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The emergence of directed motion is investigated in a system consisting of a sphere immersed in a viscous
fluid and subjected to time-periodic forces of zero average. The directed motion arises from the combined action
of a nonlinear drag force and the applied driving forces, in the absence of any periodic substrate potential.
Necessary conditions for the existence of such directed motion are obtained and an analytical expression for the
average terminal velocity is derived within the adiabatic approximation. Special attention is paid to the case of
two mutually perpendicular forces with sinusoidal time dependence, one with twice the period of the other. It is
shown that, although neither of these two forces induces directed motion when acting separately, when added
together, the resultant force generates directed motion along the direction of the force with the shortest period. The
dependence of the average terminal velocity on the system parameters is analyzed numerically and compared with
that obtained using the adiabatic approximation. Among other results, it is found that, for appropriate parameter
values, the direction of the average terminal velocity can be reversed by varying the forcing strength. Furthermore,
certain aspects of the observed phenomenology are explained by means of symmetry arguments.
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I. INTRODUCTION

The generation of directed motion of particles in nonlinear
systems subjected to deterministic and/or stochastic unbiased
driving forces has been an active research topic over the
past decades [1–3]. This phenomenon—commonly known
as ratchet effect—has been studied extensively in fields as
diverse as biophysics [4], nanotechnology [5], granular media
[6], and spatially extended nonlinear systems [7,8]. On the
theoretical side, much work has been focused on understanding
the mechanisms by which nonlinearity and symmetry breaking
cooperate to favor motion in one direction [2,3].

One class of ratchet models that has received considerable
attention in the literature is the so-called rocking ratchet [9]. In
the rocking ratchet, particles moving in a periodic substrate
potential also experience a periodic or quasiperiodic time-
dependent force of zero average. Although most of the works
also consider the presence of random forces, noise is not a
crucial element [10,11]. In this class of models, the mechanism
behind the generation of directed motion is basically harmonic
mixing [3,8,12]. For this mechanism to be effective, certain
spatiotemporal symmetries [13], supersymmetries [14], and
hidden symmetries [15] must be broken. Alternative ways of
breaking these symmetries have also been investigated in a
two-state Brownian motor, realized with Brownian particles
alternating between two phase-shifted, symmetric potentials
[16]. It should be noted that, in the traditional rocking ratchet,
the friction forces, if any, are assumed to be linear in the
velocities of the particles. Consequently, the appearance of
harmonic mixing is solely due to the substrate potential, which
is the only source of nonlinearity in the system.
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However, there are situations in which friction cannot be
assumed to be linear in the velocities of the particles. This is
the case, for instance, of the drag force—a type of friction that
acts on bodies moving in viscous fluids—at Reynolds numbers
beyond the Stokes range [17]. Nonlinear friction forces also
appear in other fields such as in the active Brownian motion
[18], which describes the motion of self-propelled organisms,
in the relativistic Brownian motion [19], as well as in the
Brownian motion with dry friction [20]. In these situations,
friction constitutes an additional source of nonlinearity that
may give rise to harmonic mixing, thus playing a major role in
the ratchet effect. In particular—and contrary to what intuition
might suggest—nonlinear friction may contribute positively
to the emergence of directed motion under appropriate condi-
tions. In the case of random forces, this possibility has been
analyzed in Ref. [21], where the friction considered is nonlinear
and anisotropic.

The primary aim of the present work is to investigate
how directed motion emerges from the combined action of
nonlinear friction and zero-mean oscillating forces. To this
end, we focus our analysis on a simple but realistic model of a
physical system in which friction is the only nonlinear element
present. More specifically, we examine the motion of a sphere
immersed in a viscous fluid and subjected to a time-periodic
force of zero average, covering a wide range of Reynolds
numbers. We pay special attention to the case of two mutually
perpendicular forces with sinusoidal time dependence, one
with twice the period of the other. In particular, we show that,
although neither of these two forces induces directed motion
when acting separately, the resultant force obtained by adding
them together causes a net motion of the sphere along the
direction of the force with the shortest period [22].

