lim "(eXPx(tz;)) —6(x)
t—0+
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and the subdifferential of 6 at x is
90(x) = {A € TeM| 0'(x;v) >< A,v >, Vo € TyM}

(b) If 6 is differentiable at x € M, we define the gradient of 6 as the unique vector gradf(x) € T,M
that satisfies
d0y(v) =< grad6(x),v > Vove T:M

However, for the vector function f = (fi,..., fy) : M — RP, the generalized Jacobian 9f(x) is
contained and, in general, is different from the Cartesian product of Clarke subdifferentials of the
components of f.

We denote by R’ the nonnegative orthant of R?, and the order in R? is defined in the usual
way:y,ze R, y<z&z—y € RZ where int R”. denotes the interior of R”. in R” and — intR¥. the
opposite of the interior (see [29]).

The notions of generalized invexity introduced by Osuna-Gémez et al. [30] for differentiable
functions, and later by Gutiérrez et al. [31] for locally Lipschitz functions using the generalized Jacobian
in a finite-dimensional context, can be extended to Hadamard manifolds as follows.

Definition 7. Let M be a Hadamard manifold, X be an open geodesic convex subset of M,y : M x M — TM
be a not necessarily differentiable function, and f : X C M — RP be a locally Lipschitz function. The function
f is said to be:

(a) Invex (IX) at X with respect to 7 on X if, Vx € X C M, there exist some 17(x,X) € TeM, A € 9f(X)
such that

f(x) = f(x) = An(x,7) € RE.

(b) Pseudoinvex (PIX) at X with respect to n on X if, Vx € X C M, there exist some 1(x,%) € TzM,
A € 9f(X) such that

f(x) — f(z) € —intRY. = Ap(x, %) € —intRE.

(c) Strong pseudoinvex (SGPIX) at % with respect to nj on X if, Vx € X C M, there exist some n7(x, %) € TeM,
A € 9f(X) such that

f(x) — (%) € —R? \ {0} = Ap(x,%) € —intR".

The function f is said to be invex (resp. pseudoinvex, strong pseudoinvex) with respect to n on X if,
forevery x € X, f is invex (resp. pseudoinvex, strong pseudoinvex) at x with respect to 5 on X.

The following examples illustrate the above definitions and relations on Hadamard manifolds.

Example 2. Let Q = {p = (p1,p2) € R? : pp > 0} be a set and let G be a 2 x 2 matrix defined by
G(p) = (8ij(p)) with
1
gu(p) = gn(p) = . 12(p) = gz(p) =0
2
Endowing Q) with the Riemannian metric < u,v >=< G(p)u,v >, we obtain a complete Riemannian
manifold H?, namely, the upper half-plane model of hyperbolic space.
Let f(p) = (f1, f2)(p1, p2) : Q — R? be a function with f1(p1, p2) = p1 + 5pp and

—3p1+3 if p1<1
fa(prp2) = ¢ 0 if 1<p <2
p1—2 if p1>2
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The function f is invex on Q) because its components are linear functions, i.e., convex and concave
functions simultaneously.

Example 3. Let f(p) = (f1, f2)(p1, p2) : Q — R? be a function with f(p) = (|p1 + p2|, —|p1 + p2|)-
The function f is strong pseudoinvex with respect to any 11 because f(p) — f(p) € —RE_\ {0} is not satisfied
forp e QL

Example 4. Let Q) be the upper half-plane model of hyperbolic space with the Riemannian metric < u,v >=
< G(p)u,v >, let G be a2 x 2 matrix defined by G(p) = (g;j(p)) with

g11(p) = gn(p) = pl% g12(p) = g21(p) =0

and A = G(p)~'VO(p) € af(p). Let f(p) = (fi, f2)(p1,p2) : Q — R2? be a function defined as
fi(p1,p2) = prand
-1, if p1<0
fo(prp2) =4 0, if 0<p1<1
1-— pP1, lf p1 > 1

We are going to prove that f is a pseudoinvex function but not strong pseudoinvex or invex.
We have that the following:

(@) Ifp1 <O0orpy >1,then

B p2 0 1 0 v B p2 0 v o pzv
fo(p’”)_<< 0 p§><—1 0>’<v;>>_<—r2% 0><v;>_<—z§%;ﬂ>

(b) Ifpy=00rpy =1and -1 <a <0, then

B p2 0 1 0 v B p2 0 v - pzv
roo= () (o) ()= (5 ) () - ()