The outline of the remainder of this paper is as follows.
In Sec. II, we introduce the system under consideration and
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define the quantities of interest, namely, the time-dependent
terminal velocity and the average terminal velocity. We also
provide necessary conditions for the appearance of directed
motion. The convergence of the solutions of the equation of
motion to the time-dependent terminal velocity is analyzed
in the Appendix. In Sec. III, we derive an expression for the
average terminal velocity within the adiabatic approximation.
In Sec. IV, the theoretical results of the previous sections are
illustrated by numerical simulations. Finally, in Sec. V, we
present conclusions for the main findings of our work.

II. PROBLEM FORMULATION

We consider the motion of a sphere of mass m and radius r ,
immersed in a steady fluid of density ρf and viscosity η, and
subjected to a time-periodic force F(t) of period T and zero
time average, i.e., with

∫ T

0 dt F(t)/T = 0. Since the objective
is to study how directed motion emerges from the combined
action of the drag force and F(t), for expositional clarity we will
assume that these are the only forces acting on the sphere. This
implies that the system is in a microgravity environment and
that the size of the sphere is large enough to neglect the effects
of the Brownian forces. The time evolution of the velocity of
the sphere relative to the fluid, v(t), is governed by the equation
of motion

mv̇(t) = Fd(t) + F(t), (1)

where the overdot indicates derivative with respect to time and
Fd(t) is the hydrodynamic drag force exerted on the sphere at
time t .

Hereinafter, we will also assume that the hydrodynamic
drag force can be expressed in terms of the steady drag
coefficient Cd(Re) [17] as

Fd(t) = − πrη

4
Re(t)Cd[Re(t)]v(t), (2)

where Re(t) = 2rρf |v(t)|/η is the Reynolds number of the
sphere at time t (throughout this paper, a pair of vertical bars
indicates the magnitude of the enclosed vector). In other words,
we will assume that the hydrodynamic drag force at any given
instant is what it would be if the sphere were moving uniformly
with its instantaneous velocity v(t). This assumption is strictly
valid in the low-frequency limit defined by the condition
r2ρfω/η � 1, where ω = 2π/T is the fundamental angular
frequency of the driving force (see, e.g., §24 of Ref. [17]). In
this limit, the velocity varies so slowly in time that the flow
can be regarded as steady at any given instant. In practice, the
low-frequency limit can be achieved by sufficiently decreasing
the driving frequency and/or the size of the sphere (but keeping
it larger than the Brownian size). In addition, it is more
easily achieved in fluids with high kinematic viscosities η/ρf .
By way of example, in the case of a sphere of radius r =
10−4 m moving in water, ethanol, or air at normal temperature
and pressure (i.e., 20◦C and 1 atm), the low-frequency limit
is valid for ω � 1.0 × 102 rad/s, ω � 1.5 × 102 rad/s, and
ω � 1.5 × 103 rad/s, respectively [23].

The use of Eqs. (1) and (2) implies that the effects
of the virtual mass force and the Basset history force are
negligible [24,25]. In addition, if the density of the sphere,
ρs = 3m/(4πr3), is less than or of the order of ρf , the inertial

term mv̇(t) is also negligible, since it is proportional to
the virtual mass force −2πr3ρf v̇(t)/3 with proportionality
constant −2ρs/ρf . In fact, it can be shown (see Sec. III) that,
in dimensionless units, the inertial term is proportional to
the dimensionless parameter r2ρsω/η and, consequently, it is
negligible in the low-frequency limit r2ρfω/η � 1 if ρs/ρf

is less than or of the order of unity. Thus, for inertial effects
to be non-negligible, it is necessary to assume that ρf/ρs � 1
(heavy-particle limit).

According to Eq. (2), the drag force is a nonlinear function
of v(t). More specifically, the ratio |Fd(t)|/|v(t)| increases with
increasing |v(t)| if, as will be assumed henceforth, |v(t)| <

105η/(rρf ). This is so given that ReCd(Re) is an increasing
function of Re until the onset of the “drag crisis,” which occurs
for Re ≈ 2 × 105 [25]. It is only in the limit of vanishing
Reynolds number thatReCd(Re) tends to 24 and Eq. (2) reduces
to the linear expression Fd,St(t) = −6πrηv(t) (Stokes’ law)
[17]. In practice, the departure from Stokes’ law is already
quite significant for Reynolds numbers of the order of unity or
even smaller (see, for instance, Fig. 3.9 in Ref. [24]). Therefore,
for the nonlinear nature of the drag force to become apparent, it
is sufficient that |v(t)| � η/(2rρf ); this is precisely the regime
of interest in this work. For example, in the case considered
above, the nonlinearity becomes significant when |v(t)| �
5.0 × 10−3 m/s (water), |v(t)| � 7.6 × 10−3 m/s (ethanol),
and |v(t)| � 7.6 × 10−2 m/s (air)—velocities that can be rea-
sonably achieved in the laboratory.

Given an initial condition for the velocity at some initial
instant t0, the value of the velocity at any later time t > t0
can be calculated by integrating the equation of motion (1). In
the Appendix it is shown that, as happens in the linear case,
as the time interval t − t0 increases, the solutions of Eq. (1)
become independent of the initial conditions and converge
exponentially to a single time-dependent terminal velocity,
which will be denoted by V(t). Moreover, it is also shown
that the relaxation time to reach this terminal velocity is less
than, or of the same order as, the characteristic timescale
τ = m/(6πrη).

The time-dependent terminal velocity V(t) is uniquely
determined by the equation of motion (1). Consequently, if
Eq. (1) is invariant under some transformation, so will be
V(t). For example, using Eq. (2) and the fact that F(t) is
periodic, it is easy to verify that Eq. (1) is invariant under
the transformation v(t) �→ v′(t) = v(t + T ), in the sense that
it remains unchanged if v(t) is replaced by v′(t) = v(t + T ).
It then follows that V(t) must also be invariant under the same
transformation, i.e., V(t) = V′(t) = V(t + T ). Therefore, the
time-dependent terminal velocity is periodic in time with
the same period T as F(t). We are interested in studying the
average terminal velocity

V = 1

T

∫ T

0
dt V(t) (3)

and, more specifically, the conditions for V to be nonzero.
Firstly, it should be pointed out that the existence of

nonzero average terminal velocities is an unequivocal signal
that Stokes’ law is no longer applicable. Indeed, if Stokes’
law were applicable, then the time-dependent terminal velocity
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would satisfy the linear differential equation

V̇(t) = −V(t)

τ
+ F(t)

m
. (4)

By integrating the above equation from 0 to T , and taking into
account the periodicity of V(t) and that F(t) has zero time
average, it would necessarily follow that V = 0.

In addition to the violation of Stokes’ law, there is another
necessary condition for the existence of nonzero average
terminal velocities. Let us assume that the force F(t) fulfills
the time-shift symmetry

F(t) = −F(t + T/2). (5)

In this case, it can be easily verified that the equation of
motion (1) is invariant under the transformation v(t) �→ v′(t) =
−v(t + T/2), so V(t + T/2) = −V(t). This last result, to-
gether with Eq. (3), implies that V = 0. Consequently, nonzero
average terminal velocities are only possible if the time-shift
symmetry (5) is broken.

As a particularly illustrative example, let us consider the
force F(t) = F1(t)e1 + F2(t)e2, where F1(t) and F2(t) are
periodic functions with periods T1 = T and T2 = T/2, re-
spectively, and e1 and e2 are two mutually perpendicular unit
vectors [22]. The period of F(t) is, thus, equal to T . Let us
assume that both F1(t) and F2(t) satisfy the aforementioned
time-shift symmetry, i.e., Fj (t + Tj/2) = −Fj (t) for j = 1,2.
Consequently, if each component of F(t) were considered
separately, the resulting average terminal velocity would be
zero. By contrast, if both components are added together,
a nonzero value of V is possible given that F(t + T/2) =
−F1(t)e1 + F2(t)e2 �= −F(t). Moreover, in this case, the av-
erage terminal velocity is necessarily parallel to e2. Indeed,
for the considered F(t), the equation of motion (1) is clearly
invariant under the transformation v(t) �→ v′(t) = v1(t)e1 +
v2(t)e2 − v3(t)e3, where e3 is a unit vector perpendicular to
both e1 and e2. As a consequence, V3(t) = −V3(t) = 0. Since
Eq. (1) is also invariant under the transformation v(t) �→
v′(t) = −v1(t + T/2)e1 + v2(t + T/2)e2 + v3(t + T/2)e3, it
then follows that V(t + T/2) = −V1(t)e1 + V2(t)e2. Using
this last expression in Eq. (3), we obtain that, if V �= 0, then
it is necessarily parallel to e2 [22]. In addition, we have also
proved that the period of V2(t) is T/2.