(c) If0 < py <1,then

2 0 1 0 2 20 v 2771
o2 3)( ) (2)-(22)(3)- (%)

In summary,

2
P2 8) ifpr <0orp; >1

—p3
p5 0 . .
of (p) = psa 0 ifpr =00rpy =1with —1<a <0

2
(%2 8) if0<p; <1

The function f is pseudoinvex with respect to every n(p,p) = 3p — p = (v1,v2) on Q because f(p) —
f(p) € —intR?% implies that f should be nondecreasing, but f, is nonincreasing and this previous condition is
not satisfied.
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Howewver, f is not strong pseudoinvex on Q with respect to any 1(p, p) = (v1,v2) because we can choose
p=(01),p=(1,1) and

2
_ p; O
A= ( pla 0 ) €9f(1,1)

f(p) = f(p) = £(0,1) = £(1,1) = (0,0) — (1,0) = (—=1,0) € —=R3 \ {(0,0)},

but there exists no 17(p, p) = (v1,v2) € TpQ such that An(p, p) = (p3v1, p3av1) € —intR3 with
-1<a<0.

In the same manner, f is not invex on Q) because if we choose p = (0,1) and p = (1,1), there exists no
1(p, p) = (v1,v2) € TpQ) such that

and then

f(p) = f(p) = An(p,p) = (0,0) = (1,0) — (p3o1, pave) € RE Va € [-1,0]. )

Expression (1) implies that —1 > vy and 0 > avq, but for a = —1, there is a contradiction between them.
In summary, it is well known that invexity and strong pseudoinvexity imply pseudoinvexity (see [31]),
but we have found that pseudoinvexity does not imply either invexity or strong pseudoinvexity.

IX = PIX < SGPIX

We now have all the tools required to discuss critical points and solutions of vector optimization
problems in the next section.

3. Relations between Solutions of Vector Optimization Problems and Vector Critical Points on
Hadamard Manifolds

The objective of this section is to check whether nonsmooth optimality conditions obtained in
linear spaces can be extended to Hadamard manifolds.

In Ruiz-Garzén et al. [26], we studied the role of invexity in the scalar case on Riemannian
manifolds for the differential scenario, but not that of pseudoinvexity. In this section, we study the role
of pseudoinvexity in both the scalar and vector cases on the Hadamard manifolds in unconstrained
VOPs when the functions are nondifferentiable. We examine when vectorial critical points coincide
with efficient and weakly efficient points.

In this section, we consider the unconstrained multiobjective programming problem (VOP)
defined as:

(VOP)  min f(x)
xeXCM

where f = (fi,...fp) : X C M — RP, with f; : X C M — Rforalli:1,...,p, locally Lipschitz
functions on the open set X C M, and M assumed to be a Riemannian manifold.
Let us recall two classic concepts of vectorial optimization:

Definition 8. A feasible point X is said to be:

(a)  An efficient solution for (VOP) if there does not exist another feasible point x such that
f(x) = f(x) € —RE\ {0}.
(b) A weakly efficient solution for (VOP) if there does not exist another feasible point x such that

f(x) — f(%) € —intRE.
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We now study some relations between solutions of (VOP) and vector critical points. We will start
by defining the concept of the vector critical point:

Definition 9. Let M be a Hadamard manifold, X be an open geodesic convex subset of M, and f : X C M —
R? be a locally Lipschitz function. A feasible point X € X is said to be a vector critical point (VCP) with respect
to 1 if there exist some x € X C M with 11(x,%) € TeM not identically zero and A € R, \ {0} such that
ATAn(x,x) = 0 for some A € 9f(%).

The importance of VCPs in obtaining weakly efficient points (efficient points) can be illustrated
through a characterization of pseudoinvexity (resp. strong pseudoinvexity).

Theorem 1. Let M be a Hadamard manifold, X be an open geodesic convex subset of M, and f : X C M — RP
be a locally Lipschitz function. Every VCP with respect to 17 is a weakly efficient solution of (VOP) if and only if
the function f is PIX with respect to the same 1 on X.

Proof. Firstly, we prove that f is pseudoinvex with respect to 7.