III. ADIABATIC LIMIT

An explicit expression for the average terminal velocity can
be obtained in the adiabatic limit ωτ � 1. Notice that, in the
heavy-particle limit, the adiabatic limit is more restrictive than
the low-frequency limit mentioned in the previous section,
since r2ρfω/η = 9ρfωτ/(2ρs) � ωτ if ρf/ρs � 1. To study
the adiabatic limit, we first introduce the dimensionless quan-
tities θ = ωt , ν(θ ) = 2rρf v(θ/ω)/η, and f(θ ) = F(θ/ω)/F0,
with F0 being a typical value of |F(t)| such that |f(θ )| � 1 for
all θ . The value of the Reynolds number at the dimensionless
time θ is thus given by |ν(θ )|. In dimensionless variables, the
equation of motion (1) becomes

ωτ
dν(θ )

dθ
= − 1

24
Cd[|ν(θ )|]|ν(θ )|ν(θ ) + f0 f(θ ), (6)

where f0 = ρfF0/(3πη2) is a dimensionless parameter char-
acterizing the strength of the driving force.

The adiabatic limit of ν(θ ), denoted hereafter as νad(θ ), can
be found by solving the equation

Cd[|νad(θ )|]|νad(θ )|νad(θ ) = 24f0 f(θ ), (7)

which is obtained by taking the limit ωτ → 0 in Eq. (6). Once
Eq. (7) is solved and νad(θ ) is known, we can immediately
determine the adiabatic limit of the average terminal velocity,
Vad, using the expression

Vad = η

4πrρf

∫ 2π

0
dθ νad(θ ), (8)

which is just Eq. (3) rewritten in terms of dimensionless
quantities.

In order to solve Eq. (7) and obtain νad(θ ), an explicit
expression for the steady drag coefficient Cd(Re) is required.
For the present purposes, we will use the semiempirical
expression

Cd(Re) = 24

Re

(
1 +

√
Re

δ0

)2

, (9)

with δ0 = 9.06 (see Ref. [26] for a heuristic derivation). This
expression is in remarkable agreement with the experiments
for Re � 5 × 103 [26]. Consequently, in the case under con-
sideration, its use is justified provided that |νad(θ )| � 5 × 103

for all θ .
After inserting Eq. (9) into Eq. (7), one obtains[

1 +
√|νad(θ )|

δ0

]2

νad(θ ) = f0f(θ ). (10)

It follows from the above equation that the vector νad(θ )
points in the same direction as the unit vector f(θ )/|f(θ )|.
Furthermore, it also follows that the magnitude of νad(θ ) is a so-
lution of the algebraic equation [1 + |νad(θ )|1/2/δ0]2|νad(θ )| =
f0|f(θ )|. Thus, taking into account that |νad(θ )| must be real
and non-negative, it is straightforward to show that the only
physically meaningful solution of Eq. (10) is

νad(θ ) = δ2
0

4

⎡
⎣−1 +

√
1 + 4

√
f0|f(θ )|
δ0

⎤
⎦

2

f(θ )

|f(θ )| . (11)

This last expression also allows us to estimate the maximum
value of f0 consistent with the condition |νad(θ )| � 5 × 103.
Indeed, since |f(θ )| � 1 for all θ , it is then clear that |νad(θ )| �
δ2

0[−1 + (1 + 4f
1/2
0 /δ0)1/2]2/4. From this inequality it can

be readily verified that the condition |νad(θ )| � 5 × 103 is
automatically fulfilled for all θ if f0 � 3.87 × 105. For larger
f0 values the use of Eq. (9) is no longer justified, and an
alternative expression for the steady drag coefficient must be
used (see, e.g., Ref. [24] for a discussion of possible choices).

Finally, according to Eq. (8), the adiabatic limit of the
average terminal velocity, Vad, can be calculated by evaluating
the integral

Vad = δ2
0η

16πrρf

∫ 2π

0
dθ

⎡
⎣−1 +

√
1 + 4

√
f0|f(θ )|
δ0

⎤
⎦

2

f(θ )

|f(θ )| .