(a) We consider two points x, ¥ € X and assume that f(x) — f(¥) € —intR". Then, % is not a
weakly efficient solution of (VOP). By the hypothesis, we derive that X is not a VCP with respect
to 7, i.e., there do not exist some x € X C M with 5(x,%) € T¢M not identically zero and
A € RE\ {0} such that AT Ay (x, %) = 0 for some A € 9f (). It follows from ([29], Theorem 5.1)
that Az(x, %) € —intRY and f is PIX.

(b) For any points x, ¥ € X such that f(x) — f(%) ¢ — intR’, we define 77(x, %) = 0, and therefore f
is PIX with respect to 77 on X.

We now prove the sufficient condition. We assume by hypothesis that f is PIX with respect to %
and that ¥ is a VCP with respect to the same 7. Thus,

AT An(x,%) =0 )

for some x € X C M with 5(x, %) € TeM, A € RE.\ {0}, and A € 9f ().

We need to prove that ¥ is a weakly efficient point. By reductio ad absurdum, suppose that ¥
is not a weakly efficient solution of (VOP). Then, there exists a point x € X such that f(x) — f(%) €
—int Rﬁ. Using the fact that f is PIX at X with respect to 7 on X, we have Ay (x,%) € —int Ri, and so
ATAn(x, %) < 0, which contradicts (2). O

In the same way, we can prove the following corollary.

Corollary 1. Let M be a Hadamard manifold, X be an open geodesic convex subset of M, and f : X C M — RP
be a locally Lipschitz function. Every VCP with respect to v is an efficient solution of (VOP) if and only if the
function f is strong pseudoinvex (SGPIX) with respect to 1 on X.

Let us underline that Theorem 1 and Corollary 1 show that pseudoinvexity (resp. strong
pseudoinvexity) is a minimal requirement for the property that every VCP is a weakly efficient
(resp. efficient) solution of problem (VOP) on a Hadamard manifold in the nonsmooth case.

In summary, we have that

[VCP < WEff(VOP)] < PIX
[VCP < Eff(VOP)] < SGPIX

Theorem 1 extends Theorem 2.2 of Osuna et al. [30] and Theorem 5 of Gutiérrez et al. [25] from
linear spaces to Hadamard manifolds.
Next, an example is given to demonstrate the applicability of the previous results.



Symmetry 2020, 12, 804 9of 16

Example 5. Consider the unconstrained vector optimization problem:

(VOP)  minf(p) = (fi, f2)(p1, p2)
subjectto  p € Q)

Consider the function f of Example 4. It was proved that f is pseudoinvex with respect toyj(p,p) =3p —p
on Q= {p=(p1,p2) € R?:pp, > 0}.

It is easy to choose some x € X C M with 17(x, %) € TeM not identically zero and A € RF.\ {0} such
that AT An(x, %) = 0 for some A € 9f (%), and therefore VCP = Q. By applying Theorem 1, we conclude that
WE(f(VOP) = Q.

For scalar functions, we can go one step further.

Corollary 2. Assume that 6 : () — R is locally Lipschitz and X C () is open. Then, the following statements
are equivalent:

(a) 8 is invex (IX) with respect to y on X.
(b)  Every critical point (CP) of 8 with respect to 7 on X is a global minimum of 6 on X.
(c) 0 is PIX with respect to 11 on X.

Proof. (a) = (b) If 0isIX at %, then Vx € X C M there exist some 7(x, ¥) € TrM, A € 96(x) such that
0(x) —6(x) — An(x,x) = 0 ®
If ¥ is a VCP, then there exists some A > 0 such that
A Ay(x,%) =0 (4)
for some A € 90(%). From (3) and (4), this implies that
f(x)—0(x) >0

and thus, ¥ is a global minimum.
(b) = (a) We will prove that, Vx € X C M, there exist some #(x, %) € TzM, A € 90(x) such that

0(x) —06(x) — An(x,x) >0

o  Firstly, if
0(x)—0(%) <0 ®)

then there exist some 7(x,%) € TgM, A € 096(%) such that An(x,x) < 0. This is because,
if An(x,%) > 0, then x will be a VCP and ¥ is a global minimum, i.e.,

f(x) —6(%) >0, Vxe X

which contradicts (5).

Therefore, Ay (x, %) < 0. Then, as 8°(x, -) is positively homogeneous, it follows that 8(x) — (%) >
An(x,x), and thus 6 is IX with respect to 77(x, X) = tv, where t is an arbitrary positive real number.
e  Secondly, if
f(x) —6(x) >0

then 6 is IX with respect to #(x, x) = 0.