(12)
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As shown in the following section, even though
∫ 2π

0 dθ f(θ ) =
0, the value of Vad obtained from the above expression is in
general nonzero.

IV. RESULTS

In this section, we illustrate our results using the particular
case of a dimensionless biharmonic force of the form

f(θ ) = ζ cos (θ )e1 + (1 − ζ ) cos (2θ + ϕ)e2, (13)

where ζ is a parameter that allows us to simultaneously vary
the amplitudes of the two harmonic components, and ϕ is
the phase difference between them. The parameter ζ takes
values between 0 and 1, with ζ = 0 and ζ = 1 corresponding,
respectively, to monochromatic forces along the directions of
the unit vectors e2 and e1.

In order to determine the time-dependent terminal veloc-
ity, we have numerically integrated the differential equation
obtained by substituting Eqs. (9) and (13) into Eq. (6), with
the initial condition ν(θ0) = 0. The parameter θ0 has been
chosen to be negative and much larger in magnitude than the
dimensionless relaxation time ωτ , so as to ensure that the
asymptotic time-periodic regime has been reached for θ �
0. Once the time-dependent terminal velocity is known, the
average terminal velocity can be easily computed by evaluating
numerically the integral appearing in Eq. (3).

In Fig. 1, the method described above has been used to de-
termine the dependence of the dimensionless terminal velocity
2rρfV/η on the dimensionless time θ for three values of ωτ ,
namely, ωτ = 0.1 (dotted lines), ωτ = 1.1 (dashed lines), and
ωτ = 2.1 (dot-dashed lines). Only the first two components of
2rρfV/η have been plotted, since the third one is identically
zero. The results obtained by using the adiabatic expression
in Eq. (11) are indicated with solid lines. The values of the
remaining parameters are f0 = 100, ζ = 0.5, and ϕ = π . We
have chosen a relatively large value of f0 in order to highlight
the effect of nonlinearity. However, this does not necessarily
mean that the magnitude of the driving force is also large. For
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FIG. 1. Dependence of the components of the dimensionless
time-dependent terminal velocity 2rρf V/η on the dimensionless time
θ for ωτ = 0.1, 1.1, and 2.1. The results obtained by using the
adiabatic expression in Eq. (11) are depicted with solid lines. The
remaining parameter values are f0 = 100, ζ = 0.5, and ϕ = π .

example, if the fluid is air at normal temperature and pressure,
it can be easily verified from the definition of f0 that the
value f0 = 100 corresponds to a value of F0 of approximately
2.6 × 10−7 N. In the case of a solid iron sphere of radius
r = 10−4 m, this is about 80.4% of its weight on Earth.

The results in Fig. 1 confirm that the first component of
2rρfV/η (bottom panel) reverses sign every half period and
that the second component (top panel) has half the period of
the first, as was shown at the end of Sec. II. Furthermore, it
is observed that the agreement between the analytical results
obtained from Eq. (11) and the numerical results is quite
good for the lowest dimensionless frequency, ωτ = 0.1, but
becomes progressively worse as ωτ increases, as is to be
expected in an adiabatic approximation. More specifically,
with increasing the value of ωτ , the curves shift to the right
and the amplitudes of the oscillations decrease.

At this point, it is convenient to recall that, as pointed out
in Sec. III, the adiabatic limit is more restrictive than the
low-frequency limit if ρf/ρs � 1; as a result, in the heavy-
particle limit, the low-frequency range extends beyond the
adiabatic regime. To illustrate this fact, let us consider again the
example of a solid iron sphere of radius r = 10−4 m immersed
in air at normal temperature and pressure. In this case, it
is easy to verify that ρf/ρs ≈ 1.5 × 10−4 and r2ρfω/η =
9ρfωτ/(2ρs) ≈ 6.9 × 10−4ωτ . From this last expression, it is
clear that the three values of ωτ considered in Fig. 1 are in the
low-frequency range. However, as can be seen in Fig. 1, the
adiabatic approximation is no longer valid for ωτ = 1.1 and
ωτ = 2.1.