(b) < (c) The result is given by Theorem 1. [J
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In summary,
[CP < Minimum]| < IX < PIX

Corollary 2 provides us with a necessary and sufficient invexity condition for locally Lipschitz
functions on Hadamard manifolds. It extends a result given by Gutiérrez et al. [25] for Euclidean
spaces. In Ruiz-Garzén et al. [26], only invexity was characterized on Riemannian manifolds; now,
we have shown that invexity and pseudoinvexity coincide. They describe a wider class of differentiable
and locally Lipschitz functions in which the critical points are global minima in unconstrained problems
on Hadamard manifolds.

The question that now arises is whether, in the case of the constrained vector optimization
problem, solutions and vector critical points also coincide when applying pseudoinvexity assumptions.

4. Relations between Solutions of the Constrained VOP and KKT VCPs on Hadamard Manifolds

The objective of this section is to extend the results obtained in the previous section for the
unconstrained case to the constrained case. We want to determine the conditions under which KKT
VCPs and efficient and weakly efficient points coincide.

We consider the constrained multiobjective programming problem (CVOP) defined as:

(CVOP) min f(x)
§(x)=<0
xeXCM

where f = (fi,...fp) : X CM = RP, with f; : X C M — Rforalli:1,...,p,g = (81,...,8m) : X C
M — R™ are locally Lipschitz functions on the open set X C M, and M is a Riemannian manifold.
As for the unconstrained case, we are going to use KKT VCPs, which are defined as follows.

Definition 10. A feasible point X for (CVOP) is said to be a KKT VCP with respect to 1 if there exist some
x € X C Muwithy(x,%) € T:M, A e RP, p € R™, A € 9f (%), Bj € 9g;(%), j € I(x) such that

ATAR(x,%) + p(5) Bir) (x,%) = 0 (6)
u'g(x) =0 @)

1=0 8)

A>0 )

where [(x) = {j=1,...,m: g;j(x) = 0}.

A new type of invex function that involves the objective and constraint functions is needed to
study the efficient solutions for (CVOP) using KKT VCPs.

Definition 11. Problem (CVOP) is said to be KKT-pseudoinvex (KKT-PIX) at % with respecttony : M x M —
TMif,Vx € X C M, there exist some 17(x, X) € TeM, A € of(x), Bj € 9g;(%), j € I(%) such that

= . P
An(x, %) € —intR!,

f(x) = f(%) € —intR =
By(s)n(x, %) € —RE\ {0}

Definition 12. Problem (CVOP) is said to be strong KKT-pseudoinvex (SG-KKT-PIX) with respect to 1 :

M x M — TMif, Vx € X C M, there exist some 1(x,%) € TzM, A € 9f(%), Bj € dgj(%), j € I(x

such that

An(x,x) € —intRE

(x) = f(x) € =RE\ {0}
fe=J " N { By (x, %) € =R\ {0}
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Remark 1. Obuiously, if there are no constraints, these definitions coincide with those given in the preliminaries
and are an extension to Hadamard manifolds of those given by Osuna et al. [30,32] and Gutiérrez et al. [31].

The following theorem shows us the importance and usefulness of (CVOP) being SG-KKT-PIX in
locating the efficient points through the KKT-VCP points.

Theorem 2. Every KKT-VCP with respect to 1 is an efficient solution of (CVOP) if and only if (CVOP) is
SG-KKT-PIX with respect to the same 1.

Proof. We prove that (CVOP) is SG-KKT-PIX with respect to 7 at x. Let us suppose that there exists
some x € X C M such that

f(x) = f(x) € =R\ {0}, (10)

because otherwise (CVOP) would be SG-KKT-PIX with respect to #, and the result would be proved.
From (10), we have that ¥ is not an efficient solution, and using the initial hypothesis, ¥ is not a
KKT-VCP, i.e., then there exist some A € df(%), B; € dgj(%), j € I(X) where

)\ Av + ‘ul( )B[(x)v =0

has no solution A > 0, ji 1(x) 20. Therefore, by Motzkin’s Alternative theorem [33], the system

Av <0
BI(X)ZJéo, j€ I(f)

has the solution v = 7(x, %) € Tz M. In consequence, (CVOP) is SG-KKT-PIX.