Figure 2 depicts the dependence of the second component
of 2rρfV/η on the relative phase ϕ for the same values of ωτ ,
f0, and ζ as in Fig. 1. In this and the following figures, the
first component of 2rρfV/η is not shown as it is identically
zero (see the proof in Sec. II). We have restricted the values of
ϕ to the interval [0,2π ] since the average terminal velocity is
2π periodic in ϕ. This periodicity follows from the invariance
of the dynamics under the transformation ϕ �→ ϕ + 2π [see
Eqs. (6) and (13)]. Again, the adiabatic approximation (solid
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FIG. 2. Dependence of the second component of the dimension-
less average terminal velocity 2rρf V/η on the relative phase ϕ for
ωτ = 0.1, 1.1, and 2.1. The result obtained in the adiabatic limit by
using Eq. (12) is depicted with a solid line. The remaining parameter
values are f0 = 100 and ζ = 0.5.
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line) provides a very satisfactory description of the numerical
results for the lowest dimensionless frequency (dotted line).

A close examination of Fig. 2 reveals that the function
V 2(ϕ), as well as its adiabatic limit V ad,2(ϕ), satisfies the
phase-shift symmetry

V 2(ϕ + π ) = −V 2(ϕ). (14)

To elucidate the origin of this symmetry, observe that replacing
ϕ by ϕ + π in Eq. (13) is equivalent to changing the sign of
the second component of f(θ ). Using this fact, it is easy to
verify that the equation of motion (1) is invariant under the
transformation v(t,ϕ) �→ v′(t,ϕ) = v1(t,ϕ + π )e1 − v2(t,ϕ +
π )e2 + v3(t,ϕ + π )e3, where the dependence of the velocity
on the phase difference ϕ has been explicitly indicated. Since
the time-dependent terminal velocity is uniquely determined
by Eq. (1), it is clear that V(t,ϕ) = V1(t,ϕ + π )e1 − V2(t,ϕ +
π )e2. This, together with Eq. (3), leads to Eq. (14). Note that,
according to this reasoning, Eq. (14) is valid independently of
the value of ωτ and, in particular, in the limit ωτ → 0 [i.e.,
when V 2(ϕ) is replaced by V ad,2(ϕ)].

The results in Fig. 2 also reveal that the adiabatic limit of
V 2(ϕ) satisfies the symmetry relation

V ad,2(ϕ) = V ad,2(−ϕ), (15)

whereas outside the adiabatic regime, generally V 2(ϕ) �=
V 2(−ϕ). To understand why this is so, observe that the function
f(θ ) in Eq. (13) is unchanged if the sign of both θ and ϕ is
switched. From this, it readily follows that Eq. (7) is invariant
under the time-and-phase-reversal transformation νad(θ,ϕ) �→
ν ′

ad(θ,ϕ) = νad(−θ, − ϕ) and, consequently, that νad(θ,ϕ) =
νad(−θ, − ϕ). After an appropriate change of variables, this
last expression, together with Eq. (8), leads to Eq. (15). Outside
the adiabatic regime, however, this argument fails because the
invariance of Eq. (6) under time-and-phase reversal is broken
by the presence of the first-order time derivative.

The symmetry relation (15) is but a special case of the more
general relation

V ad,2(nπ/2 + ϕ) = (−1)nV ad,2(nπ/2 − ϕ), (16)

valid for any integer n. To prove Eq. (16), it suffices to
note that, according to Eq. (14), the right-hand side of the
equality V ad,2(nπ/2 + ϕ) = V ad,2(−nπ/2 − ϕ) is equal to
(−1)nV ad,2(nπ/2 − ϕ). By setting ϕ = 0 in Eq. (16), we
conclude that

V ad,2(nπ/2) = 0 (17)

if n is odd. The properties (16) and (17) are visible in Fig. 2.
As a final comment on Fig. 2, it is worth mentioning that the

curves shown can be very well fitted by an expression of the
form A1 cos(ϕ + χ1) + A3 cos(3ϕ + χ3), where A1, χ1, A3,
and χ3 are fitting parameters which depend on the value of ωτ ;
the fitting curves are not shown in the figure, as they are visually
indistinguishable from the original ones. The functional form
of this fitting function is a direct consequence of the system
symmetries, being independent of the details of the dynamics
(see, e.g., Refs. [27,28]). In particular, in the adiabatic limit,
it is only necessary to calculate two fitting parameters since,
according to Eq. (15), χ1 and χ3 can be chosen to be zero.