Let us now prove the reciprocal condition. Let ¥ be a KKT-VCP with respect to 17 and (CVOP) be
SG-KKT-PIX with respect to the same 7. We have to prove that ¥ is an efficient solution for (CVOP).
By reductio ad absurdum, consider a feasible point x such that

f(x) = f(x) € —RE\ {0}

By hypothesis, (CVOP) is SG-KKT-PIX with respect to # at X if, Vx € X C M, there exist some
n(x,x) € TsM, A € 9f(X), Bj € 9gj(%), j € I(X) such that

An(x, %) € —intRF } an

Bz (x, ) € =R\ {0}

As % is a KKT-VCP, then 3(A,

fiz) =0, A # 0and v = 7(x, %) € T¥M not identically zero such
that there exist A € df (%), B; € 9g;(%), j €

I(x) for which

ATAn(x, %) + fif 5By (x,7) = 0 (12)
However, as A > 0, i; 1520 and from (11), it follows that

AT An(x, %) + ﬁIT(x)Bl(x)iy(x,X) <0

which contradicts (12). Therefore, ¥ is an efficient solution for (CVOP). [

Arguing in the same form, we can prove the following corollary.

Corollary 3. Every KKT-VCP is a weakly efficient solution of (CVOP) if and only if (CVOP) is KKT-PIX with
respect to 1.
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In summary, we have that:
[KKT-VCP < WEff(VOP)] < KKT-PIX
[KKT-VCP < Eff(VOP)| < SG-KKT-PIX

These results extend Theorem 3.7 and Corollary 3.8 obtained by Ruiz et al. [26] on Hadamard
manifolds from the differentiable case to the nondifferentiable case, and extend Theorem 3.7 obtained
by Osuna et al. [32] or Theorem 2.3 obtained by Osuna et al. [30] in finite-dimensional Euclidean spaces.

We illustrate the above results with an example.

Example 6. Consider the following constrained vector optimization problem:

(CVOP) min f(p) = (f1,f2)(p1, p2)
subjectto  g1(p) =2p1—1>0

$(p)=p2—1/2>0
peQ

-p1,  if p1<0
where f1(p1,p2) = prand fr(p1,p2) = 0, if 0<p; <1
I—p if p1>1

Let Q) be the upper half-plane model of hyperbolic space and use the Riemannian metric. We will prove that
p = (1/2,1/2) is a weakly efficient solution for (CVOP). There exists n(p,p) = 3p — p = (1,0) such that

o= (5 ) (6 5) ()= (85) () -(%)
o =(5 3 )(33) (o )=(% 1) (5)=(T)

and we can choose A = u = (0,1) such that

S o

ATAy(p, B) + p1()Bi(pyn (P, P) = 0
n'g(p) =0
pz0
A>0

hold. Thus, p = (1/2,1/2) is a KKT-VCP and (CVOP) is KKT-PIX with respect to the same 1 = 3p — P.
By Corollary 3, p is a weakly efficient solution.

5. Application: Relations between Nash Equilibrium Points and Nash Critical Points

In this section, we relate Nash’s equilibrium and critical points. A Nash strategy requires n
players, each optimizing his own criterion given that all other criteria are fixed by the rest of the
players. When no player can further improve his criterion, then a change of strategy by one player
does not cause the other players to change their strategies. In this case, the system has reached a state
called Nash equilibrium. When the equilibrium is achieved, none of the players has an incentive to
unilaterally deviate from this point. In general, there may be one or more Nash equilibrium points.

The following concepts were described by Kristaly [2].
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Definition 13. Let Ky, ..., K, be the nonempty sets of strategies of the players and f; : K = Ky x,..., xK; —
R be the payoff functions. A point p = (p1, ..., pn) € Kis a Nash equilibrium point (NEP) for (f,K) if

filp:ai) = fi(p) Vgi€K, i=1,...,n
where (p;q;) = (p1,---,9i,-- -, Pn)-

Definition 14. Let M; be complete finite-dimensional Riemannian manifolds, K; C M; be nonempty, geodesic
convex sets, and f; : (K; D;) — R be functions such that D; 5 q; — fi(p; q;) is locally Lipschitz for every
p € K, where (K; D;) = Ky X ..., xD; X ... Ky, with D; open and geodesic convex and K; C D; C M; with
i=1,2...,n. Apoint p € Kis a Nash critical point (NCP) for (f,K) if

flo(p,exp;il(qi)) >0, Vq;€K, i=1,...,n

We can relate Nash’s critical points and equilibrium points in the following theorem, the proof of
which contains steps similar to that used for Proposition 1.2 of Kristaly [2]:

Theorem 3. Any NEP for (f,K) is an NCP. If q; — fi(p; q;) is invex with respect to y(p;, q;) = exp};il(qi)
foreveryp € K, i =1,...,n, the converse also holds.