In Fig. 3, the dependence of 2rρfV 2/η on the parameter ζ

is shown for the same values of ωτ , f0, and ϕ as in Fig. 1.
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FIG. 3. Dependence of the second component of the dimen-
sionless average terminal velocity 2rρf V/η on the parameter ζ for
ωτ = 0.1, 1.1, and 2.1. The result obtained in the adiabatic limit by
using Eq. (12) is depicted with a solid line. The remaining parameter
values are f0 = 100 and ϕ = π .

The numerical results obtained for ωτ = 0.1 (dotted line) are
indistinguishable from those provided by the adiabatic expres-
sion (12) (solid line). Notice that, independently of the value
of ωτ , the average terminal velocity vanishes for ζ = 0 and
ζ = 1. This is so because the dimensionless force in Eq. (13)
satisfies the time-shift symmetries f(θ + π/2) = −f(θ ), if ζ =
0, and f(θ + π ) = −f(θ ), if ζ = 1 (see discussion at the end
of Sec. II). The curves in Fig. 3 also reveal that, for fixed
values of the other parameters, there exists an optimal value
of ζ which maximizes the second component of the average
terminal velocity. Furthermore, as ωτ increases, the maximum
velocity decreases and its location shifts toward lower values
of ζ .

It should be noted here that, in the lowest order, the general
formalism developed in Refs. [27,28] leads to the approximate
expression V 2(ζ ) ≈ Cζ 2(1 − ζ ), where C is independent of
ζ . This expression vanishes at ζ = 0 and ζ = 1, and displays
a maximum at ζ = 2/3, thus qualitatively resembling the
behavior seen in Fig. 3. However, it is unable to account for
the dependence of the location of the maximum velocity on
ωτ . This deficiency is not surprising, given that the above
approximation is expected to be accurate only for small values
of f0 and, in Fig. 3, we have taken f0 = 100.

In Fig. 4, we plot the dimensionless average terminal
velocity 2rρfV 2/η as a function of the dimensionless driving
strength f0 for the same values of ωτ , ϕ, and ζ as in Fig. 1. We
have limited the range of f0 to values well below 3.87 × 105,
so as to ensure the applicability of Eq. (9) (see Sec. III).
In particular, the large panel shows the results obtained for
values of f0 varying from 0 to 104, while the inset zooms
in on the range 0 � f0 � 400. Again the numerical results
obtained for ωτ = 0.1 (dotted line) are indistinguishable from
those provided by the adiabatic expression (12) (solid line). A
glance at the large panel might tempt one to conclude that, for
the parameter values considered, an increase in ωτ causes an
increase in 2rρfV 2/η. However, this conclusion is refuted by
the data shown in the inset.

032219-5



JESÚS CASADO-PASCUAL PHYSICAL REVIEW E 97, 032219 (2018)

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

0 100 200 300 400
0

0.5

1

1.5

2

f0

f0

2r
ρ f

V
2
/η 2r

ρ
fV

2
/η

Adiabatic limit
ωτ = 0.1
ωτ = 1.1
ωτ = 2.1

FIG. 4. Dependence of the second component of the dimension-
less average terminal velocity 2rρf V/η on the parameter f0 for
ωτ = 0.1, 1.1, and 2.1. The result obtained in the adiabatic limit by
using Eq. (12) is depicted with solid lines. The remaining parameter
values are ζ = 0.5 and ϕ = π . The inset shows a zoomed-in view of
the curves in the range 0 � f0 � 400.

In the case shown in Fig. 4 the average terminal velocity
is an increasing function of f0. From Eq. (14) it is evident
that, if we had used ϕ = 0 instead of ϕ = π , we would
have observed that the average terminal velocity decreases
monotonically with f0. The question then arises as to whether
there are parameter values for which the average terminal
velocity exhibits a nonmonotonic dependence on f0. The
answer to this question is affirmative, as can be seen in Fig. 5
for ϕ = π/2 and ωτ = 1.1 and ωτ = 2.1. Notice that the
nonmonotonic behavior is accompanied by the appearance of
a current reversal as a function of the dimensionless driving
strength f0. As the value of the dimensionless frequency ωτ

decreases, the position of the current reversal shifts toward
f0 = 0, becoming indistinguishable from zero for ωτ = 0.1.
This type of current reversal is quite common in underdamped
rocking ratchets (see, e.g., Refs. [10,29]). The above results
clearly show that, when nonlinear friction is present, current
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FIG. 5. The same as in Fig. 4 but now ϕ = π/2.

reversals can be observed even in the absence of any periodic
substrate potential.

V. CONCLUSIONS

In this paper, a theoretical study of the motion of a sphere
immersed in a viscous fluid and subjected to a time-periodic
force of zero average has been presented. Our focus has been
on situations in which Stokes’ law is not applicable, so the drag
force depends nonlinearly on the velocity of the sphere relative
to the fluid. Let us summarize the main results of this work.

(i) It has been shown that, when the time-shift symmetry
(5) is broken, the combined action of the zero-mean oscillating
force and the nonlinear drag force is able to induce a directed
motion of the sphere. Unlike in the traditional rocking ratchet,
in this case the directed motion emerges in the absence of any
periodic substrate potential.

(ii) Explicit expressions for the terminal velocity and the av-
erage terminal velocity have been derived within the adiabatic
approximation. A comparison between the predictions of these
expressions and the results obtained by numerically solving the
equation of motion has been carried out. As expected, it has
been found that the lower the frequency of the driving force,
the more accurate the adiabatic approximation becomes.

(iii) By way of example, the case of two mutually per-
pendicular forces with sinusoidal time dependence has been
considered. Although neither of these two forces induces
directed motion when acting separately, it has been shown that
the resultant force obtained by adding them together causes a
net motion of the sphere along the direction of the force with
the shortest period [22].

(iv) A detailed analysis of the dependence of the average
terminal velocity on the system parameters has been made
and some aspects of the observed phenomenology, such as the
suppression of transport for particular values of the parameters,
have been rationalized using symmetry arguments.

(v) A remarkable finding of this analysis is that, for
appropriate parameter values, the average terminal velocity
exhibits a nonmonotonic behavior as a function of the forcing
strength, resulting in the appearance of current reversal. This
kind of behavior resembles that observed in underdamped
rocking ratchets [10,29].

A natural extension of this work would be to empirically
verify the theoretical results reported here. It is hoped that
the present paper will provide the stimulus to do experimental
research in this area.
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APPENDIX: CONVERGENCE OF THE SOLUTIONS OF
EQ. (1) TO THE TIME-DEPENDENT

TERMINAL VELOCITY

Let v(t) and v′(t) be two solutions of the equation of
motion (1) corresponding to the initial conditions v(t0) = v0
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and v′(t0) = v′
0 �= v0. By using Eqs. (1) and (2), it is not hard

to verify that

d

dt
|v(t) − v′(t)|2 = −�(t)|v(t) − v′(t)|2 − 
(t), (A1)

where

�(t) = πrη

4m
{Re(t)Cd[Re(t)] + R′

e(t)Cd[R′
e(t)]} (A2)

and


(t) = 3πη3

2mrρ2
f

{[Re(t)]2 − [R′
e(t)]2}

× {Re(t)Cd[Re(t)] − R′
e(t)Cd[R′

e(t)]}, (A3)

with Re(t) = 2rρf |v(t)|/η and R′
e(t) = 2rρf |v′(t)|/η.

As mentioned in Sec. II, in the range of Reynolds numbers
considered in this work, ReCd(Re) is an increasing function of

Re. Thus, from Eq. (A3) it follows that 
(t) � 0. In addition,
since limRe→0 ReCd(Re) = 24, it is clear from Eq. (A2) that
�(t) � 12πrη/m. Using these results, Eq. (A1) leads to the
inequality

d

dt
|v(t) − v′(t)|2 � −2

τ
|v(t) − v′(t)|2, (A4)

with τ = m/(6πrη). It then follows from Gronwall’s inequal-
ity (see, e.g., Ref. [30]) that

|v(t) − v′(t)|2 � |v0 − v′
0|2e−2(t−t0)/τ . (A5)

Therefore, as the time interval t − t0 increases, the solutions
of Eq. (1) become independent of the initial conditions and
converge exponentially to a single time-dependent terminal
velocity. Furthermore, according to Eq. (A5), the relaxation
time to reach this terminal velocity is less than, or of the same
order as, the characteristic timescale τ = m/(6πrη).
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