Proof. Let p € Kbe an NEP for (f,K) V fixedgq; € K, i =1,...,n. Then,

fi (Prexpy, (texp, () — filp) = 0, vt € [0,1] (13)
Additionally,
Jm fi(p;qi) = fi(p) (14)

and for every t € [0, 1] we have

. i — ~1(g
bt “%exp;f(qi)(t) — Py (t P (q1)> 0

Note that

£ (97 expr ) ) (0= i)

£ (pexpy, ! (i) = limsup ; (16)
qi—=pitl0*
Therefore, from (14)—(16), it follows that
£ (pexp,H(g:) 2 0 (17)
Thus, p € Kis an NCP for (f, K).
We will prove the sufficient condition. Suppose that p € K is an NCP for (f, K). We have
fi (prexp, (texp, 1 (q:) ) — fi(p)
0< f(p,exp,!(4:) = lim (e, p! 1) (18)
! t—0+ t
Based on the invexity of f;, (17) implies that
0 < fi (prexp,, (exp, (3)) = filp) = fipiai) — fi(p) (19)

Thus, p is an NEP for (f,K). O
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We have proven that the relationship between Nash’s critical and equilibrium points is obtained
for invex payoff functions, extending the results obtained for convex payoff functions given by
Kristaly [2].

In summary, in invexity environments, we have that:

NCP < NEP

Let us illustrate this property with an example.
Example 7. Let K1 = Ky = [—2,2] and consider a two-player game with payoff functions defined as:

filxy) =x* =3x+|xly
2
falxy) =% —xy

We are going to prove that the point (%,i) = (1,1) is an NEP and an NCP simultaneously.

We have that f1(-,y) is a locally Lipschitz function on R for every y € Ky and f»(x,-) is C! function on
R for every y € K.

One hand, we can calculate the subdifferential:

2x —=3+y, if x>0
afi(x,y) =4 2x—3—y, ifx <0
2x—3+44a, -1<a<1, ifx=0

Ifa(x,y) =y —x
The NCPs are the solutions (%, i) € K of the system:

| &

(& 7),expz(9) =< 9f1(%,7), (g —%) >>0 Vge Ky
RB(x7),exp; () = F-%)(g-7) >0, Vg€ Ky

On the other hand, one way to get the NEP is through the rational reaction sets. For two players, let R; be
the rational reaction set for player i. For example,

R1 = {(x,y) € Ky x Ky such that f1(x,y) < f1(x,y)}

Ry = {(x,7) € Ky x Ky such that fo(x,7) < fa(x,y)}

We can calculate the partial derivative:

ofi(x,y) | 2x—3+4+y, ifx>0
oax | 2x—3—y, ifx<0

df2(x,y)
dy

The NEP is obtained from the intersection of the two rational reaction sets:

Ri={x] Y g
Re= (o LY o)
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Obviously, Ky = Ky C M = R are convex. Additionally, f1(-,y) is a convex function and threfore
an invex function on Ky for every y € Ky and f(x,-) is invex on K, C R for every x € Kj. In our case,
this solution is the point (%,) = (1,1), which is both an NEP and an NCP.

6. Conclusions

This paper has shown, for the first time, which types of functions are characterized by all
VCPs being efficient or weakly efficient solutions of vector optimization problems with and without
constraints on Hadamard manifolds. We have extended the results given by Gutiérrez et al. [25]
and Ruiz-Garzoén et al. [26] from linear spaces to nonlinear spaces and in the more general case
of nonsmooth functions. We have introduced a great number of explanatory examples, and have
presented an economics application showing that Nash’s critical and equilibrium points coincide in
the case of invex payoff functions.

The results presented in this paper lead to the following conclusions:

e  There is a need to extend the different concepts of invexity to Hadamard manifolds and clarify
the relationships between them.

e Itisimportant to use an adequate definition of VCPs or KKT-VCPs.
e There are applications of invexity in the search for equilibrium points, which are so desirable
in economics.

In our opinion, in the future, we should search for algorithms or software that reflect the theoretical
results achieved here, and identify further applications in the fields of physics and economics.
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